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ON THE CORRECT-READING RATE AND THE DISTRIBUTION OF
TIME BETWEEN CORRECT READINGS FOR CLOCK ENSEMBLES

G. E. Hudson

Clocks in certain kinds of statistical ensembles can be
characterized in terms of the instantaneous fractional rate of those
which read correctly, and the probable distribution of times between
correct readings or ''zero crossings.'" An integral equation of
standard renewal type relates these quantities. If the dispersion
of the ensemble varies with time in certain ways, corresponding
solutions of this equation can be and are derived, utilizing Laplace
transforms, Some are applicable, for example, to trends of the
dispersion function which correspond to white noise, random walk
noise, and flicker noise fluctuations of the clocks' readings about
the ensemble average.

Key Words: correct-reading rate of clocks, flicker noise,
random walk noise, renewal processes, statistical
clock ensembles, time distribution between correct
readings of clocks, time-keeping, white noise.

1. INTRODUCTION

The initial purpose of this pape;r is to present and to a minor extent
discuss a formulation of a mathematical description of the statistical
behavior of an ensemble of clocks. A model of this ensemble may be
specified in terms of the distribution of its clock readings about the
ensemble average. This model is specified in more detail in the next
sections, as suggested by certain experimental studies, but it is not
the purpose of this paper to discuss or present details of these experi-
ments; rather, it is the purpose simply to deduce properties and

behaviors of the rmodel so suggested.



The description will be seen to lead to a certain integral equation
(or summation equation, in the discrete case) relating two functions of
time whose trends are significant in the study and classification of
clock reading statistics.

The main purpose of the paper is to determine and exhibit pairs
and classes of solution functions satisfying this equation and study
their properties. Cases of particular importance, since they relate
to types of clock reading behaviors designated by the terms white noise,
random walk noise, and flicker noise, are studied, and lead to explicit
formulas describing the behavior of the ensemble for large and small
times.

Difficulties of this mode of description associated with the case of
flicker noise and, more generally, ensemble dispersions, 0(t), with
rates which are proportional to powers of time greater than or equal to
unity, are noted. A possible direction for generalization of the des-
cription is pointed out, which introduces a statistical mechanical repre-
sentation of the ensemble in a two-dimensional phase space.

The results and methods of this paper should be regarded as pre-
liminary; certain ones of them are new, as are the point-of-view and
suggestions for future work. Since the integral equation studied is of
standard renewal type, many results of studies of such processes are

immediately applicable, but are not reviewed herein.

2. SPECIFICATION OF THE ENSEMBLE TYPE
Let us consider a statistical ensemble of identically constructed
independently running clocks contained in a small enough spatial region
so that comparisons of their simultaneous readings, T, can be made,
effectively, in an instantaneous fashion. Assume that, at any instant,
the average reading, t, of the ensemble exists, as well as its variance,
2

0“. We shall, on occasion, for convenience refer to the ensemble

average time, t, as the '""correct' time.
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Thus,

t

1

(r) (1a)

o = {(r-t}) (1b)

where the brackets denote the ensemble average. Let the random
variable £ denote the deviation of the ensemble clock readings from the

average, so that

E=7T-t

and hence

(&) = 0. (1c)

We shall also suppose in general that o° depends on ''the time", t,
o = a(t). (2a)

It is further specified that, at one particular instant, all the clocks are
set to have the same reading t = 0, so that, at this instant

o(0) = 0. (2b)
Moreover, they are adjusted at this initial instant to run at the same
nominal rates. Nevertheless, thereafter they diverge on the average
fromt in their readings because each rate (and reading) is subject to
random statistical fluctuations, which produce the hypothesized distribu-

tions as well as other statistical characteristics to be described.

Experiments in which the frequency of quartz oscillators were
measured repeatedly against a standard, suggest an empirical model
(Ref 1). If the oscillator were used to drive a clock, then it has been
shown empirically that the readings of an ensemble of such clocks would

have the probability density £?
1 ~ 5T
elE,t) = NCEE 207 {¢) (3a)
27 9(t)

which satisfies the foregoing relations, with the additional condition that



(£, 0) = 5() . (3t)

For the stationary, or "white noise" case, ¢ is a constant.

3. A BASIC RELATIONSHIP

According to J. Barnes (Ref 1) the clock ensemble of the kind con-
sidered here can additionally be characterized in terms of two other
functions, p(t) and r(t), as follows. It may be assumed that the random
deviations of the clock readings from their average are time varying in
such a way that each clock might read the correct time, again and again,
according to some probability law. That is, if a clock reads the value t'
at the instant when the ensemble average is t', there is a conditionél
probability density p(t,t') 20 that the clock will again read the ''‘correct"
time, t, but _r_l_gt_:_read the correct value at any intervening instant. More-
over, it is assumed that this probability density is stationary, in the

sense that p depends only on the difference t - t', i.e.,

plt,t') = ple-t') . (4a)
Statistically, then, we shall regard
p(t'-t")dt’ (4b)

as the probable number of clocks in the ensemble which do read t'
between times t' and t' + dt', on the condition that it read the correct
time t'' at an earlier ''time' t', but did not read the correct time
between t' and t",

This conditional probability is related, according to Barnes, to an

(unconditional) rate distribution function r(t), The differential

r(t')dt' (5)

represents the fractional number of ensemble clocks which have the



correct reading t' when the ensemble average is between the times t' and

t' + dt'. We shall call r(t) the "correct-reading' rate of the ensemble.
Because of the hypothesized initial 6-function distribution, it is

only after the instant t' = 0 that any of the clocks can again read

"correctly''. Subsequently, the portion of those clocks which did read

correctly at time t', and which again show the correct time, t, at a

later moment t, but not in between, is
r(t')p(t-t')dtdt’ , t2t',

Now, at time t=0, the number of clocks reading correctly in the

interval dt, must equal the number
p(t)dt

which read correctly at time, t, having also read zero att = 0 (but not
in between) plus the number which did read correctly at times t'

between 0 and t but which did not read correctly between t' and t, i.e.,

t
fr(t')p(t-t')dt'dt.
o
Thus, we arrive at the integral equation relating r(t) and p(t):
t
r{t) = plt) +/r(t')p(t-t')dt' . (6)
(o]

This is Barnes' result. It has the form of a standard ''renewal equation'',
as in the theory of probability (Ref 2).

This integral equation shows that r andp can be regarded as so-
called “reciprocal kernels', as in the study of linear integral equations

of second kind, of Volterra type. In fact, under certain conditions, if
t

Ft) = Gft) +fp(t-t')F(t')dt'
o]

is an equation for ¥, given G and p, then



t
F(t) = G(t) +/r(t-t')G(t')dt'
o]

provided p and r are related by the integral equation derived in the
foregoing (Ref 3).
The specification of the probability density p(t) is not yet complete.

It is reasonable to require that

ot ;20 R t=0 (7a)
=0, t<O0 . (7b)

If one were certain that no clock remained permanently incorrect in

its reading, then one could postulate that

fp(t)dt = 1. (8)
(e}

Equation (7b) states that the probable number of clocks which did read

the time correctly in a small time interval at an earlier time, as a

result of the fact that they sometime later will read the correct time is
zero. Interpreted in causal terms, Equation (7b) like Equation (8)
would imply a restriction on the physical nature of the clocks; but it

can also be regarded as a convenience in completing the specification

of p(t) so that some solutions of Equation (6) might be obtained more
easily using it. Equation (8), too, is posited in the remainder of this
paper, and should be regarded as a convenient normalization of p.

More generally :)odts 1; for, as was noted by W. Feller (Ref 4), p is

a conditional prooba.bility; or it might be a rate, like r, as Barnes

too has suggested (Ref 1). In any case (8) need not hold in general.

It is possible to set up a difference equation analogous to Equation

(6), which has sometimes been useful in making numerical computations.



This is

n-1
ro=p,*t Py _ntTn (n>0) (9)
n'=1
and in analogy to Equation (7) and (8),
=0 , n>0 10a)
pn
=0 , n<0 (10b)

and

Z;pn= 1. (11)
n=

The derivation of (9) is as follows: Consider again an ensemble
of clocks, and let there be a series of readings of these clocks at dis-
crete instants tn’ (n=1, 2,***), such that the ensemble average of the
deviations, gn, of the readings from the average, tn’ is zero.
Assume further that at t there is a probability, Pt that a clock of the
ensemble shall have a deviation between -At/2 and + At/2 from the
average reading, under the condition that at time tn' its readings also
lay in this range, but did not do so for any reading between tn' and
tn(n'<n). Suppose that p depends only on (n-n') (stationarity}. Let
r be the fractional number of clocks at time tn which have deviations
in the range («At/Z, + At/2). Then, TP is the fractional rumber
of clocks at time trl whose readings lie between tn - (At/Z) and
tn + (At/2) and which also lie in this range at time tn,(n'<n), but not
at any instant between. #£quation (9) tollows immediately; (10a) is
required since P, is a probability, and the stipulations (}0b) and (11) may
be imposed as a convenience in the solution of (9) or as part of the defini-
tion of the ensemble and the clock mechanism. An equation like (9} can

also be derived from (6), by introducing power series expansions of r(t)
and p(t).

Note that no physical reason for the clocks behaving in the supposed
way as described (either by (9) or (6)) has been given. Indeed, both the

integral and difference equations are valid by definition of the quantities



appearing in them. If the definitions are self-consistent and applicable
to reality, there are necessarily pairs of solutions r and p, with the stated
properties, which we shall consider eventually. Whether or not there exist
physically reasonable ensembles of these types is a different question.

Still another problem to which we now turn is the relation between
o(t), or the probability density ¢(£,t), and the correct reading rate
distribution r(t).

4. THE JOINT READING AND RATE DISTRIBUTION

As before, consider an ensemble of clocks with a random variable
clock-reading, 7. However, let us now introduce the gotion of clock-
rate, ¥, as a random variable. There are some indications, as we
shall point out, that this generalization will probably be distinctly
advantageous in more extensive developments of the theory than can be
dealt with here. If a clock reading has a rate 7, different from unity,
it must be derived with respect to some other suitable time dependent
quantity. We shall choose the ensemble average as this quantity, so that

. dr
T = 3t (12a)
for any given clock of the ensemble. Sometimes one also speaks of the
clock-rate offset (from the average)

dr
€ —-d—t-- 1. (le)

We shall assume that the ensemble is characterized by a two-dimensional
density function, Dt(‘r,‘i'), defined over the ''phase-space' of the inde-
pendent random variables T and 7.

In the general theory, it might be supposed in addition that a
typical clock of the ensemble, except for random perturbations to which
it is subjected, can be specified in terms of some Hamiltonian (generally
with a very large number of variables, and possibly having a quantum-

physical basis). Many further results, following upon the use of



Liouville's theorem and other statistical mechanical considerations,
await further development. However, a few relationships can be
found, based simply on the concepts and definitions introduced up to
this point.

From its definition, we have

00 00
//Dtdrdizl . (13)
~o0 -00

Also, the time indicated by the ensemble is

0 00
/ /TDthdi' =t (14)

00 "-00

whereas, the average ensemble rate is unity

L ¢] [* ]
/ /%Dtdrcﬁ = 1. (15)

—00 =0

The relation between the ensemble probability density, olT-t, t)’over the

clock-reading T, and the phase distribution Dt is readily seen to be

©
th(T,%)d+ = olr-t,t) . (16)
-
This must hold, whether or not the density ¢ is the Gaussian one
mentioned earlier. It is interesting, as a trivial check, to calculate the

fractional number of clocks having a '""correct'' reading between t and t+dt,
g g

at the ensemble time t. Clearly, this is

o0
dt'/ADt(t,‘f')di' = r(t)dt , (17)
— 00

so that we have established formally the general connection, intuitively
obvious (Ref 1),
(0, t)= r(t) (18)

between ¢ and the rate distribution function, r, for zero deviations.



In the special case of a Gaussian density, Equation (3a), with dis -

persion g{t), we have also derived the important result

1
r(t) = m) . (19)

Finally, if desirable, the initial density-in-phase-space can be

specified to have the distribution

1%(1-,5—) = §(r)s(r-1) , (20a)
or more generally
Do('r,'i') = &(T Ju(t) (20Db)
where
0
f wlF)dt = 1
and °

i

[+ o]
f%u(ﬂd’r 1.
(o)

Additional and more specific information concerning the behavior of
Dt’ ¢©, P, and r, other than that contained in or implied by the foregoing
equations, must await more explicit specification of the physical and

statistical properties of clocks.

10



5. SOME SOLUTIONS AND PROPERTIES OF SOLUTIONS

We now turn to a consideration of the implications of the integral
or summation equation (6) or (9), taken in conjunction with conditions

(7) and (8), or (10) and (11). First, let us deal with the integral equation.

5.1. The Continuous Case
Integration of Equation (6) from 0 to @, with an interchange of the
order of integration on t' and t, and using (7) and (8), leads easily, as in

Appendix I, to the result,

0 .
fr(t)dt = (21)

0
Let us assume that the one-sided Laplace-transform,

F(\), of r(t) exists:

0
TO) = /e'“r(t)dt. (22)
0
Condition (8) insures the existence of B(X) for p(t). Then, as shown
in Appendix II, an application of (7) and (8) with an integration procedure
similar to that leading to (21), shows that the Laplace trarsform of the
"convolution' integral in (6) is simply the product of ¥ and p. The Laplace

transform of (6) thus leads to

T = P_ (23a)
1-p
and
7 =i 23b
P17 (23b)
It is easily checked that since
©
p(0) =/ plt)dt = 1 (24a)
0



o~

then r(0) = o (24b)
as it should be.
~ \P
t = 1 =, £(0) = 5
Se p 70 (0) = (25a)
with 8 > 0. Then
FR 1. N (25b)
R
A
As A+, most decent Laplace transforms approach 0 (Ref 4). Hence
8
f) =0 (Ix"]), as = (26)

With these stipulations, we may reasonably expect, given p(t), that E
and hence t can be found, and then that the inverse transform of T
would lead to r(t). Or if r(t)is given, the inverse Laplace transforma-

tion (Ref 5)

. L Y+ib #(2)
im zt T(z
°) = 7 5—+°°[ ¢ TR ¢ (27
Y-ib
(as in Appendix 1II) or some equivalent, more convenient, procedure

would yield the conditional probability density. Note that the special

case, to which we return presently, for which

1

]
f0) L T

and , RS>0 (28)

- a 3
F=p/N, D H/(HH\)

satisfies all the foregoing conditions. Notice also that the simple but

important special case

a = — (293.)
Q_ ()

12



where m > n, and Pn and Qm are polynomials of degree n and m respec-

tively such that

P(0) = Q(0)#0,

leads to P ()
n

- Q () -F M)

which is a similar ratio of polynomials.

(29Db)

(29c)

Generalization of (29) is, of

course, easily accomplished. Let us now consider a variety of cases

which are particularizations of the foregoing.

a, Exponential Distributions

Choose r(t) to have the form

N Lt
r(t) = E r e ,
n=
so that, since
N T
r{})

1]
i
H
s}

A t+a
n

this is an example of Equation (2%-c).

To satisfy the condition T(0) = w0, let

Ctl = 0
Define
N
Q.M = XnE__IZO\JrOLn)
and
(n) _ N X +ai
P @) = gl oFm

13

(30)

(31)

{(31a)

(32a)

(32b)



Then
r;l ;npl(\?-)l(x)
o(\) =

(33a)

= Z H‘; (33b)
n= n

where 5n are the numerators in the expression of p in partial fractions, and
where the roots of the Nth order polynomial in the denominator of

0(\) are denoted by -f-}n (and are assumed to be distinct). Because

QN(O) = 0, we also have

L X B,
p(0) = 7 =1 (34a)
n= n
as well as, for m > 1,
| N B,
pl-a, )= : — =1 - (34b)
n= n m

14



Define

= (n) N
- n
R,() = Qi)+ ZrnPN_lm - 1, 04)) (35a)
n=
so that
RN(-@n) = 0 ; (35b)
also, let
N A R,
(n) i
Sv-1) =50h 3 ¥R . (35¢)

Then we see fram Equations (33) and (35), after setting A = -2 , that
n

SRS
_ r; I.npN-I(-qm)
pm = (m) 1 (rrl:]-io“.l N) . (36)
Sn-10Pm)

p(t) = $p e Pt (37)

An important case of indistinct roots is considered presently.

15



For N=1,
r = rp {38a)
and

- ergt
r e 1 (38b)

o

which is a check on the reasonableness of the theory. To summarize,

if r{t) is a sum of exponentials, plus a constant, then p(t) is a sum of
exponentials. In particular, if the '"correct reading rate' has a constant

value Ty, the probability density that a clock will return to the correct reading
for the first time, after a period of time, t, decreases with t from the value 7,
at an exponential decay rate equal to r1. In this situation, if the ensemble

has a Gaussian probability density (Equation(3a))in the deviations of its

clock readings from the ensemble average, then the dispersion, 7, is a

constant, according to Equation (19).

0 = b (39)

ﬁﬁ

as in "'white noise''.
Let us assume, as another important special case, with k being an

integer, that
ktk-l ¢
pft) = LI‘(_k)— e H (40)

which is a Poisson density distribution satisfying

0
/p(t)dt 1 , (k>0).

o

Then N k
i) = ( £ ) , (41)

{

>\+p,

and we see that the pole ofs is of order k, a case of non-distinct roots.

16



Accordingly

~ 1
r(\) = . (42)
A +1 k-1
i
For integral k-values, the denominator vanishes for
- 1 1 1
o = wO- ’ wl- ’ s wk-l - (43)
where w, (=0, ---k-1) are the complex kth roots of unity,
2rrig
w, = e R (44)
Hence
k'-l ep(ws-l )t
r(t) = psz:o Y (45)
= |
.[.I (ws w/(,)

where the prime indicates omission of the factor for which 4 = s. Because
of the nature of the roots of unity, r(t) is real, but has damped oscillatory
terms for k » 2. There may be a k-value for which r is negative for

some t. This is an open question. It is clear that the case k= 1 is

identical with the former "white noise'' case.

17



b. Power Laws

We now turn to a situation of great importance (Ref 6), for which r(t)
is proportional to some power, 8-1, of t. Now cases for which 8 is greater
than 1 are unusual for independent clocks, in view of the inverse relation be-
tween rand g. Cases have been considered (Ref (9)) for which the ensemble
dispersion decreased with time! The case for which 8=1, has already been
discussed; this is the ''white noise' case. A value ! for 8 corresponds to
the ''random walk'" (the integral of a white noise) case (Ref 7), while 8
equals 0 for the integral of a ''flicker noise'', insofar as the behavior of
o is concerned. Values of 8 less than zero are certainly interesting and
should be studied. However, a grave difficulty arises even for 8 = 0. The
basic integral equation (Equation (6)) becomes unrealistic for this case;
for small enough t, quite generally r(t) and p(t) approach equality (prc-
vided the convolution integral makes sense). But for 8 < 0, the convolution

integral does not converge, near T = 0; moreover, the integral of p(t)

diverges because of this behavior of r(t). Both considerations indicate
that a fundamental change in this theory is required for 8 £ 0. For these
reasons, we restrict most of the present discussion to that for ! =z R:- 0,
together with some remarks on the limiting situation, 8 = 0.

Choose

B S

r(t) = p T®B) = B“r(l'l'ﬁ).

(46)

Then ?(A) = p/)&ﬁ, so that we are returning to the situation specified in
Equation (28). The general inversion integral, Equation (27), can be
evaluated to find p(t). This leads, as shown in Appendix III, to the

representation of o(t) in various integral forms

18



R

( . [+ o]
sin 1R o~V v dv (47a)
tlﬂLFz 2cos TR |v B 1 v =P
TT]J. (e} 1+ A - +—§' —t-

3 t "

useful for large t (i.e., t+=), and 8 ¥ 1, or

tQ -1 o v dv eiﬂR o -imR
_ J LI - -
o(t) =< Zni AN t\8 ir8 t\B -inR (47D)
o) 1+ —\)— e l+|..|. v e

useful for smallt (i,e., t?20), or

Bt fora = 1. (47¢)

-
It is helpful to discuss a few limiting situations.
First, consider the asymptotic form for very large t-values. Using
Equation (472) and expanding the integrand in powers of (\)/t)B, followed
by integration with respect to v (justifiable by applying a suitable form

of Watson's I.emma (Ref 8)), we find, for large t,

o(t) = S;I: 8 I‘(R;rl) - 2 cosma EE;E%J 40 [(“tB)J:H (48)
ut (pt )

which even yields p(t) = 0 for 8 = 1 (and large t, of course).

19



This asymptotic result is of considerable interest, in particular for

R = yz, which corresponds to r(t) varying as t Y2 , 8o that the standard

deviation of clock readings, Equation (19), varies as t1/2

; we see that
o(t) varies as t-;ya in agreement with Chandrasekhar (Ref 7). This is
the case known as ''random walk', or '""Brownian motion." Other cases
are also of interest; currently, the case in which B+ 0, known as ''flicker

noise'' of rate is receiving a great deal of attention (Ref 6). As mentioned

before, the case R=1 corresponds to '"white noise."

For large t-values, the ratio p/r has the asymptotic behavior

p(t)  T(1+8) 1 3 -3
r(t) T -8) ez [‘“t ) ] (49a)

for R % 1; explicitly we have

pft) _ _-nt (49b)

r(t)

for 3 = 1.

Next, consider the behavior of p(t) for small values of t. From
Equation (47b) we find, after expansion of the integrands in powers of
(t/v )R and integration with respect to v, that

3 & n (ptB)n+l
plt) = ¢ Z (n+1)(-) T+ (m+1]] . (50)

n=0

This converges even for R = 1 to the correct value, and shows the
/=

-1
behavior near 8 = 0. The trend of oft) near t = 0 for B =1/ is as t

just as for r(t). Indeed the ratio (p/r) has the interesting behavior:

Lim p(t) _ 3I(8) -1

t—=0 r(t) ~ T(14+8) (51)
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This is not so for large t, and should only be applied for 8> 0, as t
approaches zero.
It may be worthwhile to summarize these limiting properties of

r and p for 8 = 1, /2, and 8 near 0.

i} White Noise: 8 =1
r{t) = p
plt) = pe

ii) Random Walk: R = /2

-pt }, forallt . (52a)

t) = __H
r(t) Vi 7T
‘Z,M/Ht , large t, i.e., ast* ®
plt) (52b)
(«/Ut , smallt, i.e., ast~> 0,

iii) Flicker rate: B~ 0
For this case, let us retain factors of 8 (which might be

. +
incorporated ina renormalization of p), and of t
-1
rit)> 3pt

, large t
plt) = 3-1 (52c)

But
—L—B—-Z— , Smallt .
{(1+pt )
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Note that the function describing the behavior of p for small t and
small 3 also gives the correct asymptotic behavior for large t and
small R -- hence it may be a close approximation for all t. This state-

ment is strengthened by the observation that
00 R-1
/' Rut dt (53)
o

As a matter of fact, the expression

5(t) = ] Ete-l

(1+ptf)2 (542)

is a fairly good approximation to p, even for values of 8 approaching
unity. It has the correct behavior, for both large and small t, for

% = 1/2, and for smallt, with R = 1. One is tempted, in view of this,

to consider 8 negative, either in (54a) or in (47b) and work out the
consequences for the corresponding r(t); however, the result is simply
a return, essentially, to the form (46); none of these expressions appear
to be directly applicable to noise for which r(t) varies as a power of t
greater negatively than -1. An even better expression, since it yields

a more refined approximation to p(t) for positive 8 < 1, and all t, is

81 n
=\ aut HR sinl[3} ;0 -8t |
ott) = =iray [ ) Yo i ( gh iy AL Ce L)

with an adjustable parameter, n. It is easy to see that f°° f:)dt = 1.
o

This may bear further investigation.
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5.2. The Discrete Case
We now turn to the summation equation (9) and the subsidiary
conditions (10) and (11).
a. An Iterative Method of Solution.

Let us put, for notational convenience

r. =—qQ.
i a1+1

(i=1). (55)

form
L 1
o, = P ) 56
i -;pl‘J it % (56a)
J..
or
1
@, —Zpi_jaj +E . (56b)

Thus, given the p's, with po = 0, the rule for finding successive ¢'s

after ¢ = 1 is obvious. Furthermore, we easily see, using (11), that
1
=] o]
= + = .
.}:ai 1 er ® (57)
i=1 j=1

Equation (57) is clearly the analogue of Equation (21), just as (11) is

the analogue of (8).
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For convenience, we list the first few explicit formulas for the

successive a's and r's:

ap = 1
ry = Oz =D (58)
r; = 03 =B +Pz

Tz = Q4 =01 + 20,05 +Ps

4 3
Pi + 30103 + 20005 + 02 + Pa

r4 = G‘S =
S 3 3 2
rs = QU = 0y t 40,02 + 30,03 + 301 P2 + 20, P + 202 05 + 06
T = G, = 03 + 50505 + 40105 + 60, 0o + 30104 + 601 P2 05 + P2 + 20105 +

+ 20,p, * 6 tPs
The rule is:
" th .
The n= a is the sum of the products of the previous ones:

a ,a
n-1 n-3

t*°, 01, DYPL, P2, *", pn_1 , in that order; the number
n-=
of terms is 2 - for n = 2."
Consequently, since all p's are positive, with a unit sum, they
are also less than or equal to 1. Let pmaxbe the maximum p-value, and

it must dominate any product of p's. Hence,

i-1 .
= < 2
5 aih 2 pma.x' i=1 (59)
and
N
N-1 N
< Feoee = - .
iE_lri o] ax(1+2 +2 y=(2 -1)p ax (60)

b. Alternative Solution Methods
There are two alternative methods for solving Equation (9)
corresponding to the use of Laplace and Fourier transforms in the
continuous case. Neither, however, appears to have any special

computational advantage over the foregoing direct iterative approach.
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For completeness, however, we describe them briefly.

(1) Power Series Method

Let us definer =p = 0, and
o ©

@«

r(x) = Z rnxn

n=
° (61)
= n
Blx)=) p x
n=o
so that (1) = 1, in view of (11). % and § are generating functions for this

discrete renewal process (Ref (10).

Then the summation equation (9) can be rewritten

n T Pn ¥ an-n'rn‘ . (62)
n'zo

Transformations of the type (61) are easily inverted, e.g.:

X=0

Multiplication of (62) by x" and adding leads easily to

= B(x) + B(x)F (x)

Hence Px) = _I—é-%f))—(x—) (65a)

or
r(x)

m—)— R (65b)

plx) =
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From (65a) and (63) we have

Lt
n n.|dxn1-p x=o

r =
1 [a" 8
= [@‘ ‘p”’?*”"]xzo .

This gives the formal solution, and indeed, since

1k Zw Z: v n
[o] = ( ‘ (k)pnlonn pn(k))x ’ (67)
n=o \n ,n’,** 'n\*’

n'++++nlk)l=n

we see on examination that the formal solution is identical with the
iterative solution, as given by (58) and the succeeding rule.

(2) Fourier Series Method

An alternative approach utilizes the orthogonality properties

of the (2N + 1)th roots of unity

.k
©, = 2t ZNF] (k= =N, =++0, ***N) (68)
viz:
N mi(i-L) k j -N<j<N
2T -LIoN+1 _
kz ;e = (2N+1)8, Neten) (69)
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Let

N
(70a)

R =
n
\ 0 , =-N<n<0
[ Pn
Nl Nen> 0
P = A (70b)

\ 0 , -N=n=<0

where N is a number sufficiently large, for computational purposes, so
that all significant contributions to pn (and rn) are included in the

specified range of n. With these definitions, the summation

Equation (9) becomes

1 P R, (-N<nsN) (71)

Define e
R, = s NH (-N<k<N) (72)

and similarly for §k° Then, we easily see that Equation (71) can be

transformed to

Rk Pk+RkPk .
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The solution for r is then obviously

N gﬂin'n'f
1 A _3rrinn' l- Z: Pnue
r = e~ ZNf1 =N (74)
n 2N+1 & N N o
o : 2. F KHES (2
1t

¥ 2N+1 n
Q n''=-N

where =-N<sn<N,

6. CONCLUSIONS

From the foregoing analyses we conclude that the integral equation,
relating the distribution of times between correct readings to the correct-
reading rate, leads to an adequate theoretical descripti.on for white noise
and random walk noise clock reading processes, summarized on pages
18, 19 and 20. It is indicative of the correct relationship for the limit-
ing case of flicker noise rate, but is inadequate to describe lower order
noises, i.e., 8<0, whose dispersion rates accelerate from a zero
rate, It is likely that a more general approach, utilizing more fully

the general probability distribution in phase space,

Dt(T,i'),

will be needed. On the other hand, recent investigations, utilizing the

properties of a certain ''normalization" function, show some promise of

yielding definitive results for lower order noises. Perhaps the most
important result of the present investigation is the recognition that the
clock process considered is of standard renewal type.

The writer expresses his appreciation to Dr. J. Barnes for
suggesting this problem, and to him and Dr. D. Halford for many use-

ful and stimulating suggestions.
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8. APPENDIX I
Proof that fr(t)dt =@, (Ref, p.11, Equation (21))
(o]

From Equations (6) and (7) we see that

r(t) = p(t) +[r(t')p(t-t')dt'

Integration over the infinite range of t yields (with T =t - t'), and using Equa-

1 +/O;:'/::'(t')p(t-t')dt'

1 +fr(t')dt' p(T)dT
(o} -t'

[=-]

tion (8), 'é'r (t)dt

o«

1 +fr(t')dt' .

o

The required result follows immediately. Note also that for t = 0,

r(0) = p(0) .

Furthermore, the very use of the convolution integral requires

that r(t') be integrable in the neighborhood of t' = 0.
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9. APPENDIX II

The Laplace-Transform of Convolutions (Ref p, 11)

Consider the integral

t

C(t) =/p(t-¢)r(’r)d¢
O

In this, r(t) is not necessarily defined for negative t. However, because

of condition (7), this can be rewritten

[> ]

C(t) =-[D(t-’T')r(T)dT

and hence also, if r(t) is defined to be zero for negative t,

clt) =fr(t-T)p(T)dT
O

These latter forms are most properly designated as convolution integrals.

The Laplace-transform of C(t) is

w

c) =-[;'>‘tC(t)dt
=[/e')\(t‘T)o(t—T)e')‘Tr(T)det
o

i[ﬂ:/e Moty dt'r(r)dr
T

= S(}\)’;(X) , because of Equation (7).
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An alternative argument, leading to the same result, but not
requiring the use of Condition (7), is as follows:

Let T = ty, in the expression for C(t). Then

1
Clt) = t.[p(t[l-yl)r(tv)dv ,
and @ 1
= =t
C(\) =[e [p(t[l-y]r(ty)tdydt .
Set
=t -ty
T =ty

for t>0, and 0sy<1, and set (§, 7) = (0, 0) for t=0, and y=v=.

Inversely
t = £+T
__T
Y= &+7

for (§, 7))+ (0, 0), and (t, y) = (0,y2) for £=0and 7=0. By this mapping

the region

O<sy=<1

O<t<sw

and y =12, t=0,

in the (y, t)-plane corresponds to the region

OS& <™
0ST<Sw™
in the (£, T)-plane, in a one-one fashion. Moreover, in the domain of

continuous mapping

d{dr = tdydt .
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Hence, unless p or r have quite exceptional behaviors near t = 0,

we find that

o{r8) -—-ffe'“€ tTo(E)r (r)dtar
O (0]

= p)T ()

as before.
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10. APPENDIX III

The Laplace Inversion Integral for p(t) (Refp. 12, Equations(27), (28} p. 18)

If we substitute the expresion for ?()\) from Equation (28) into the
inversion integral of Equation (27), and allow X to be a complex variable z

whose argument is restricted to its principal value

-M<carg z =m,
then we are faced with the problem of evaluating

" y+ib ¢
. 2 2
p(t) = Ig_l_’m e m , for 8~ 0.

©

Y-1id

The zeros of the denominator in the integrand occur at

+ (1/8) %im(2n+1)/8
z=z =p e

forn=20, 1, 2, *--. But the restriction on the argument of z means
that only those n-values (or poles) need be considered for which

2Zn +1<8,

Two cases arise, which will be considered separately:
(A) B = 2m + 1, an odd integer, and

(B) 8 is not an odd integer.

Case (A) R = 2m + 1.

The number of poles of the integrand is 2m + 1, since for n = m, only
the real zero at

o Hl/eemz_ 1/8

m

34



lies in the z-plane as defined, while Z;n does not. For the other poles,

2-1
0<n< — =m.

2
Choose a rectangular contour C consisting of
+
(1) a line segment L., parallel to the imaginary axis on which
z =y tiy, -6y <&

(2) a line segment M+, parallel to the real axis on which

z=x+1id, vy 2x=z-vy'

(3) a line segment L7, parallel to the imaginary axis on which

z = -y'+iy, +62y=2 -5

and,

(4) a line segment M~, parallel to the real axis on which

z =x -1, -y'sx<y

where (y, y', 0) are all positive and large enough so that C contains all
the poles of the integrand in its interior. We know that the contour
integral

1 zt dz
21i Ce |J,+Z[;

equals the sum of the residues of the integrand at its (2m+1) poles.

Now, the integrals:
Y -y
- x eiiét ext dx + eii&t xt dx
A L HE16)8 A € LFcxio)
-5

_ -y't iyt idy
,[-’-./zs-e © WAy Hy)
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all clearly vanish, as 6, y' approach ®. Hence, we have, in this limit

po(t) = o) 2—‘ residues at the (2m + 1) -poles.
. =S
The residue at z is
I/Re:tin(ZnH)/%p(e-l)/raetin(ZnH)(R-l)/B

exp(tp

so in this case

g-3
1/3 (1/8) f (1/8)
- t
p(t) = H—B-*— e + 2e tcosﬂ(znﬂ)/gcos{pl/gt sin(m(2n+1)/8) +
n=o
-n(2n+1)(e-1)/e}
For 8 = 1, we have the ""white noise situation',
-ut
p=pe .

Case (B), (2m -1 <« B8 <« 2m + 1)

The number of poles of the integrand is 2m, where (m - 1) is the
largest value of n for which 2n +1 « 8. Clearly 0<n<m - 1.

Let us introduce a cut along the negative real axis of the z-plane,
even though the integrand is continuous across this cut when 8 is a
positive even integer.

The new integration contour, C', consists of the previous rectangle
(except that L. is cut at y = 0) plus the following:

(1) two line segments, Qi parallel to the x-axis, on which, for

sufficiently small e > 0,

+T .
z=0e =% i€
where
y's0<a,

and

36



ot

(2) a circular contour, A, of radius "'a'" around the origin (cut at the

negative axis) on which

i6
z = ae

and -T+n<HsTa-n

(]
where N is chosen so as to connect the circle with Q .

integral
1 zt dz
2mi © p.-f'zB
!

equals the sum of the polar residues.

The integral"
/fexp(ae t) a1e de
Be .+ aBeiRP
A Zrn r t+a

clearly vanishes as a~0.

+
The integrals along Q are:

Again,

i
ds

the contour

a . Y'
ie-alt  e™do ic -a|t-
Q Q v )

As ¢ approaches zero, these integrals become equal to

v
oty 1 1
¢ ) FoPef T ¥ gRe-iA

and the integral along L~ has its former value.
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Let Y' and 6 become infinite as before, and let '"a' approach zero.
Then, in this limit

pft) = p.Z (residues at the 2m-poles) + I{t)

where
’

o
= B Oty 1 - 1 .
It) = 5= /e © 3 <ing 3 ing
4 p.-l'O' e e

puto

If we set v = Ot, combine the split terms, and factor out pz, we easily
find
. @ 8
I(e) = ﬁl_ﬁ;%/e-vd\) 2 cos n\)B v 1 /v\23
Tt S 1+ —_“_—<—t>e + ;2<'E—>

as in the text, Equation (47a), while a simple rearrangement of factors

in the split terms leads immediately, with this substitution, to

Equation (47b). In this we assume that 0 <« 8 « 1, so that the residue
sum does not contribute. When R = 1, we get the white noise form for
o(t), Equation (47c), and if 8 > 1 and not an odd integer, we have the

formula

p(t) = 2B et cos (ng%ﬂ) cos {p]/st sin(rrz%i-l) - ﬁ%:l(2n+l)}+ I(t) .

The writer expresses his thanks to Dr. S. Jarvis for assistance
with the contour integrations in this Appendix. He also expresses his
thanks to Mrs. J. West for her perseverance and typing excellence in

preparing the several drafts of the paper.
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