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ON T H E  C O R R E C T - R E A D I N G  R A T E  AND T H E  DISTRIBUTION OF 

TIME B E T W E E N  C O R R E C T  READINGS F O R  CLOCK ENSEMBLES 

G. E. Hudson 

C l o c k s  in  cer ta in  kinds of statist ical  ensembles  can be 
character ized i n  t e r m s  of the instantaneous fractional r a t e  of those 
which read cor rec t ly ,  and the probable distribution of t imes  between 
co r rec t  readings o r  "zero c ross ings .  ' '  
standard renewal type re la tes  these quantities. If the dispers ion 
of the ensemble var ies  with t ime in  cer ta in  ways,  corresponding 
solutions of this equation can be and a r e  derived,' utilizing Laplace 
t ransforms.  Some a r e  applicable, for example,  to t rends  of the 
dispers ion function which correspond to white noise,  random walk 
noise,  and fl icker noise fluctuations of the clocks' readings about 
the ensemble average.  

An integral  equation of 

Key Words: correct-reading ra te  of clocks,  f l icker noise,  
random walk noise,  renewal processes ,  statist ical  
clock ensembles ,  t ime distribution between co r rec t  
readings of clocks,  t ime-  keeping, white noise. 

1. I N T R O D U C T I O N  

The init ial  purpose of this paper is  to present  and to a minor  extent 

d i scuss  a formulation of a mathematical  description of the statist ical  

behavior of an  ensemble of clocks. A model of this ensemble may be 

sppclfied in  t e r m s  of the distribution of i t s  clock readings about the 

ensemble average.  

spctions,  as  suggested by cer ta in  experimental  studies,  but it is not 

the purpose of this paper to d iscuss  o r  present  details  of these experi-  

ments ;  r a the r ,  i t  is  the purpose simply to deduce proper t ies  and 

behaviors of the model so suggested. 

This  model is  specified in  m o r e  detail  in the next 



The descr ipt ion will be seen  to lead to a cer ta in  integral  equation 

(or summation equation, in  the d i sc re t e  case )  relating two functions of 

t ime whose t rends  a r e  significant in the study and classification of 

clock reading s ta t i s t ics .  

The main purpose of the paper  is to de te rmine  and exhibit pa i r s  

and c l a s s e s  of solution functions satisfying this  equation and study 

the i r  propert ies .  C a s e s  of par t icu lar  importance,  since they relate  

to types of clock reading behaviors designated by the t e r m s  white noise,  

random walk noise,  and fl icker noise ,  a r e  studied, and lead to explicit 

formulas  descr ibing the behavior of the ensemble fo r  l a rge  and smal l  

t imes .  

Difficulties of this  mode of descr ipt ion associated with the case  of 

f l icker noise and, m o r e  general ly ,  ensemble d ispers ions ,  CJ(t), with 

r a t e s  which a r e  proportional to powers  of t ime  g rea t e r  than o r  equal to 

unity, a r e  noted. 

cr ipt ion is pointed out, which introduces a s ta t is t ical  mechanical r e p r e -  

sentation of the ensemble in  a two-dimensional phase space.  

A possible direct ion fo r  generalization of the des -  

The r e su l t s  and methods of this  paper should be regarded as p r e -  

l iminary;  cer ta in  ones of them a r e  new, as a r e  the point-of-view and 

suggestions for  future work. Since the integral  equation studied i s  of 

s tandard renewal type, many r e su l t s  of studies of such p rocesses  a r e  

immediately applicable,  but a r e  not reviewed herein.  

2. SPECIFICATION OF THE ENSEMBLE TYPE 

Let  us  consider  a s ta t is t ical  ensemble of identically constructed 

independently running clocks contained in a small enough spatial  region 

so that comparisons of the i r  simultaneous readings,  7 ,  can be made,  

effectively, in an  instantaneous fashion. Assume that,  a t  any instant,  

the average  reading, t ,  of the ensemble ex is t s ,  as wel l  as i t s  var iance,  

u . We sha l l ,  on occasion, for convenience r e f e r  to the ensemble 

average  t ime ,  t ,  a s  the "correct"  t ime.  

2 
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t = (7) 

o2 = ( ( 7 4 ) " )  

where the brackets  denote the ensemble average. 

variable 5 denote the deviation of the ensemble clock readings f rom the 

average,  so that 

Let the random 

and hence 

( 6 )  = 0. (IC) 

We shal l  a lso suppose in general  that 5" depends on "the time", t ,  

It is fur ther  specified that, at one par t icular  instant, all the clocks a r e  

se t  to have the same reading t = 0, so that, a t  this instant 

a(0) = 0. (2b) 
Moreover ,  they a r e  adjusted at this initial instant to run a t  the same 

nominal ra tes .  Nevertheless ,  thereaf ter  they diverge on the average 

from t in their  readings because each ra te  (and reading} i s  subject to 

random stat is t ical  fluctuations, which produce the hypothesized dis t r ibu-  

tions a s  well a s  other s ta t is t ical  charac te r i s t ics  to be described. 

Experiments  in which the frequency of quartz  osci l la tors  were  

measured  repeatedly against  a standard,  suggest an empir ical  mJde1 

(Ref 1). If the oscil lator were  used to dr ive a clock, then i t  has  been 

shown empir ical ly  that the readings of an ensemble of such clocks would 

have the probability density 

which sat isf ies  the foregoing relations,  with the additional condition that 

3 



F o r  the stationary,  o r  "white noise" case ,  o is a constant. 

3. A BASIC RELATIONSHIP 

According to J. Barnes  (Ref 1) the clock ensemble of the kind con- 

s idered  h e r e  can additionally be charac te r ized  in t e r m s  of two other 

functions, p ( t )  and r ( t ) ,  as follows. It may be assumed that the random 

deviations of the clock readings f rom their  average a r e  t ime  varying in 

such a way that each clock might read  the c o r r e c t  t ime,  again and again, 

according to  some probability law. That is, i f  a clock r eads  the value t' 

a t  the instant when the ensemble average is t ' ,  there  is a conditionzi.l 

probability density p(t ,  t ' )  2 0 that the clock will again read the "cor1 ect" 

t ime ,  t ,  but not read  the c o r r e c t  value at any intervening instant. More-  

over ,  i t  is assumed that this  probability density is stationary,  in the 

sense  that p depends only on the difference t - t ' ,  i. e. , 

- 

p ( t , t ' )  = p( t - t ' )  . 
Statist ically,  then, we shal l  r e g a r d  

P(t  ' -t" )dt I 

as the probable number of clocks in the ensemble which do r ead  t '  

between t imes  t '  and t '  t dt ' ,  on the condition that it read  the c o r r e c t  

t ime t" a t  an ea r l i e r  "t ime" t", but did not read the c o r r e c t  t ime 

between t '  and t". 

This  conditional probability is re lated,  according to Barnes,  to an 

(unconditional) r a t e  distribution function r (t). The differential 

r ( t ' ) d t '  ( 5 )  

r ep resen t s  the fract ional  number of ensemble clocks which have the 

4 



cor rec t  reading t '  when the ensemble average is between the t imes  t '  and 

t '  t dt ' .  We shal l  cal l  r ( t )  the "correcbreading" r a t e  of the ensemble. 

Because of the hypothesized init ial  6-function distribution, it i s  

only af ter  the instant t '  = 0 that any of the clocks can again r e a d  

Correctly". Subsequently, the portion of those clocks which did read r r  

correc t ly  a t  t ime t ' ,  and which again show the co r rec t  t ime,  t,  a t  a 

l a t e r  moment t ,  but not in between, is 

r (t ' )p(t -t ' )dtdt '  , t x ' .  

Now, a t  t ime t20,  the number of clocks reading cor rec t ly  in the 

interval  dt, must  equal the number 

which r e a d  cor rec t ly  a t  t ime, t ,  having also r ead  zero a t  t = 0 (but not 

in between) plus the number which did r e a d  cor rec t ly  at t imes  t '  

between 0 and t but which did not r ead  cor rec t ly  between t '  and t ,  i. e. , 

Thus, we a r r i v e  a t  the integral  equation relating r ( t )  and p( t ) :  
c 

r ( t )  = p( t )  t j : ( t l ) p ( t - t ' ) d t '  . (6  1 
0 

This  is  Barnes '  resul t .  

as in the theory of probability (Ref 2). 

It has  the f o r m  of a standard "renewal equation", 

This  integral  equation shows that r a n d p  can be regarded  a s  s o -  

called "reciprocal  kernels",  as in the study of l inear integral  equations 

of second kind, of Volterra  type. In fact, under cer ta in  conditions, i f  
t 

F ( t )  = G(t)  + p( t - t ' )F ( t ' ) d t '  k 
is an  equation for  F, given G and p ,  then 

5 



t 

F ( t )  = G(t)  t 

provided p and r a r e  re la ted  by the integral  equation der ived in the 

foregoing (Ref 3) .  

The specification of the probability density D ( t )  is not yet complete. 

It is reasonable  to requi re  that 

If one were  cer ta in  that no clock remained permanently incor rec t  in 

its reading, then one could postulate that 
W 

p(t)dt  = 1. d 
Equation (7b) s t a t e s  that  the probable number of clocks which did r ead  

the t ime cor rec t ly  in a small t ime interval  a t  an ea r l i e r  t ime, a s  a 

resu l t  of the fact  that they sometime la ter  will  r e a d  the c o r r e c t  t ime 

zero. Interpreted in causa l  t e r m s ,  Equation (7b) like Equation (8) 

would imply a res t r ic t ion  on the physical nature  of the clocks; but i t  

can a l so  be regarded  as a convenience in  completing the specification 

of o( t )  so that some solutions of Equation (6) might be obtained more  

easi ly  using it. Equation (8), too, is posited in  the remainder  of this 

paper ,  and should be regarded  as a convenient normalization of p.  

More general ly  

a conditional probability; o r  i t  might be a r a t e ,  like r, as Barnes 

too has  suggested (Ref 1). 

is  

pdt< 1; for ,  as waa noted by W. Fe l l e r  (Ref 4) ,  D is l* 
In any case  (8) need not hold in general .  

It is possible to se t  up a difference equation analogous to Equation 

(6), which has  somet imes  been useful in  making numerical  computations. 

6 



This  i s  

and in analogy to Equation (7) and (8), 

and 

q P n =  1 
n= 

The derivation of (9) is as fol lows:  Consider again an ensemble 

of clocks,  and let there  be a s e r i e s  of readings of these clocks a t  d i s -  

c r e t e  instants t 

deviations, cn, of the readings f r o m  the average,  

Assume fur ther  that at t t he re  is a probability, p that a clock of the 

ensemble shal l  have a deviation between -At/2 and + At/2 f r o m  the 

average reading, under the condition that a t  t ime t 

lay in this  range,  but did not do so  for  any reading between t 

t (n‘cn). Suppose that p depends only on (n-n’)  (stationarity], Let 

r be the fractional number of clocks a t  t ime t which have deviations 

in  the range (-At/2, + At/2). Then, rn,on-nl is the fractional rumber  

of clocks a t  t ime t 

t 

a t  any instant between. Equation (9) iollows immediately; (IOa) i s  

required since p 

be imposed as a convenience in the solution of (9) o r  a s  par t  of the defini- 

tion of the ensemble and the clock mechanism. An equation like (9)  can 

a lso  be derived f rom (6), by introducing power s e r i e s  expansions of r ( t )  

and p( t ) .  

(n= 1, 2, ), such that the ensemble average of the n’ 
is zero. tn’ 

n n -n”  

i t s  readings also 

n ‘  

n ’  
and 

n 

n n 

whose readings lie between t n n - (At/2) and 

-t (At/2) and which also l ie  in this  range a t  t ime  t n n’ (n’cn), b t t  not 

i s  a probability, and the stipulations (lob) and (11) may 
n 

Note that no physical reason for the clocks behaving in the supposed 

way as  descr ibed (either by (9) o r  (6))  has  been given. Indeed, both the 

integral  and difference equations a r e  valid by definition of the quantities 

7 



appearing in  them. 

to real i ty ,  t he re  are necessar i ly  pa i r s  of solutions r and p ,  with the stated 

proper t ies ,  which we shal l  consider eventually. 

physically reasonable  ensembles  of these types is a different question. 

St i l l  another problem to which we now tu rn  is the relation between 

If the definitions a r e  self -consistent and applicable 

Whether o r  not there  exist  

o( t ) ,  o r  the probability density ( ~ ( 5 ,  t ) ,  and the co r rec t  reading r a t e  

distribution r (t ). 

4. 

As before,  consider an  ensemble of clocks with a random variable 

THE JOINT READING AND RATE DISTRIBUTION 

clock-reading, 7. 

r a t e ,  ?, as a random variable.  The re  a r e  some indications, as we 

sha l l  point out, that  th i s  generalization will  probably be distinctly 

advantageous in  more  extensive developments of the theory than can be 

dealt  with he re .  If a clock reading has  a r a t e  f ,  different f rom unity, 

i t  must  be der ived with respec t  to  some other suitable t ime dependent 

quantity. 

However, let  u s  now introduce the notion of clock- 

We shal l  choose the ensemble average  as this  quantity, so that 

d r  + = -  
dt 

for any given clock of the ensemble.  

c lock-rate  offset ( f rom the ave rage )  

Sometimes one a l so  speaks of the 

d r  
€ = - -  1 .  dt 

W e  shal l  a s sume  that the ensemble is charac te r ized  by a two-dimensional 

density function, D ( T , f ) ,  defined over  the "phase-space' '  of the inde- 

pendent random variables  7 and ?. 
t 

In the genera l  theory, it might be supposed in addition that a 

typical clock of the ensemble,  except fo r  random perturbat ions to which 

i t  is subjected, can be specified in  t e r m s  of some Hamiltonian (generally 

with a v e r y  l a rge  number of var iables ,  and possibly having a quantum- 

physical basis) .  Many fur ther  r e su l t s ,  following upon the use of 

8 



Liouville ' s  theorem and other s ta t is t ical  mechanical considerations,  

await fur ther  development. However, a few relationships can be 

found, based s imply on the concepts and definitions introduced up to  

this point. 

F r o m  i t s  definition, we have 

/p/."tdTdf = 1 . 
-00  -00 

Also ,  the t ime indicated by the ensemble i s  

whereas ,  the average ensemble r a t e  is unity 

The relation between 

clock-reading T ,  and 

the ensemble probability density, (P(T -t, t), over the 

the phase distribution D is readi ly  seen to be t 

This must  hold, whether o r  not the d e n s i t y q  is the Gaussian one 

mentioned ea r l i e r .  It is interesting, as a t r iv ia l  check, to calculate the 

fract ional  number of clocks having a "correct"  reading between t and t t d t ,  

a t  the ensemble t ime t. Clearly,  this  is 

= r ( t )d t  , (17) 

-a, 

s o  that we have established formally the general  connection, intuitively 

obvious (Ref I ) ,  

cp(O,t)= r ( t )  (18) 

between (D and the r a t e  distribution function, r,  for zero deviations. 

9 



In the special  ca se  of a Gaussian density, Equation (3a), with d i s -  

pers ion cr(t), we have a l so  der ived the important r e su l t  

Finally, i f  desirable ,  the init ial  density-in-phase -space can be 

specified to have the distribution 

~ ( 7 , ; )  = 6 ( ~ ) 6 ( + - i )  , 
0 

o r  more  general ly  

D ( T , ? )  = 6(T )u (? )  
0 

where 

and 

Additional and more  specific d o r m a t - a n  concerning the behavior of 

Dt, cp, p ,  and r ,  other than that contained in  o r  implied by the foregoing 

equations, must  await m o r e  explicit specification of the physical and 

s ta t i s t ica l  p roper t ies  of clocks. 

10 



5. SOME SOLUTIONS AND PROPERTIES O F  SOLUTIONS 

W e  now turn  to a consideration of the implications of the integral  

o r  summation equation ( 6 )  o r  ( 9 ) ,  taken in  conjunction with conditions 

( 7 )  and ( 8 ) ,  o r  ( 1 0 )  and (11). F i r s t ,  let u s  deal  with the integral  equation. 

5 . 1 .  The Continuous Case  

Integration of Equation ( 6 )  f r o m  0 to m, with an  interchange of the 

o r d e r  of integration on t '  and t, and using ( 7 )  and (8),  leads easily,  as  i n  

Appendix I, to the resu l t ,  

r ( t )dt  = a0 e 

Let us a s s u m e  that the one -sided Laplace - t rans  form,  
N 

r(A), of r ( t )  exists:  

u 

r(X) = l;-lt r(t)dt.  (22) 

Condition (8)  i n su res  the existence of ;;(A) for P(t) .  Then, as shown 

in Appendix 11, a n  application of ( 7 )  and (8) with an  integration procedure 

similar to that leading to (21), shows that the Laplace t r ans fo rm of the 

"convolution" integral  in ( 6 )  is simply the product of and The Laplace 

t r ans fo rm of (6 )  thus leads to 

and 

It is ea  i ly he c ke  d that 

N 

P N 

r = -  
1 -F 

N 

N r 
P =F; 

11 



r" 

then r(O) = 90 

with e > 0. Then 

- f ( X  1 r = - - l .  
x q  

As A+-=, most  decent Laplace t r ans fo rms  approach 0 (Ref 4). Hence 

With these stipulations, we may reasonably expect, given p ( t ) ,  that 7 
and hence can be found, and then that the inverse  t r ans fo rm of 

would lead to r ( t ) .  Or  if  r(t) is given, the inverse  Laplace t r ans fo rma-  

tion (Ref 5) 

"Y - i d  
(as  i n  Appendi-c 111) o r  some equivalent, more  convenient, procedure 

would yield the conditional probability density. 

ca se ,  to which we r e tu rn  presently,  for  which 

Note that the special  

and 

i? 
f ( X )  = x + p 

sat isf ies  a l l  the foregoing conditions. 

important spec ial  c a s  e 

Notice a l so  that the simple but 

12 



where m > n, and P and Q a r e  polynomials of degree n and m respec -  
n m 

t ive ly  such  that 

leads to 

which is a similar ra t io  of polynomials. 

course ,  eas i ly  accomplished. 

which a r e  par t icular izat ions of the foregoing. 

Generalization of ( 2 9 )  is ,  of 

Let u s  now consider a var ie ty  of ca ses  

a. Exponential Distributions 

Choose r ( t )  to have the form 

s o  that, since - 
r n 

x t u  t 

n 

N 

r ( h )  = 

this  is an example of Equation (29a-c) .  

To satisfy the condition r ( 0 )  = m, let  
Iv 

Define 

and 

a = 0 .  1 

13 



Then N 

Q ( h ) t 2  ? P(n) ( A )  
n n N-1 n= 1 

n xts  n= - 
where 6 
where the roots  of the Nth o rde r  polynomial in the denominator of 

~(i) a r e  denoted by -R Because 

s ( 0 )  = 0, we a l so  have 

a r e  the numera tors  in  the expression of p in  par t ia l  f ract ions,  and n 

N 

(and a r e  assumed to be distinct) .  n 

a s  well a s ,  for m > 1, 

14 



Define 

s o  that 

R J - y  = 

also,  let 

0 t 

(35a)  

( 3  5b) 

Then we see  f r o m  Equations ( 3 3 )  and ( 3 5 ) ,  af ter  setting h = -p  n' that 

The inverse t ransform f o r  distinct roots ,  -6 n , yields 

A n  important case  of indistinct roots  is considered presently.  

15 



F o r  N =  1, 

and - - - r l t  
p = r l e  

which i s  a check on the reasonableness  of the theory.  

if r ( t )  i s  a sum of exponentials, plus a constant, t h e n p ( t )  i s  a sum of 

exponentials. 

value FL,the probability density that a clock will r e tu rn  to the co r rec t  reading 

for the f i r s t  t ime,  af ter  a period of t ime,  t ,  dec reases  with t from the value Fl, 
at  an exponential decay r a t e  equal to E l  a In this  situation, if the ensemble 

has  a Gaussian probability density (Equation(3a)) in the deviations of i t s  

clock readings f rom the ensemble average,  then the dispersion, T, i s  a 

constant, according to Equation (1  9). 

To summar ize ,  

In par t icu lar ,  if the "co r rec t  reading ra te"  has  a constant 

1 c T =  p i=l 
(39 )  

a s  in "white noise". 

L,et us assume,  a s  another important special  case ,  with k being an 

integer , that 
k k-1 

which i s  a Poisson density distribution satisfying 

p( t )dt  = 1 9 0-0) - r 0 

Then 

and we see that the pole of is of o rde r  k, a case  of non-distinct roo ts .  

16 



A c c o r ding I. y 

F o r  integral  k-values,  the denominator vanishes for 

where o ( t = O ,  - k - I )  a r e  the complex kth roots  of unity, .e . 

Hence 

where the pr ime indicates omission of the factor for which 4, = s. Because 

of the nature  of the roots  of unity, r ( t )  is  rea l ,  but has  damped osci l la tory 

t e r m s  for k > 2, 

some t. 

identical  with the f o r m e r  "white noise" case.  

The re  may be a k-value for  which r i s  negative f o r  

This  is an open question. It is c lear  that the case k = 1 i s  

17 



b. Power Laws 

We now turn  to a situation of g rea t  importance (Ref 6 ) ,  for which r ( t )  

is proportional to some power,  6 - 1, of t.  NOW cases  for which /3 is grea te r  

than 1 a reunusual  for independept clocks, in view of the inverse  relati ' ln be- 

tween r a n d  a. Cases  have been considered (Ref (9)) for which the ensemble 

dispers ion decreased  with time! The case  for which 8 = 1 , has already been 

discussed;  this  is the "white noise" case.  

the "random walk" (the integral  of a white noise) ca se  (Ref 7), while 8 

equals 0 for the integral  of a "flicker noise", insofar as the behavior of 

0 i s  concerned. 

should be studied. However, a grave  difficulty a r i s e s  even for 8 = 0. The 

basic  integral  equation (Equation (6)) becomes unreal is t ic  for this case ;  

for smal l  enough t ,  quite generally r ( t )  and p(t) approach equality (prc-  

vided the convolution integral  makes  sense) .  But for 8 0,  the convolution 

integral  does not converge,  nea r  T = 0; moreover ,  the integral  of p(t) 

d iverges  because of this  behavior of r ( t ) .  

that a fundamental change in this  theory is required fo r  R 0 .  For these 

reasons ,  we r e s t r i c t  m o s t  of the present  discussion to that for 1 2 6:. 0 ,  

together with some r e m a r k s  on the l imiting situation, f l  = 0. 

A value '/2 for 6 corresponds to 

Values of /3 l e s s  than z e r o  a r e  cer ta inly interesting and 

Both considerations indicate 

Choose 

(46 ) t /3 -1 tg -l 
rw) - Ppr-i r(t)  = p-- 

B Then ;(A) = p/X , so  that we are returning to the situation specified in  

Equation (28). 

evaluated to  find p(t). This  leads,  as shown in  Appendix 111, to the 

representat ion of p( t )  i n  var ious integral  f o r m s  

The genera l  inversion integral ,  Equation (27), can be 

18 



useful for large t (i. e., t +  OD), and /3 + 1, o r  

00 irr R 
-V dv 

useful for sma l l  t (i, e . ,  t + o ) ,  o r  

FLe - P t  for R = 1. 

It is helpful to d iscuss  a few limiting situations. 

F i r s t ,  consider the asymptotic f o r m  for very  large t-values.  Using 

Equation (47a)  and expanding the integrand in powers of (v/t)9, followed 

by integration with respec t  to v (justifiable by applying a suitable form 

of Watson 's  1-emma (Ref 8 ) ) ,  we find, for la rge  t ,  

which even yields o ( t ) ?  0 for 0 = 1 (and large t ,  of course) .  

1 9  



This  asymptotic r e su l t  is of considerable in te res t ,  in par t icular  €or 

fl = I J ~ ,  which corresponds to r ( t )  varying as t'", so  that the s tandard 

deviation of clock readings,  Equation (19), va r i e s  as tu" ; we see  that 

D(t) v a r i e s  as t'" in agreement  with Chandrasekhar (Ref 7). This i s  

the case  known as "random walk", o r  "Brownian motion." Other cases  

a r e  a lso of in te res t ;  current ly ,  the case  in which B-' 0, known as "fl icker 

noise" of r a t e  i s  receiving a g rea t  deal of attention (Ref 6). 

before,  the case  R =  1 cor responds  to "white noise." 

A s  mentioned 

For  la rge  t -values ,  the ra t io  p / r  has  the asymptotic behavior 

c. 1 

for  R + 1; explicitly we have 

for R = 1. 

Next, consider the behavior of p( t )  for small values of t.  F r o m  

Equation (47b) we find, a f te r  expansion of the integrands in powers of 

(t/v )' and integration with respec t  to v ,  that  

This  converges even for R = 1 to the c o r r e c t  value, and shows the 

behavior near  q = 0. The t r end  of c(t) near  t = 0 for = 1/2 is as t 

just  as for  r( t) .  

4 2  

Indeed the rat io  (p/r) has  the interest ing behavior: 

L im p ( t )  ? r ( n )  
t-+Q r ( t )  I'(14-9) 

- = 1  , - -  - 
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This is not s o  f o r  large t ,  and should only be applied for R > 0, a s  t 

approaches zero. 

It may be worthwhile to summar ize  these limiting propert ies  of 

r and p for 13 = 1, 1/2, and h near  0. 

i )  White Noise: 8 = 1 

r ( t )  = p 

p ( t )  = pe 
- p t  I , for  all t . 

ii) Random Walk: R = 1/2 

r ( t )  = 2 Jn t- 

1 
a , large t,  i . e . ,  as t + 2pdJII tY 

p(t) '1 

, s m a l l  t, i. e . ,  a s  t -I 0. 

iii) Fl icker  rate:  6 0 

For this case ,  let us  re ta in  fac tors  of r7 (which might be 

incorporated in a renormalization of p) ,  and of t . i q  

, l a rge  t 

, sma l l  t . 
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Note that the function describing the behavior of p fo r  smal l  t and 

sma l l  4 a lso gives the co r rec t  asymptotic behavior fo r  la rge  t and 

sma l l  R - -  hence i t  may be a c lose  approximation for a l l  t. 

ment i s  strengthened by the observation that 

This s ta te -  

n -1 
Rpt dt = 1  dm (1 t p t q  2 

A s  a mat te r  of fact ,  the expression 

i s  a fa i r ly  good approximation to p ,  

unity. It has  the c o r r e c t  behavior,  

9 = i /a  , and for  sma l l  t, with R = 1. 

( 5 3 )  

even for  values of Q approaching 

for  both la rge  and sma l l  t ,  for 

One is tempted, in view of this,  

to consider 4 negative, e i ther  in (54a) o r  in (47b) and work out the 

consequences for the corresponding r(t) ;  however, the resu l t  is s imply 

a re turn ,  essent ia l ly ,  to the f o r m  (46);  none of these expressions appear 

to be d i rec t ly  applicable to noise for which r ( t )  var ies  as a power of t 

g rea t e r  negatively than -1. 

a more  refined approximation to p ( t )  for positive I? 1, and a l l  t ,  i s  

An even bet ter  expression,  since it yields 

- 
with an adjustable pa rame te r ,  n. It i s  ea sy  to see  that lom j d t  = 1 .  

This  may bear  fur ther  investigation. 
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5. 2. The Discrete  Case  

W e  now turn  to  the summation equation ( 9 )  and the subsidiary 

conditions (1 0)  and (1 1). 

a. An Iterative Method of Solution. 

Let us  put, for notational convenience 

ri 

(i 2 1). 

Q! = 1  
1 

(55) 

Because of Equation (10) and Q! 1 1, we can now rewr i te  ( 9 )  in either 
1 

fo rm 

o r  
OD 

1 'Cp .  .a. -I 6i 
1-J J j=  1 

ai 

Thus, given the ~ ' s ,  w i t h p  

af te r  Q! = 1 is obvious. Fu r the rmore ,  we easi ly  see ,  using (1  I ) ,  that 

= 0, the rule  for finding s u c c e s s i v e a ' s  
0 

1 
co OD 

= I tCrj = 03 . 
i= 1 j= 1 

(57 1 

Equation (57) is c lear ly  the analogue of Equation ( Z l ) ,  just  as (11) is 

the analogue of (8). 
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F o r  convenience, we l is t  the first few explicit formulas  for  the 

success ive  a ' s  and r ' s :  

a1 = 1 

rl = a, = p1 

r, = '513 = 6 + P a  

a4 = PF: -t Z P ~  Pa -t p3 r3 = 

r4 = 

r5 = 3, = -t 4&02 f 30103 

r6 = 

= P: -t 3d 02 + 201 0 3  -t 22 -t ~4 

3P1 8 2  @l p4 t @2 p6 P S  
a 

2 2  
37 = & -t 5p41 Pa -t 4 6  ~3 -t 6 ~ 1  p2 i- 3& ~4 -t bpi  Pa & -t 8 2  + ZS Ps -t 

-t 2p,P, -t $3 -t P6 

The ru le  is: 
th  "The n a is the s u m  of the products of the previous ones:  

, in that  o r d e r ;  the number ai, b y P i ,  P a r  * e *  9 'n-i 
... a , a  , n-1 n a  

of t e r m s  is 2 for n 2 2." n -2 

Consequently, since all p ' s  are positive, with a unit sum, they 

a r e  a l so  l e s s  than o r  equal to 1. Let  p be the maximum p-value, and 

it must dominate any product of p ' s .  
max 

Hence, 

i 2  1 ~ 2i-i 
'max, r = C Y  

i i-h 

and 

N- 1 N N 
( 1 t 2 + * * * + 2  ) = ( 2  -l)pmax= Cri Pmax 

i= 1 

( 5 9 )  

b. Alternative Solution Methods 

The re  a r e  two al ternat ive methods for solving Equation (9)  

corresponding to the use  of Laplace and Four i e r  t r ans fo rms  in  the 

continuous case.  Neither,  however, appears  to have any special  

computational advantage over  the foregoing d i rec t  i terat ive approach. 
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F o r  completeness,  however, we descr ibe  them briefly. 

(1) Power Se r i e s  Method 

Let u s  define r = p = 0, and 
0 0  

s o  that a ( l )  = 1, in view of (11). 

d i scre te  renewal process (Ref (10). 

r̂ and 3 a r e  generating functions f o r  this 

Then the summation equation ( 9 )  can be rewri t ten 

Transformations of the type (61) are eas i ly  inverted,  e.g.  : 

n Multiplication of (62) by x and adding leads eas i ly  to 

m m  
n -n' n' 

r ,x . n -n n ._ n=o n'=o 

Hence 

o r  
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From (65a) and (63)  we have 

n 1 

x = o  

This  gives the fo rma l  solution, and indeed, s ince 

we see  on examination that the fo rma l  solution is  identical  with the 

i terat ive solution, as given by (58) and the succeeding rule.  

( 2 )  Four i e r  S e r i e s  Method 

An al ternat ive approach uti l izes the orthogonality proper t ies  

of the (2N t l)th roots  of unity 

( k = - N ,  s e * O ,  *'*N) (68) 

viz: 
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Let 

, N&nO 

0 , -NcncO 

P =  
n 

where N is a number sufficiently large,  for computational purposes,  so 

that all significant contributions to  p 

specified range of n. With these definitions, the summation 

Equation ( 9 )  becomes 

(and r ) are  included in the n n 

R = P  t 2P ,R (-NLn<N) (711 
@=nI=-N n-n n ' ,  

Define 

N 

Then, we easi ly  see  that Equation (71)  can be k' and s imi la r ly  for  P 

t ransformed to 

N r V N  

R = P" t RkPk . k k  
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The solution for r i s  then obviously n 

r =  n 
arr inn 

e'-= 
N 

1 
2Nt1 n F N  - -  (74 1 

where -N 5 n 2 N. 

6. CONCLUSIONS 

F r o m  the foregoing analyses  we conclude that the integral  equation, 

re la t ing the distribution of t imes  between co r rec t  readings to the c o r r e c t -  

reading r a t e ,  leads to an adequate theoret ical  descr ipt ion for white noise 

and random walk noise clock reading p rocesses ,  summar ized  on pages 

18, 19 and 20. It is indicative of the co r rec t  re la t ionship for  the l imi t -  

ing case  of f l icker noise rate, but is inadequate to descr ibe  lower order 

noises ,  i. e . ,  /3< 0, whose dispers ion r a t e s  acce lera te  f r o m  a zero 

ra te .  

the genera l  probability distribution in  phase space,  

It is likely that a more  genera l  approach, utilizing more  fully 

will be needed. 

proper t ies  of a cer ta in  "normalization" function, show some promise  of 

yielding definitive r e su l t s  for  lower o rde r  noises.  

important resu l t  of the present  investigation is the recognition that the 

clock process  considered i s  of s tandard renewal type. 

On the other hand, recent  investigations, utilizing the 

Perhapc  the most 

The wr i te r  expres ses  his appreciation to D r .  J. Barnes  for 

suggesting this  problem, and to h im and D r .  D. Halford for many u s e -  

ful and stimulating suggestions. 
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8. APPENDIX I 

Proof that d y ( t ) d t  = (Ref. p. 1 1 ,  Equation (21 ) )  

F r o m  Equations (6 )  and (7) we see  that . 
m 

r ( t )  = p( t )  t l r ( t ' ) p ( t - t ' ) d t '  . 

Integration over the infinite range of t yields (with 7 = t - t ' ) ,  and using Eqlra- 

tion ( 8 ) ,  
l r ( t  )dt = 1 t fi& (t ')p(t -t ' )dt 

W 

= 1 t f i ( t ' ) d t '  . 
0 

The requi red  r e su l t  follows immediately.  Note also that for  t = 0, 

Fu r the rmore ,  the very  use  of the convolution integral  requi res  

that r ( t ' )  be integrable in the neighborhood of t '  = 0. 
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9. APPENDIX I1 

The Laplace -Transform of Convolutions (Ref p. 11) 

Consider the integral  

C( t )  = l p ( t - T ) r ( T ) d T  . 

In this ,  r( t)  is not necessar i ly  defined for negative t .  However, because 

of condition (7), this can be rewri t ten 

C ( t )  = p(t-T)r(T)dT 6" 
and hence also, if r ( t )  is  defined to be zero for  negative t ,  

These  la t te r  fo rms  a r e  most properly designated as convolution integrals .  

The Laplace- t ransform of C(t)  is 

= 6%: (t'T)C)(t - 7 ) e - I  'r (7)dTdt 

=JT~; 'p(t ' )  dt 'r (7)dT 

= F(A)y(X) , because of Equation (7) .  
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An al ternat ive argument ,  leading to the same  resu l t ,  but not 

requiring the use of Condition (7), is as follows: 

Let 7 = ty, in the expression f o r  C(t). Then 

and 

Set 

6 = t - t y  

7 = ty  

for  t >  0, and O s y s  1, and se t  ( 5 ,  7 )  = (0, 0 )  fo r  t =  0, and y=l /z .  

Inversely 

for  (6 7 )  -f (0, 0), and (t, y )  = (0 ,1/z  ) for  5 = 0 and 7 = 0. 

the region 

By this mapping 

and y = J 2 ,  t = O ,  

in the (y, t)-plane corresponds to the region 

0 q - J  

os7 S a J  

in the ([,T)-plane, in a one-one fashion. Moreover,  in the domain of 

continuous mapping 

d t d r  = t d y d t  . 

3 2  



Hence, unless p o r  r have quite exceptional behaviors near  t = 0, 

we find that 

as before. 
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10. APPENDIX I11 

The Laplace Inversion Integral  for p ( t )  (Ref p. 12,  Equations(27), ( 2 9  p. 18) 

If we substi tute the expresion for  ;(A) f r o m  Equation (28) into the 

inversion integral  of Equation (27), and allow X to be a complex variable z 

whose argument  i s  r e s t r i c t ed  to i t s  principal value 

- r r<argz  <IT, 

then we a r e  faced with the problem of evaluating 

The zeros  of the denominator in the integrand occur a t  

rt ( 1 / ~ )  firr(2ntl)/R 
n z =  z = p  e 

for  n = 0, 1, 2, * e *  . But the res t r ic t ion  on the argument of z means 

that only those n-values (or poles)  need be considered for  which 

2n + 1 < 8 .  

Two c a s e s  a r i s e ,  which will be considered separately:  

(A) R = 2m t 1, an odd integer ,  and 

(B)  H is not an  odd integer.  

Case (A) R = 2m t 1. 

The number of poles of the integrand is 2m t 1, since for n = m, only 

the r e a l  zero a t  
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l i es  in the z-plane as defined, while z -  does not. F o r  the other poles, 

O s n s  - = m .  

m 
q - 1  

2 

Choose a rectangular  contour C consisting of 
t 

( 1 )  a line segment L , paral le l  to the imaginary axis  on which 

z = y  t i y ,  - 6 s y <  6 

t 
( 2 )  a line segment M , para l le l  to the r e a l  axis  on which 

z = x t i 6 , y ~ x ~ - y '  

(3) a line segment L', para l le l  to the imaginary axis  on which 

and, 

(4) a line segment M', para l le l  to the r e a l  axis  on which 

where ( y ,  y ' ,  6 )  a r e  all positive and la rge  enough so that C contains a l l  

the poles of the integrand in i t s  inter ior .  

int e gr  a1 

W e  know that the contour 

equals the sum of the res idues  of the integrand at i ts  ( 2 m t l )  poles. 

Now, the integrals :  
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a l l  c l ea r ly  vanish, as 6, y '  approach m .  Hence, we have, in this  limit 

p ( t )  = px res idues  a t  the (2m t 1) -poles. 

f 
n The residue a t  z is 

so in this  ca se  

-n( 2nt  1 )(8 - 1 )/8 . ,J 
F o r  R = 1, we have the "white noise situation", 

- Pt p = p e  . 
Case  (B). 

The number of poles of the integrand is 2m, where (m - 1) is the 

(2m - 1 < 9 < 2m t 1)  

l a rges t  value of n for  which 2n t 1 < R .  C lear ly  0 n 5 m - 1. 

Let  us  introduce a cut along the negative r e a l  axis of the z-plane, 

even though the integrand is continuous a c r o s s  th i s  cut when 9 is a 

positive even integer .  

The new integration contour, C ' ,  consis ts  of the previous rectangle 

(except that  L' is cut a t  y = 0) plus the following: 
f 

( 1 )  two line segments ,  Q para l le l  to the x-axis,  on which, for 

sufficiently small 6 > 0, 

*n z =  De f is 

where 

and 
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( 2 )  a c i rcu lar  contour, A, of radius  'la" around the or igin (cut  at the 

negative ax i s )  on which 

i e  
z = ae 

where r( is chosen so as to connect the c i r c l e  with Q . 
integral  

Again, the contour 

equals the sum of the polar res idues.  

The integral:  

c lear ly  vanishes a s  a+O. 
+ 

The in tegra ls  along Q a re :  

A s  E approaches zero,  these integrals  become equal to 
Yl r 1 

L J 

and the integral  along L- has  its fo rmer  value. 
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Let Y' and 6 become infinite as before,  and let "a" approach zero. 

Then, in th i s  limit 

p ( t )  = p x  ( res idues  at the 2m-poles) t I(t)  

where 

2 If we se t  v = ut, combine the split t e r m s ,  and factor out p , we easi ly  

find 

as in the text, Equation (47a),  while a s imple rear rangement  of fac tors  

in the split t e r m s  leads immediately,  with this  substitution, to 

Equation (47b). 

s u m  does not contribute. When R = 1, we get the white noise f o r m  for 

o( t ) ,  Equation (47c),  and i f  R > 1 and not an  odd integer,  we have the 

formula 

In this  we a s sume  that 0 < I? < 1, so that the residue 

The wr i te r  expres ses  his thanks to Dr .  S. J a r v i s  for  ass i s tance  

with the contour integrations in  this  Appendix. He also expres ses  his  

thanks to Mrs. J. West for he r  perseverance  and typing excellence in 

preparing the seve ra l  d raf t s  of the paper.  
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