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ABSTRACT 

The accepted definition of frequency stability in the time domain is the two-sample 
variance (or Allan variance). It is based on the measurement of average frequencies 
over adjacent time intervals, with no "dead timen between the intervals. The primary 
advantages of the Allan variance are that (1) it is convergent for many actual noise 
types for which the conventional variance is divergent; (2) it can distinguish between 
many important and different spectral noise types; (3) the two-sample approach relates 
to many practical implementations, for example, the rms change of an oscillator's 
frequency from one period to the next; and (4) Allan variances can be easily estimated 
a t  integer multiples of the sample interval. 

In 1974 a table of bias functions which related variance estimates with various config- 
urations of number of samples and dead time to the two-sample (or Allan) variance 
was The tables were based on noises with pure power-law power spectral 
densities. 

Often situations recur which unavoidably have distributed dead time between mea- 
surements, but still the conventional variances are not convergent. Some of these 
applications are outside of the time and frequency field. Also, the dead times are 
often distributed throughout a given average, and this distributed dead time is not 
treated in the 1974 tables. 

This paper reviews the bias functions B1(N, r,p), and B2(r,p) and introduces a new 
bias function, B3(2, r,p), to handle the commonly occurring cases of the effect of dis- 
tributed dead time on the computed variances. Some convenient and easy to interpret 
asymptotic limits are reported. The actual tables will be published elsewhere in book 
form. 

INTRODUCTION 

The most common statistics used are the sample mean and variance. These statistics 
indicate the approximate magnitude of a quantity and its uncertainty. For many situations 
a continuous function of time is sampled, or measured, at fairly regular instants. The 
sampling process (or measurement) is not normally instantaneous but takes a finite time 
interval to give an "average readingn. If the underlying process (or noise) is random and 
uncorrelated in time, then the fluctuations are said to be "white" noise. In this situation, 
the sample mean and variance calculated by the conventional formulas, 
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provide the needed information. The "barn over the y  in (1) denotes the average over that 
finite time interval. As in science generally, the physical model determines the appropriate 
mathematical model. For the white noise model the sample mean and variance are the 
mainstays of most analyses. 

Although white noise is a common model for many physical processes, other noises are 
becoming increasingly common. In the field of precise time and frequency measurement, 
for example, there are two quantities of great interest: instantaneous frequency and phase. 
These two quantities by definition are exactly related by a differential. (We are NOT 
considering Fourier frequencies at this point.) That is, the instantaneous frequency is the 
time rate of change of phase. Thus, if we were employing a model of white frequency noise 
(white FM) this is logically equivalent to phase noise which is the integral of the white 
noise- commonly called a Brownian motion or a random walk. Depending on whether we 
are currently interested in phase or frequency the sample mean and variance may or may 
not be appropriate. 

By definition, white noise has a power spectral density (PSD) which does not vary with 
Fourier frequency. Since random walk noise is the integral of a white noise, it can be 
shown that the power spectral density of a random walk varies as l/f2 (where f is a 
Fourier frequency). We encounter noise models whose power spectral densities are various 
power-laws of their Fourier frequencies. Flicker noise is a very common noise and is defined 
as a noise whose power spectral density varies as l/f over a significant spectral range. If 
an oscillator's instantaneous frequency is well modeled by a flicker noise, then its phase 
would be the integral of the flicker noise. It would have a PSD which varied as l/f3. 

Noise models whose PSD's are power laws of the Fourier frequency but not integer expo- 
nents are possible but not common. This paper considers power-law PSD's of a quantity 
y( t ) ;  y ( t )  is a continuous sample function which can be measured at regular intervals. For 
noises whose PSD's vary as fa with ol 5 -1 at low frequencies, the conventional sample 
mean and variance given in (1) diverge as N gets la~-ge[~*~] .  This divergence renders the 
sample mean and variance nearly useless in some situations. 

Although the sample mean and variance have limited usefulness, other time-domain statis- 
tics can be convergent and quite useful. The quantities which we consider in this paper 
depend greatly on the details of the sampling. Indeed, each sampling scheme has its own 
bias, and this is the origin of the bias functions discussed in this paper. 

THE ALLAN VARIANCE 

As a result of the recognition that the conventional sample variance fails to converge as the 
number of samples, N, grows, Allan suggested that one can set N = 2 and average many 
of these two-sample variances to get a convergent and stable measure of the spread of the 
quantity in This is what has come to be called the Allan variance. 

More specifically let's consider a sample function of time as indicated in Fig. 1. A mea- 
surement consists of averaging y ( t )  over the interval, 7 .  The next measurement begins a 
time T after the beginning of the previous measurement interval. There is no logical reason 



why T must be as large as r  or larger - if T  ,< r  then the second measurement begins before 
the first is completed, which is unusual but possible. When T = r  there is no "dead time" 
between measurements. 

The accepted definition of the Allan variance is the expected value of a two-sample variance 
with NO dead time between successive measurements. In symbols, the Allan variance is 
given by: .;(.) = 1/2E[(& - & I 2 ]  ( 2 )  

where there is no dead time between the two sample averages for the Allan variance and 
the El.] is the expectation value. 

THE BIAS FUNCTION B1 ( N ,  r, p) 

Define N  to be the number of sample averages of ~ ( t )  used in (1) to estimate a sample 
variance ( N  = 2 for an Allan variance). Also define r  to be the ratio of T to r  ( r  = 1 for 
no dead time between measurements). The parameter p  is related to the exponent of the 
power-law of the PSD of the process y( t ) .  It has been shown that if a is the exponent in 
the power-law spectrum for y( t ) ,  then the Allan variance varies as r  raised to the p power, 
where a and p  are related as shown in Fig. 2[2-41. One can use estimates of p  to infer a, 
the spectral type. The ambiguity in a for p  = -2 has been resolved by using a modified 
a; ( 7 )  l 5  - 7 1  . 
Often data cannot be taken without dead time between sample averages, and it might 
be useful to consider other than two-sample variances. We will define the bias function 
B~ ( N ,  r, p) by the ratio: 

u2 (Nl T17) 
Bl ( N 1  rl r )  = u 2 ( 2 ,  T ,  r )  (3) 

where u2(N,  T ,  r )  is the expected sample variance given in (1) above, based on N  mea- 
surements at intervals T  and averaged over a time r  and r  = T / r .  In words, B 1 ( N , T , p )  is 
the ratio of the expected variance for N  measurements to the expected variance for two 
samples (everything else held constant). Implicitly, the variances on the right in (3) do 
depend on the noise type (the value of p  or a) even though not shown as an independent 
variable. N , r  andp, are shown as a independent variables for all of the bias functions in 
this paper because the values of the ratio of these variances explicitly depends on p  as will 
be derived later in the paper. Allan showed that if N  and r are held constant, then the 
a, p  relationship shown in Fig. 2  is the same; that is, one can still infer the spectral type 
from the r  dependence using the equation a = -p  - 1 ,  -2 5 p c 213]. 

THE BIAS FUNCTION B2(r, p) 

The bias function B2(r ,p)  is defined by the relation 

u2 (2, T ,  r )  u2 ( 2 ,  T ,  r )  
B2(r1 P )  = - - 

u2 (21 ~1 6; (7 )  
(4) 

In words, B2(r ,p)  is the ratio of the expected variance with dead time to that without dead 
time (with N  = 2  and r  the same for both variances). A plot of the Bz(r ,p )  function is 
shown in Fig. 3. The bias functions B1 and B2 represent biases relative to N = 2  rather 
than infinity; that is, the ratio of the N sample variance (with or without dead time) to the 
Allan variance and the ratio of the two-sample dead-time variance to the Allan variance. 



THE BIAS FUNCTION B3(N, M, r, p) 

Consider the case where measurements are available with dead time between each pair 
of measurements. The measurements were averaged over the time interval T,, and it may 
not be convenient to retake the data. We might want to estimate the Allan variance at, 
say, multiples of the averaging time 7,. If we average groups of the measurements of y ( t ) ,  
then the dead times between each initial measurement are distributed throughout the new 
average measurement rather than accumulating at the end (see Fig. 4). Define: 

where yn are the raw or original measurements based on dead time To - T,. 

Also define the variance with distributed dead time as: 

where T = Mr,, and T = MT,. 

We can now define B3 as the ratio of the N-sample variance with distributed dead time to 
the N-sample variance with dead time accumulated at the end as in Fig. 1: 

Although B3(N, M,r,p) is defined for general N, the tables here confine treatment to the 
case where N = 2. There is little value in extending the tables to include general N, and 
the work becomes excessive. Though the variance on the right in (7) depend explicitly 
on N, T snf 7, the ratio B3(N,M,R,p) can be shown to depend on the ratio r = T/r, and 
explicitly on p as developed later in this paper. 

In words, B ~ ( ~ , M , T , ~ )  is the ratio of the expected two-sample variance with distributed 
dead time, as shown in Fig. 4, to the expected two-sample variance with all the dead 
time grouped together as shown in Fig. 1. Both the numerator and the denominator have 
the same total averaging time and dead time, but they are distributed differently. The 
product B2(r, p) . B3(2, M, r, P) is the distributed dead-time variance over the Allan variance 
for a particular T, r, M and p. 

Some useful asymptotic forms of B3 can be found. In the case of large M and M > r, we 
may write that: 

One simple and important conclusion from these two equations is that for the cases of 
flicker noise FM and random walk noise FM the 7'' dependence is the same whether or not 
there is distributed dead time for the asymptotic limit. The values of the variances only 
differ by a constant. This conclusion is also true for white noise FM, and in this case the 
constant is 1. 

In the case r >> 1, and -2 5 p 5 -1, we may write for the asymptotic behavior of B3: 



In this region of power-law spectrum the B3 function has an Ma dependence for an f a  
spectrum. 

THE BIAS FUNCTIONS 

The bias functions can be written fairly simply by first defining the function: 

F (A) = 2 ~ ~ + ~  - (A + 1 ) ~ + ~  - I ( A  - 1) 1 ~ + 2  

The bias functions become: 

For f = 0, Equations (ll), (12), and (13) are indeterminate of form O/O and must be 
evaluated by L'Hospital's rule. Special attention must also be given when expressions of 
the form o0 arise. We verified a random sampling of the table entries using noise simulation 
and Monte Car10 techniques. No errors were detected. The results in this paper differ 
somewhat from those in Ref. 3. 

CONCLUSION 

For some important power-law spectral density models often used in characterizing preci- 
sion oscillators (Sy(f) - f a ,  a! = -2,-1,0,+1,+2), we have studied the effects on variances 
when dead time exists between the frequency samples and the frequency samples are aver- 
aged to increase the integration time. Since dead time between measurements is a common 
problem throughout metrology, the analysis here has broader applicability than just time 
and frequency regarding traditional variance analysis. 

Heretofore the two-sample zero dead-time Allan variance has been shown to have some 
convenient theoretical properties in relation to power-law spectra as the integration or 
sample time is varied (if ai(r) - rp, then a! = -p - I, p > -2). Since a,(~), by definition, is 
estimated from data with no dead-time, the sample or integration time can be unambigu- 
ously changed to investigate the r dependence. In this paper we have shown that in the 
asymptotic limit of several samples being averaged with dead time present in the data, 
the r dependence is the same and the a! = -p - 1 relationship still remains valid for white 
noise frequency modulation (FM) (p = -1, a! = o), flicker noise FM (p = 0, a = -I), and for 
random walk FM (p = +I, a! = -2). The asymptotic limit is approached as the number of 
samples averaged times the initial data sample time r, becomes larger than the dead time 
(M > r). The variances so obtained only differ by a constant, which can be calculated as 
given in the paper. 

A knowledge of the appropriate power-law spectral model (which can, in principle, be 
estimated from the data) is required to translate a distributed dead-time variance to the 
corresponding value of the Allan variance. 
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Table of Some Bias Function Identities 

B1 (2,4,  p) = 1.000 

B1 ( N ,  r,2) = ( N ( N  + 1))/6 

B1 ( N ,  1 , l )  = N/2  

B ,  1 ,  = ( 1  - N P ) ) / ( ( N  - 1 - 2 for p # 0 

= N l n ( N ) / [ 2 ( N  - 1) ln(2)] for p = 0 

B1 ( N ,  1, p) = 1.000 for p < 0 
N -  1 

= [ 2 / N ( N  - I ) ]  ( N  - n) . nP for p > 0 
n- 1 

B1(N,r ,-1)  = 1.000 i f  r  > 1 

B l (N , r ,  -2) = 1.000 i f  r  = 1 or 0 

B2(O, p) = 0 

B2 (1,  p) = 1.000 

B2 (r ,  2) = r  2 

B2 (r ,  1) = (3r - 1) /2  if r  > 1 

B2(r,-1) = r  if 0  < r < 1 

= 1.000 if r  > 1 

B2(r,-2) = 0  if r =  0 

= l i f r = l  

= 213 otherwise 

&(2, M ,  1, p) = 1.000 

B3(2, M ,  r, -2) = M 

&(2, r,  p) = 1.000 

&(2, M, r, 2) = 1.000 

B3(2,M,r,-1) =1.000 for r >  1 



QUESTIONS AND ANSWERS 

James Barnes, Austron: I have a brief comment on the history of this. The bias functions, 
B1 and B2, were published some 22 years ago. We considered Bg at that time, but decided 
that there was no use for it. We didn't want to encourage people to do that. However, 
there are people outside the time and frequency community who are acquiring data in this 
lousy form. They need to be able analyze this data. 

Mr. Allan: That's a very good point. The biggest need for it is outside the time and 
frequency field. 


