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Frequency is the rate of occurrence of a repetitive event. If T is the period of a repetitive event, then the 
frequency is its reciprocal, f = 1/T. The International System of Units (SI) states that the period should 
be expressed in seconds (s), and the frequency should be expressed in hertz (Hz). The frequency of elec-
trical signals is often stated in units of kilohertz (kHz), megahertz (MHz), or gigahertz (GHz), where 
1 kHz equals one thousand (103) events per second, 1 MHz equals one million (106) events per second, 
and 1 GHz equals one billion (109) events per second.

Frequency metrology first became a topic of interest around 1920, when the burgeoning radio indus-
try began erecting radio transmitters all over the world.  These transmitters had to stay near their 
assigned frequencies to avoid interference with signals from other stations. In addition, the many mil-
lions of radio receivers that were soon manufactured had to be able to tune to a desired frequency so 
that the selected station could be heard. The original requirements for transmitter accuracy were low, 
about one part per thousand (1 × 10−3), but at the time, they posed a challenging metrology problem. 
Within a few years, however, the development of the quartz oscillator soon made that type of accuracy 
trivial. By the 1930s, commercial quartz oscillators accurate to about one part per million (1 × 10−6) 
were widely available, and by the late 1960s, quartz technology with about the same accuracy found 
its way into low-cost wristwatches and clocks. The production of commercial atomic oscillators also 
began in earnest in the 1960s, resulting in huge improvements in accuracy and resulting in many new 
technologies. For example, the infrastructure that we now take for granted, including telecommunica-
tion networks and the electric power grid, requires frequency accurate to about 1 × 10−11 to be simul-
taneously generated around the world during every hour of every day. In calibration and metrology 
laboratories, frequency measurements accurate to one part per ten trillion (1 × 10−13) have now become 
routine, and the Global Positioning System (GPS) depends upon oscillators that are stable to parts 
in 1014 for multiple hours. This level of performance separates frequency metrology from most of the 
other fields of metrology, where one part per billion (1 × 10−9) is often either unattainable or considered 
a major accomplishment.

This chapter provides an overview of frequency measurements.  It focuses on the measurement 
of the electrical signals produced by oscillators.  For our purposes, an oscillator is a device that 
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42-2 Time and Frequency

produces electrical signals at a specific frequency, typically in the form of either a sine or a square 
wave. Section 42.1 begins by discussing the concepts of accuracy and stability, which are essential to 
understanding oscillator specifications. Section 42.2 then describes the various types of oscillators 
used as frequency standards, including quartz and atomic oscillators, and oscillators disciplined to 
agree with an external reference signal. Section 42.3 describes the methods and techniques used to 
measure frequency and calibrate oscillators. Section 42.4 provides a brief look at the likely future of 
frequency metrology.

42.1  Frequency Accuracy and Stability

This section looks at the two main specifications used to characterize an oscillator: accuracy and stabil-
ity. A good understanding of the basic concepts introduced in this section is necessary when evaluating 
equipment or performing measurements.

42.1.1  Frequency Accuracy

The accuracy of an oscillator is the difference between its actual frequency, as determined by measure-
ment, and its nominal frequency. The nominal frequency is labeled on the oscillator output and refers to 
an ideal frequency with zero uncertainty. For example, an oscillator with an output labeled “10 MHz” 
would ideally produce perfect 10 MHz signals, but its actual signals will differ from its nominal fre-
quency by some amount. The difference between the actual frequency and the nominal frequency is 
called the frequency offset and determines the accuracy of an oscillator at a given point in time or over 
a specified interval.

Frequency offset is measured by comparing a test oscillator to a more accurate reference oscillator. 
There are several established measurement methods (described later in Section 42.3) that can provide 
this comparison in either the frequency domain or the time domain. The standard equation for estimat-
ing frequency offset in the frequency domain is

	
f

f f

f
off

meas nom

nom

= −
, 	 (42.1)

where
foff is the frequency offset
fmeas is the actual frequency in hertz reported by the measurement
fnom is the nominal frequency in hertz that the oscillator would ideally produce

Note that in practice, fmeas has an associated measurement uncertainty, but fnom is always an ideal value 
with no uncertainty. Note also that the nominal frequency is included in both the numerator and the 
denominator. Thus, the resulting value for foff is dimensionless, and not in units of hertz.

This equation is often simplified in the literature as

	
f

f

f
off = ∆

, 	 (42.2)

where
foff is the dimensionless frequency offset
∆f is the difference between the measured and nominal frequency in hertz
f is the nominal frequency in hertz

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

M
ic

ha
el

 L
om

ba
rd

i]
 a

t 1
4:

20
 0

2 
A

pr
il 

20
14

 



42-3Frequency Measurement

For example, if an oscillator labeled as 10 MHz (107 Hz) produces a frequency that is higher than nomi-
nal by 1 Hz, the equation becomes

	
f off = = × −1

10
1 10

7
7 	 (42.3)

In many cases, the frequency offset of an oscillator is obtained in the time domain by measuring time 
interval. This works because frequency is the reciprocal of period, which is expressed as a time interval. 
A mathematical definition of frequency is

	
f

T
= 1 	 (42.4)

where
T is the period of the signal in seconds
f is the frequency in hertz

This can also be expressed as

	 f T= −1 	 (42.5)

If we perform mathematical differentiation on the frequency expression with respect to time and sub-
stitute in the result, we can show that the average dimensionless difference in frequency is equivalent to 
the average dimensionless difference in time or that ∆f/f is equivalent to ∆t/T. For example,

	
∆ ∆ ∆ ∆

f T t
t

T

t

T
f= − = − = −−2

2
	 (42.6)

Therefore,

	
f

f

f

t

T
off = = −∆ ∆

	 (42.7)

where
∆t is the difference between two time interval measurements
T is the elapsed time between the two measurements

To keep the sign correct, note that the first reading must be subtracted from the second, therefore,

	
f

TI TI

T

t

T
off = − = −2 1 ∆

	 (42.8)

To illustrate this, consider a simple example where a time interval (TI1) is measured, followed by 
another time interval measurement (TI2) one second (109 ns) later. If TI2 − TI1 = 100 ns, this produces 
the same value for foff that was previously shown in Equation 42.3:

	
foff = = × −100

10
1 10

9
7 	 (42.9)
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42-4 Time and Frequency

In practice, more than two interval measurements are recorded, and it is common to graph the 
results of continuous time interval measurements recorded over multiple hours or days. These graphs 
are known as phase or time difference graphs. Phase graphs (Figure 42.1) use the standard Cartesian x/y 
format. The x-coordinate indicates elapsed time. This is the quantity T shown earlier in Equation 42.8. 
The values plotted as the y-coordinate represent the change in phase between the two electrical signals 
that are being compared to each other. However, since the phase changes are usually measured with 
instruments that express their results in units of time and not in radians or degrees, the y-coordinate is 
labeled to show the change in time or the ∆t quantity in Equation 42.8.

Average frequency accuracy over a given interval can be estimated from the slope of a phase graph. 
In practice, a linear least squares line is often fitted to the phase data, and the slope of the least squares 
line is used to estimate ∆t. In many cases, the slope of the least squares line is nearly identical to the 
slope of the actual data, because of the nearly constant frequency offset between the two oscillators 
being compared. In fact, to get a good estimate of frequency accuracy, the measurement period must be 
long enough to show this linear slope and detect a trend. A “clean” phase lot ensures that ∆t is really a 
measure of the test oscillator’s performance and indicates that neither the measurement system nor the 
reference oscillator has degraded the results by introducing excessive noise.

To illustrate this, Figure 42.1 shows a sample phase graph of an oscillator that was compared to a ref-
erence for a period of 7 days. During this period, the total accumulated time difference, ∆t, was nearly 
1000 ns, as indicated by both the actual data and the least squares line that was fitted to the data. From 
the slope of the least squares line, we can estimate that foff = 1.5 × 10−12. The actual data are nosier than 
the least squares line, because some noise is contributed by the measurement system and the oscillators 
involved in the comparison. Even so, a strong linear trend is easily detected, and we can be comfortable 
that this is a good estimate of frequency accuracy.

If necessary, it is easy to convert a dimensionless frequency offset estimate to units of frequency (Hz) 
if the nominal frequency is known. To illustrate this, consider an oscillator with a nominal frequency of 
10 MHz that is high in frequency by 1 × 10−11. To find the frequency offset in hertz, multiply the nominal 
frequency by the dimensionless offset:

	 f fnom off
7 11 41 1  1 1 1 1 1 Hz 1 mHz× = × + × = × = + = +− −( ) ( ) . .0 0 0 0 000 0 	 (42.10)

The actual frequency in this case is 10,000,000.0001 Hz, which is obtained by simply adding the offset 
frequency to the nominal frequency.

1000

foff = 1.5 × 10–12800
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FIGURE 42.1  A sample phase graph used to estimate frequency accuracy.
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42-5Frequency Measurement

To summarize, frequency accuracy and frequency offset are equivalent terms that indicate how 
closely an oscillator produces its nominal frequency at a given point in time or over a given interval. 
Frequency accuracy can be estimated in either the frequency domain or the time domain. The accuracy 
of an oscillator can usually be at least temporarily improved by adjusting it to agree with a more accurate 
reference [1,2].

42.1.2  Frequency Stability

Frequency stability indicates how well an oscillator can produce the same frequency offset over a given 
time interval. Any frequency that “stays the same” is a stable frequency, regardless of whether the fre-
quency is “right” or “wrong” with respect to its nominal value. To understand the difference between 
stability and accuracy, consider that an oscillator in need of adjustment might produce a stable fre-
quency with a large offset. Or, an unstable oscillator that was recently adjusted might temporarily pro-
duce an accurate frequency near its nominal value. The stability of an oscillator cannot be changed by 
adjustment, so unlike accuracy, it tells us something about the inherent quality of an oscillator. In fact, 
the accuracy of an oscillator over a given interval can never be better than its stability. Figure 42.2 shows 
the relationship between stability and accuracy.

Frequency stability is normally estimated with statistics that quantify the frequency fluctuations of 
an oscillator’s output over a given time interval. The fluctuations are measured with respect to a mean 
frequency offset, and the larger the dispersion of the fluctuations, the greater the instability of the oscil-
lator. Short-term stability usually refers to fluctuations over intervals less than 100 s but is commonly 
used to discuss an oscillator’s stability at an interval of 1 s. Long-term stability can refer to any mea-
surement interval greater than 100 s, but commonly is used to discuss stability over intervals of 1 day 
or longer.

Normally, metrologists rely on classical statistics such as standard deviation (or variance, the square 
of the standard deviation) to estimate dispersion. Variance is an estimate of the numerical spread of a 
dataset with respect to its average or mean value. However, variance works only with stationary data, 
where the results must be time independent. This assumes the noise is white, meaning that its power is 
evenly distributed across the frequency band of the measurement. Oscillator data are usually nonsta-
tionary. For stationary data, the mean and variance will converge to particular values as the number 
of measurements increases.  With nonstationary data, the mean and variance never converge to any 
particular values. Instead, there is a moving mean that might change each time a new measurement 
is added [3].

For these reasons, frequency metrologists generally rely on nonclassical statistics to estimate and 
specify the frequency stability of oscillators [4]. The most common statistic employed for stability esti-
mates is often called the Allan variance, but because it is actually the square root of the variance, its 
proper name is the Allan deviation (ADEV). Similar to the standard deviation, ADEV is better suited for 
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FIGURE 42.2  The relationship between frequency accuracy and stability.
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42-6 Time and Frequency

frequency metrology because it has the advantage of being convergent for most types of oscillator noise. 
The equation for ADEV using frequency measurements and nonoverlapping samples is

	
σ τy i i

i

M

M
y y( )

( )
=

−
−( )+

=

−

∑1

2 1
1

2

1

1

	 (42.11)

where y–i is the ith in a series of M dimensionless frequency measurements averaged over a measurement 
or sampling interval designated as τ. Note that while classical deviation subtracts the mean from each 
measurement before squaring their summation, ADEV subtracts the previous data point. Since stability 
is a measure of frequency fluctuations and not of frequency offset, the differencing of successive data 
points is done to remove the time-dependent noise contributed by the frequency offset. Also, note that 
the y– values in the equation do not refer to the average or mean of the entire dataset, but instead imply 
that the individual measurements in the dataset can be obtained by averaging.

The equation for ADEV using phase measurements and nonoverlapping samples is
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	 (42.12)

where xi is the ith in a set of N phase measurements spaced by the measurement interval τ.
To improve the confidence of a stability estimate, ADEV is normally used with overlapping samples 

that allow estimating stability with all possible combinations of the dataset. The equation for ADEV 
using phase measurements and overlapping samples is

	
σ τ
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	 (42.13)

where the averaging factor, m, has been added to Equation 42.12. To understand the averaging factor, 
consider that τ0 is the basic measurement interval or the shortest interval at which data are taken. To 
obtain stability estimates for longer intervals, τ0 is simply multiplied by m; thus, τ = mτ0. Even though the 
overlapping samples are not statistically independent, the number of degrees of freedom still increases, 
thus improving the confidence in the stability estimate [5].

One important advantage of ADEV over classical statistics is its ability to estimate stability over dif-
ferent intervals from the same dataset. Most ADEV graphs found in the literature use the octave method, 
where each successive value of τ is twice as long as the previous value. This method saved computational 
time, but as computers have become faster, it has become more common to estimate ADEV for all pos-
sible values of τ. A typical ADEV graph plots log τ on the x-coordinate to indicate the averaging period 
and log σy(τ) on the y-coordinate to indicate dimensionless frequency stability. These graphs are often 
referred to colloquially as “sigma–tau” graphs. ADEV graphs generally show the stability improving as 
the averaging period increases, until the point where the oscillator reaches its noise floor, or flicker floor, 
when no further gains will be made by averaging additional measurements. Figure 42.3 shows a sample 
ADEV graph that shows stability estimates using the octave method for intervals of τ ranging from 1 s to 
more than 2 h. This device was stable to about 3 × 10−12 at τ = 1 s and reached a noise floor near 5 × 10−13 at 
τ = 512 s. When τ exceeded 1000 s, the oscillator had begun to change frequency. Thus, further averaging 
degraded, rather than improved, the results.

In addition to estimating stability, ADEV can help identify the types of oscillator noise. Five noise 
types are commonly discussed in the time and frequency literature: white phase, flicker phase, white 
frequency, flicker frequency, and random walk frequency. A brief description of each noise type is provided 
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42-7Frequency Measurement

in Table 42.1. The noise type can be identified from the slope of the line on an ADEV graph (Figure 42.4). 
Note that ADEV cannot distinguish between white phase and flicker phase noise. However, the modi-
fied ADEV, Mod σy(τ), can make this distinction, and numerous other variations of ADEV exist for 
specific applications, such as the improved identification of oscillator noise or improved estimates of 
long-term stability [4,5].

ADEV and similar statistics have proven to be very useful. However, they appear so often in the lit-
erature that confusing stability with accuracy has become a common mistake. It is important to know 
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FIGURE 42.3  A sample ADEV graph used to estimate frequency stability.

TABLE 42.1  Oscillator Noise Types

Noise Type Description ADEV Slope

White phase Fluctuations in the phase of a signal that have the same 
power at all frequencies across a given bandwidth. The 
stability is improving at a rate proportional to the 
averaging period.

τ−1

Mod ADEV can distinguish between white and flicker 
phase noise (ADEV cannot) and identifies white phase 
noise as having a slope of τ−3/2.

Flicker phase Also known as 1/f phase noise. As the frequency goes up, 
the intensity of the noise goes down. For example, if the 
frequency doubles, the power of the noise is cut in half. 
Unlike white phase noise, flicker phase noise is not evenly 
distributed across the frequency band.

τ−1

White frequency Fluctuations in the frequency of a signal that have the same 
power at all frequencies across a given bandwidth. The 
stability is still improving, but at a rate proportional to the 
square root of the averaging period.

τ−1/2

Flicker frequency Also known as 1/f frequency noise. The oscillator has 
reached a noise floor that shows its best possible stability 
(often called the “flicker” floor). There is nothing to be 
gained by more averaging.

τ0

Random walk Successive random steps in frequency. The difference 
between two steps is nearly constant, but the direction of 
the steps is random. Even so, it is clear that the oscillator 
frequency is now changing. A slope of τ1 is sometimes 
used to distinguish frequency drift from random walk.

τ1/2
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42-8 Time and Frequency

that the two specifications mean different things and can have very different values for the same oscil-
lator. For example, an oscillator accurate to only 1 × 10−8 might still be stable to 1 × 10−13 at τ = 1 s. This 
means that even though the frequency of the oscillator is changing by only a small amount during short 
intervals, it is not particularly close to its nominal value.

42.2  Frequency Standards

As noted previously, stability measurements can tell us something about the inherent quality of an 
oscillator, and the stability of an oscillator is closely related to its quality factor, or Q. The Q of an oscil-
lator is its resonance frequency divided by its resonance width. The resonance frequency is the natural 
frequency of the oscillator. The resonance width is the range of possible values where the oscillator will 
run. Obviously, a high resonance frequency and a narrow resonance width are both advantages when 
seeking a high Q. Stability and Q are generally correlated, because a high Q means that an oscillator has 
to stay close to its natural resonance frequency.

This section discusses the various types of oscillators used as frequency standards. It begins by dis-
cussing quartz oscillators, which achieve the highest Q of any mechanical-type device. It then discusses 
oscillators with higher Q factors, based on the atomic resonance of rubidium, hydrogen, and cesium. 
This is followed by a discussion of disciplined oscillators. These devices can be either quartz oscillators 
or atomic oscillators, but their frequency is automatically adjusted to agree with an external reference. 
The section concludes with a discussion of which type of frequency standard is best suited for use in a 
metrology laboratory. Table 42.2 provides a summary [2,6–8].

42.2.1  Quartz Oscillators

Billions (109) of quartz crystal oscillators are manufactured annually. Most are miniature, inexpensive 
devices that are embedded inside wristwatches, clocks, computers, cellular phones, and nearly every 
type of electronic circuit. However, only the larger, more expensive varieties of quartz oscillators are 
used as frequency standards.  These devices are sometimes sold as stand-alone instruments but are 
more typically found inside test and measurement equipment, such as counters, signal generators, and 
oscilloscopes.

A quartz crystal inside the oscillator serves as resonator. The crystal strains (expands or contracts) 
when a voltage is applied. Reversing the polarity of the applied voltage will reverse the strain and force 
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FIGURE 42.4  Identification of oscillator noise types.
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42-9Frequency Measurement

the crystal to mechanically oscillate.  This is known as the piezoelectric effect.  The energy needed to 
sustain oscillation is obtained by taking a voltage signal from the resonator, amplifying it, and feeding 
it back to the resonator. Figure 42.5 is a simplified circuit diagram that shows the basic elements of a 
quartz crystal oscillator.

The rate of expansion and contraction is the resonance frequency and is determined by the cut and 
size of the crystal. No two crystals can be exactly alike or produce exactly the same frequency. The out-
put frequency of a quartz oscillator is either the fundamental resonance or a multiple of the resonance, 
called an overtone frequency. Most high-stability units use either the third or fifth overtone to achieve a 
high Q. Overtones higher than the fifth are rarely used because they make it harder to tune the device to 
the desired frequency. A typical Q for a quartz oscillator ranges from 103 for a wristwatch-type oscillator 
to higher than 106 for the most stable devices. The maximum Q for a high-stability quartz oscillator can 
be roughly estimated as Q = 16 million/f, where f is the resonance frequency in megahertz.

Environmental changes can change the resonance frequency of a quartz crystal. Temperature changes 
are the largest problem, but other parameters such as humidity, pressure, and vibration can also change 
the frequency. There are several types of design packages that reduce these environmental problems. 
The most stable type of quartz oscillator is the oven-controlled crystal oscillator (OCXO), which encloses 

TABLE 42.2  Summary of Oscillator Types

Oscillator Type
Quartz 

(OCXO) Rubidium Cesium
Active Hydrogen 

Maser GPSDO

Primary standard No No Yes No No
Resonance frequency Mechanical 

(varies)
6.834682610904 

GHz
9.19263177 GHz 1.420405751768 

GHz
NA

Quality factor, Q ∼106 ∼107 ∼108 ∼109 NA
Frequency accuracy 1 × 10−6 to 5 × 10−9 to 1 × 10−12 to ∼1 × 10−13 1 × 10−12 to
(1 day average) 1 × 10−10 5 × 10−12 1 × 10−14 5 × 10−14

Stability, σy(τ), τ = 1 s 1 × 10−11 to 5 × 10−11 to 1 × 10−11 to ∼2 × 10−13 1 × 10−10 to
1 × 10−13 5 × 10−12 5 × 10−12 1 × 10−12

Stability, σy(τ), τ = 
1 day

1 × 10−10 5 × 10−12 8 × 10−14 to ∼2 × 10−16 1 × 10−12 to
2 × 10−14 5 × 10−14

Aging/year 5 × 10−9 2 × 10−10 None ∼1 × 10−13 None
Phase noise (dbc/Hz, 

10 Hz from carrier)
−125 to −140 −90 to −130 −130 to −136 −130 to −142 −90 to −140

Life expectancy Indefinite >15 years 5–20 years >15 years >15 years
Cost (USD) $500–$5,000 $2,000–$10,000 $30,000–$80,000 ∼$200,000 $1,000 to $20,000

Tuning
voltage

Crystal
resonator

Output
frequency

Amplifier

FIGURE 42.5  Block diagram of quartz oscillator.
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42-10 Time and Frequency

the crystal in a temperature-controlled chamber called an oven. When an OCXO is turned on, it goes 
through a warm-up period while the temperatures of the crystal resonator and its oven stabilize. During 
this period, the performance of the oscillator continuously changes until it reaches its normal operating 
temperature. The temperature within the oven then remains constant, even when the outside tempera-
ture varies. An alternative solution to the temperature problem is the temperature-compensated crystal 
oscillator (TCXO). These devices include a temperature sensor that generates a correction voltage that 
is applied to a voltage-variable reactance, or varactor. The varactor then produces a frequency change 
equal and opposite to the frequency change produced by temperature. This technique does not work as 
well as oven control, but it generally costs less. Therefore, TCXOs are used when high stability over a 
wide temperature range is not required.

The best quartz oscillators have excellent short-term stability. A high-quality OCXO might be stable 
to 1 × 10−13 at τ = 1 s. However, quartz oscillators are not stable over long intervals. Their long-term 
stability is limited by aging, which causes their frequency to change over time due to internal changes 
in the oscillator. Aging usually results in a nearly linear change in the resonance frequency that can be 
either positive or negative. A reversal in the direction of the aging occasionally occurs, and ironically, 
the aging rate of a quartz oscillator sometimes decreases as the device gets older. Aging has many pos-
sible causes, including a buildup of foreign material on the crystal, changes in the oscillator circuitry, or 
changes in the quartz material or crystal structure. A high-quality OCXO might age at a rate of less than 
5 × 10−9 per year, while a TCXO might age 100 times faster.

The simple design of quartz oscillators makes them very reliable, and many devices have run continu-
ously for decades without failing. However, their accuracy can change rapidly due to aging and envi-
ronmental factors, and even a high-quality OCXO will need regular adjustments to maintain frequency 
accurate to within 1 × 10−9. They are also subject to large frequency shifts when they are turned on after 
a power outage. For these reasons, quartz oscillators are usually a poor choice as a frequency standard, 
unless the measurement requirements of a laboratory are very low [8,9].

42.2.2 A tomic Oscillators

Atomic oscillators derive their resonance frequency from the quantized energy levels in atoms. The laws 
of quantum mechanics dictate that the energies of a bound system, such as an atom, have certain discrete 
values. An electromagnetic field can boost an atom from one energy level to a higher one. Or, an atom at a 
high energy level can drop to a lower level by emitting electromagnetic energy. The resonance frequency 
(f) of an atomic oscillator is the difference between the two energy levels divided by Planck’s constant (h):

	
f

E E

h
= −2 1 	 (42.14)

All atomic oscillators are intrinsic standards, because their frequency is inherently derived from a 
fundamental natural phenomenon.  There are currently (2011) three types of atomic oscillators sold 
commercially: rubidium standards, cesium standards, and hydrogen masers (discussed individually in 
the following sections). All three types contain an internal quartz oscillator that is locked to a resonance 
frequency generated by the atom of interest. This method causes the factors that degrade the long-term 
stability of a quartz oscillator to disappear. As a result, the long-term stability of an atomic oscillator is 
at least several orders of magnitude better than that of a quartz oscillator, but the short-term stability is 
unchanged [2,8,10].

42.2.3 R ubidium Oscillators

Rubidium oscillators are outperformed by the other types of atomic oscillators, but they have the 
advantage of being much smaller and less expensive. Because of their low cost and small size, rubidium 
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42-11Frequency Measurement

oscillators are often found in telecommunication networks and as time base oscillators in test and mea-
surement equipment. They operate at 6,834,682,610.904 Hz, the resonance frequency of the rubidium 
atom (87Rb), and use the rubidium frequency to control the frequency of a quartz oscillator. A micro-
wave signal derived from the crystal oscillator is applied to the 87Rb vapor within a cell, forcing the 
atoms into a particular energy state. An optical beam is then pumped into the cell and is absorbed by 
the atoms as it forces them into a separate energy state. A photocell detector measures how much of 
the beam is absorbed and tunes a quartz oscillator to a frequency that maximizes the amount of light 
absorption. The quartz oscillator is then locked to the resonance frequency of rubidium, and standard 
frequencies are derived and provided as outputs (Figure 42.6).

The Q of a rubidium oscillator is about 107. The shifts in the resonance frequency are mainly caused 
by collisions between the rubidium atoms and other gas molecules.  These frequency shifts limit the 
long-term stability. Stability at τ = 1 s is typically less than 1 × 10−11 and near 1 × 10−12 at τ = 1 day. There 
is generally no guaranteed specification for accuracy, but after a warm-up period of a few minutes, a 
rubidium oscillator will typically be accurate to within parts in 1010 or less, and some devices might 
be as accurate as 5 × 10−12. However, if an application has an accuracy requirement of parts in 109 or 
smaller, a rubidium oscillator will need to be regularly measured and adjusted, because accuracy better 
than about 5 × 10−9 cannot be assumed. With regular frequency adjustments, a rubidium can maintain 
average frequency to within a few parts in 1011 or 1012 over periods of months or years. The adjustments 
are made to compensate for the aging and frequency drift that changes the rubidium frequency slowly 
over time. Manufacturers typically specify the aging rate as less than 5 × 10−11 per month, but this is 
sometimes conservative, as the frequency of a well-behaved rubidium standard might change by less 
than 1 × 10−11 over the course of a month. Even so, the frequency change can exceed 1 × 10−10 if left 
unadjusted for a year, which is unacceptable for some applications [2,6–8].

42.2.4  Cesium Oscillators

Cesium oscillators are primary frequency standards because the SI second is defined using the resonance 
frequency of the cesium atom (133Cs), which is 9,192,631,770 Hz. A properly working cesium oscillator 
should have inherent accuracy and stability and be close to its nominal frequency without adjustment.

Cesium is a complicated atom with F = 3 and F = 4 ground states (Figure 42.7). Each atomic state is 
characterized not only by the quantum number F but also by a second quantum number, mF, which 
can have integer values between −F and +F. There are 16 possible magnetic states of cesium, but the 
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FIGURE 42.6  Block diagram of rubidium oscillator.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

M
ic

ha
el

 L
om

ba
rd

i]
 a

t 1
4:

20
 0

2 
A

pr
il 

20
14

 



42-12 Time and Frequency

transition between the |4,0〉 and |3,0〉 states is insensitive to magnetic fields. Thus, the frequency of this 
transition was chosen to define the SI second.

Figure 42.8 provides a simplified schematic of a cesium beam frequency standard. The design details 
of a cesium beam standard can vary significantly from model to model, but their basic design principles 
are similar. As shown on the left side of the figure, 133Cs atoms are heated to a gaseous state in an oven. A 
beam of atoms emerges from the oven at a temperature near 100 °C and travels through a magnetic field, 
where the beam is split into two beams of atoms with different magnetic states. One beam is absorbed 
by the getter and is of no further interest. The other beam is deflected into the microwave interrogation 
cavity (commonly known as the Ramsey cavity).

While inside the Ramsey cavity, the cesium beam is exposed to a microwave frequency from a fre-
quency synthesizer driven by a quartz oscillator. If this frequency is tuned to precisely match cesium 
resonance, some of the atoms will change their magnetic state. After leaving the Ramsey cavity, the 
atoms pass through a second magnetic field. These magnets direct only the atoms that changed state to 
the detector; the other atoms are directed to a getter and absorbed. In essence, the magnets located on 
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FIGURE 42.7  Cesium atomic structure.
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FIGURE 42.8  Block diagram of cesium oscillator.
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42-13Frequency Measurement

both sides of the Ramsey cavity serve as a “gate” that allows only those atoms that undergo the desired 
|4,0〉 ↔ |3,0〉 energy transition to pass through and reach the detector. The detector sends a feedback sig-
nal to a servo circuit that continually tunes the quartz oscillator so that the maximum number of atoms 
reaches the detector, thereby increasing the signal strength. This process is analogous to carefully tun-
ing a radio dial until the loudest and clearest signal is heard and keeps the quartz oscillator frequency 
locked as tightly as possible to cesium resonance. Output frequencies, such as 1 Hz, 5 and 10 MHz, are 
then derived from the locked quartz oscillator.

The Q of a commercial cesium standard is about 108. The beam tube is typically less than 0.5 m in 
length, and the atoms travel at velocities of greater than 100 m/s inside the tube. This limits the observa-
tion time to a few milliseconds and the resonance width to a few hundred hertz. Stability (σyτ, at τ = 1 s) 
is typically 5 × 10−12, normally reaching parts in 1014 at τ = 1 day. The frequency offset is typically near 
1 × 10−13 after a warm-up period of 30 min. Because the second is defined based on cesium resonance, 
there should be no change in frequency due to aging. However, in practice a cesium oscillator will slowly 
change its frequency by a very small amount, typically by parts in 1017 per day.

Cesium standards have a limited life expectancy and a high cost. The major component of a cesium 
oscillator, called the beam tube, typically lasts for about 5–10 years, and replacing the beam tube can 
cost nearly as much as replacing the entire device. When the beam tube fails, a cesium standard will no 
longer be locked to cesium resonance and will become a free-running quartz oscillator. For this reason, 
cesium frequency standards should be regularly monitored or checked to ensure that they are working 
properly [8,10–12].

42.2.5  Hydrogen Masers

The hydrogen maser is the most expensive commercially available frequency standard and is therefore 
found in only a small number of metrology laboratories. The word maser is an acronym that stands for 
microwave amplification by stimulated emission of radiation. The resonance frequency of the hydrogen 
atom is 1,420,405,751.768 Hz.

There are two types of hydrogen masers. The first type, called an active maser, has a microwave cavity 
that oscillates spontaneously, and a quartz oscillator is phase locked to this active oscillation. The second 
type, called a passive maser, frequency locks a quartz oscillator to the atomic reference in much the same 
fashion as a rubidium or cesium oscillator. Because active masers derive their output frequency more 
directly from the atomic resonance, they are more stable than passive masers in both the short and long 
term. Both types of maser are more stable in the short term than cesium oscillators and are well suited 
for applications where optimal frequency stability is required. Over long intervals, however, hydrogen 
masers are less accurate than cesium oscillators. This is due to several factors: their accuracy depends 
upon a more complex set of conditions, the resonance frequency of their microwave cavity can change 
over time, and also because the definition of the SI second is based on cesium resonance [2,8,10].

An active hydrogen maser works by sending hydrogen gas through a magnetic gate that only allows 
atoms in certain energy states to pass through. The atoms that make it through the gate enter a storage 
bulb surrounded by a tuned, resonant cavity. Once inside the bulb, some atoms drop to a lower energy 
level, releasing photons of microwave frequency.  These photons stimulate other atoms to drop their 
energy level, and they in turn release additional photons. In this manner, a self-sustaining microwave 
field builds up in the bulb. The tuned cavity around the bulb helps to redirect photons back into the 
system to keep the oscillation going. The result is a microwave signal that is locked to the resonance 
frequency of the hydrogen atom and that is continually emitted as long as new atoms are fed into the 
system. This signal keeps a quartz crystal oscillator in step with the resonance frequency of hydrogen 
(Figure 42.9).

The resonance frequency of hydrogen is much lower than that of cesium, but the resonance width of 
a hydrogen maser is usually just a few hertz. Therefore, the Q is about 109 or about one order of magni-
tude better than that of a commercial cesium standard. As noted, a hydrogen maser is more stable than 
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42-14 Time and Frequency

a cesium oscillator for periods ranging from 1 s to perhaps weeks or months. The stability of an active 
maser will typically reach a few parts in 1013 at τ = 1 s and a few parts in 1016 at τ = 1 day.

42.2.6  Disciplined Oscillators

Oscillators whose frequency is controlled by an external reference signal are known as disciplined oscil-
lators.  Unlike free-running oscillators that need to be periodically adjusted to stay within specifica-
tion, disciplined oscillators are locked to a reference signal and never require manual adjustment. The 
best disciplined oscillators can generate local signals with nearly the same accuracy and stability as the 
remote reference. Various types of radio signals have been used to discipline oscillators, but the vast 
majority of disciplined oscillators in use today (2011) employ signals from the GPS satellites as their ref-
erence source. For this reason, this section will focus entirely on GPS-disciplined oscillators (GPSDOs).

Unlike the other types of frequency standards described earlier, a GPSDO requires a small antenna to 
be mounted on a rooftop location with a clear view of the sky. A GPSDO will normally begin surveying 
its antenna position as soon as it is turned on. The survey is a one-time process that typically lasts for 
several hours. When the antenna survey is complete, the GPSDO is ready to use as a frequency standard 
and will typically produce sine wave signals of 5 and/or 10 MHz.

The basic function of a GPSDO is to receive signals from the GPS satellites and to use the information 
contained in these signals to control the frequency of a local quartz or rubidium oscillator. GPS signals 
are kept in agreement with the Coordinated Universal Time scale maintained by the United States Naval 
Observatory (UTC[USNO]). Nearly all GPSDOs use the coarse acquisition (C/A) code on the L1 carrier 
frequency (1575.42 MHz) as their incoming reference signal. The satellite signals can be trusted as a refer-
ence for two reasons: (1) they originate from atomic oscillators and (2) they must be accurate and stable to 
within parts in 1014 over a 12 h averaging period in order for GPS to meet its specifications as a positioning 
and navigation system. The best GPSDOs transfer as much of the inherent accuracy and stability of the 
satellite signals as possible to the signals generated by the local quartz or rubidium oscillator.

Many of the methods used to discipline oscillators are proprietary, and GPSDO manufacturers 
seldom disclose exactly how their products work. However, there are a few basic concepts that apply 
to most designs. Generally, the local oscillator is controlled with one or more servo loops, with each 
loop having a fixed or variable time constant. For example, one type of servo loop is a phase-locked 
loop, or PLL. In a GPSDO, the reference input signal to the PLL comes from a GPS receiver that tracks 
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FIGURE 42.9  Block diagram of an active hydrogen maser.
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42-15Frequency Measurement

multiple satellites and outputs a 1 pulse per second (pps) signal. A phase detector measures the differ-
ence between the 1 pps signal from the GPS receiver and a signal from a voltage-controlled oscillator 
(VCO). The VCO typically has a nominal frequency of 10 MHz, so its signal is divided to a lower fre-
quency (often all the way down to 1 pps) prior to this phase comparison. A microcontroller reads the 
output of the phase detector and monitors the phase difference. When the phase difference changes, the 
software changes the control voltage sent to the VCO, so that the phase difference is held within a given 
range (Figure 42.10). The GPSDO is locked when the phase of the VCO has a constant offset relative 
to the phase of the GPS signals. Ideally, the servo loop must be loose enough to ignore the short-term 
fluctuations of the GPS signals, reducing the amount of phase noise and allowing the VCO to provide 
reasonably good short-term stability. However, the loop must be tight enough to track GPS closely and 
to allow the GPS signals to control the VCO frequency in the longer term. The microcontroller software 
often compensates not only for the phase and frequency changes of the local oscillator but also for the 
effects of aging, temperature, and other environmental parameters.

Another type of GPSDO design does not correct the frequency of the local oscillator. Instead, the 
output of a free-running local oscillator is sent to a frequency synthesizer. Steering corrections are then 
applied to the output of the synthesizer (Figure 42.11). Modern direct digital synthesizers (DDSs) have 
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FIGURE 42.10  Block diagram of a GPSDO that steers its local oscillator.
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FIGURE 42.11  Block diagram of a GPSDO that adjusts a frequency synthesizer.
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42-16 Time and Frequency

excellent resolution and allow very small frequency corrections to be made. For example, 1 μHz resolu-
tion at 10 MHz allows instantaneous frequency corrections of 1 × 10−13. In addition, allowing the local 
oscillator to free run often results in better performance than the VCO method, where unexpected shifts 
in the control voltage can produce unwanted adjustments in the output frequency.

A reasonably good metric to use when evaluating GPSDO performance is its frequency stability at τ = 1 
day, as estimated with ADEV. Stability of 1 × 10−13 or less at τ = 1 day normally indicates a device of high 
quality, and many (but certainly not all) GPSDOs can reach this specification. To demonstrate how the per-
formance of GPSDOs can vary significantly, a test was conducted between two rubidium-based GPSDOs 
at National Institute of Standards and Technology (NIST). Both devices had the same type of rubidium 
local oscillator and cost approximately the same amount. During the test, both GPSDO devices were con-
nected to the same GPS antenna with an antenna splitter. The antenna’s position had previously been sur-
veyed with an uncertainty of less than 1 m, and these precise coordinates were keyed into both units. The 
10 MHz outputs of both devices were then simultaneously compared to the US national frequency standard 
at NIST, UTC(NIST), for a period of 80 days. The results are shown in the phase graph in Figure 42.12.

The results show that the frequency of Device A was tightly controlled. The peak-to-peak phase varia-
tion over the entire 80 day period was just 38 ns, with most of this variation due to the difference between 
UTC(USNO), the reference for GPS, and UTC(NIST) during the measurement interval. The frequency 
accuracy, as estimated from the slope of the phase, was about 1 × 10−15. In sharp contrast, the frequency of 
Device B was very loosely controlled, and the phase plot shows a very large peak-to-peak phase variation 
of 588 ns, much larger than the dispersion of the GPS timing signals. Figure 42.13 shows the long-term 
frequency stability of both devices as estimated with ADEV, for values of τ ranging from 1 h to about 
3 weeks. Device A is more stable than Device B at all averaging periods by roughly a factor of 10. Stability 
at τ = 1 day, the metric discussed earlier, is about 6 × 10−14 for Device A, comparable to the performance of 
a cesium standard. However, the stability of Device B is worse by more than a factor of 10, about 70 × 10−14.

In spite of the wide performance disparity between Device A and Device B, these examples still illus-
trate that a GPSDO that is even loosely locked to the satellite signals should be inherently accurate (parts 
in 1013 or better) and inherently stable in the long term. This is because the signals broadcast by the GPS 
satellites are continuously steered to agree with UTC and GPSDOs that simply “follow” the satellites 
will produce frequency that closely agrees with UTC over long intervals.

10 MHz output of two GPSDOs compared to UTC (NIST)
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FIGURE 42.12  Phase comparison of two GPSDOs.
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42-17Frequency Measurement

GPSDOs are generally reliable, but users should be aware that they will eventually fail if the GPS sig-
nal is unavailable. The most likely cause of failure is probably RF interference, because GPS signals are 
highly susceptible to intentional or unintentional interference due to their low power levels. A GPSDO 
can stop tracking satellites if there are interfering signal only a few orders of magnitude more power-
ful than the minimum received GPS signal strength, which is −160 dBW on Earth for the L1 carrier, 
equivalent to 10−16 W. When the GPS signal is unavailable, a GPSDO continues to produce frequency but 
begins relying on its holdover capability. In many cases, a GPSDO will simply become a free-running 
local oscillator while in holdover mode, in which case, its frequency accuracy will probably be several 
orders of magnitude worse than normal, perhaps parts in 109 or 1010 for a device with a rubidium local 
oscillator after a few hours without GPS and parts in 107 or 108 for a quartz based device under the same 
conditions. Some devices implement holdover algorithms that continue to steer the local oscillator with-
out GPS, but the performance of these algorithms will degrade over time. As is the case with a cesium 
standard, it is important to verify that a GPSDO is working properly [13].

42.2.7  Choosing a Frequency Standard for a Metrology Laboratory

As noted earlier, a quartz oscillator is generally a poor choice as a frequency standard, and only those labo-
ratories with the most demanding frequency stability requirements will be able to justify the expense of a 
hydrogen maser. Thus, when a metrology laboratory decides which frequency standard to buy, it will likely 
be choosing between a rubidium oscillator, a cesium oscillator, and a GPSDO. The specifications of the 
various oscillator types are summarized in Table 42.2. The specifications listed in the table were obtained 
from manufacturer’s specification sheets and from the results of measurements performed by NIST.

As Table 42.2 indicates, a GPSDO will have better long-term frequency accuracy and stability than 
a stand-alone rubidium oscillator, and the GPSDO will never require adjustment. A GPSDO will nor-
mally cost more than a stand-alone rubidium standard, but in most cases, the performance and con-
venience of the GPSDO will easily justify the higher cost. Therefore, for most metrology laboratories, a 
GPSDO is probably a better choice.

Choosing between a cesium standard and a GPSDO is more difficult. As noted earlier, the SI second 
is defined based on energy transitions of the cesium atom; thus, cesium oscillators are often the pre-
ferred choice of frequency standard for laboratories with the best measurement capabilities and the most 
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FIGURE 42.13  Stability comparison of two GPSDOs.
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42-18 Time and Frequency

demanding performance requirements. However, as also noted earlier, cesium oscillators are expensive 
and have a limited life expectancy, and not all laboratories can afford them. Assuming that a calibration 
laboratory can afford a cesium standard, should they still economize by choosing a GPSDO as their fre-
quency standard? There are several pros and cons related to GPSDOs that should be considered before 
answering this question. First the pros:

•	 A GPSDO costs much less than a cesium standard to initially purchase, sometimes as much as 
90% less. It also costs less to own, because there is no cesium beam tube to replace. This means 
that a calibration laboratory could buy multiple GPSDOs for less than the cost of a cesium stan-
dard and use the additional standards for crosschecks and redundancy.

•	 Unlike a cesium standard, a GPSDO can recover time by itself (time-of-day and an on-time pulse 
synchronized to UTC). This is important if a laboratory needs time synchronization capability.

•	 Cesium standards seldom require adjustment, but a GPSDO will never require adjustment, 
because its frequency is controlled by the signals from the GPS satellites.

Now, the cons:

•	 GPSDOs generally have poorer short-term stability and higher phase noise than cesium standards.
•	 GPSDOs require an outdoor antenna that must be located in an area with access to the roof. 

A cesium standard can be operated anywhere where electric power is available.
•	 Cesium standards are autonomous and independent sources of frequency, which means they can oper-

ate without input from another source. GPSDO can operate properly only where signals from the GPS 
satellites are available and are not suitable for applications that need an autonomous frequency source.

Based on these criteria, it seems likely that many laboratories that can afford a cesium standard will 
undoubtedly choose a GPSDO as a lower-cost alternative that meets all of their requirements. However, 
a certain percentage of laboratories do require a cesium standard, and some laboratories will operate 
both types of standards. Even if a laboratory already owns a cesium standard, it might be wise to acquire 
a GPSDO as a secondary standard so that the two devices can be compared to each other to ensure that 
both are working properly. Table 42.3 lists suppliers of the various types of frequency standards.

TABLE 42.3  Suppliers of Frequency Standards

Company Website
Rubidium 
Oscillators

Cesium 
Oscillators

Hydrogen
Masers

GPS
Disciplined 
Oscillators

Accubeat www.accubeat.com X X
Arbiter www.arbiter.com X
Brandywine www.brandywinecomm.com X X
EndRun www.endruntechnologies.com X
FEI-Zyfer www.fei-zyfer.com X
Fluke www.fluke.com X X
Frequency electronics www.freqelec.com X X
Meinberg www.meinberg.de X
Oscilloquartz www.oscilloquartz.com X X X
Precision test systems www.ptsyst.com X X
Precise time and 

frequency
www.ptfinc.com X X X

Spectracom www.spectracomcorp.com X X
Stanford research www.thinksrs.com X
Symmetricom www.Symmetricom.com X X X X
Trak www.trak.com X
Trimble www.trimble.com X
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42-19Frequency Measurement

42.3  Calibration and Measurement Methods

The objective of a frequency calibration is to measure the accuracy and/or stability of the device under 
test (DUT), which will be one of the oscillator types described in Section 42.2.  During the calibra-
tion, the DUT is compared to a standard or reference. In most cases, both the DUT and the reference 
produce oscillating sine wave signals, as illustrated in Figure 42.14. The sine wave signals produce one 
cycle (2π radians of phase) in one period. The period is measured in units of time, and the amplitude is 
measured in units of voltage. The nominal frequency of the DUT is normally 1 MHz or higher, with 5 
or 10 MHz being common.

In order for the calibration to be valid, the reference must outperform the DUT. The ratio by which 
the reference outperforms the DUT is called the test uncertainty ratio (TUR). A TUR of 10:1 is preferred, 
but not always possible. If a smaller TUR is used (4:1, for example), then the calibration will take longer 
to perform, because more measurements and more averaging will be required.

To further validate a measurement result, it is necessary to establish the traceability of a frequency 
measurement to the International System (SI) of units. Because frequency is the reciprocal of time 
interval, establishing traceability in frequency metrology means establishing traceability to the SI 
second through an unbroken and documented chain of calibrations. The SI second is a virtual and 
not a physical standard, so the chain of calibrations typically extends back to a national standard 
maintained by a laboratory that contributes to the UTC, such as NIST in the United States.  The 
traceability chain will have only one link if a DUT is calibrated by NIST or an equivalent laboratory. 
However, there are often several links (calibrations) involved when establishing a traceability chain 
back to the SI.

Once a suitable reference and a plan for traceability have been chosen, the next step is to select a cali-
bration or measurement method. The remainder of this section discusses several established techniques 
that are commonly used to measure frequency. With the appropriate hardware and software, measure-
ment systems designed around these techniques can produce data that can be used to estimate either 
frequency accuracy or stability.

The comparison of the sine wave signal produced by the DUT to the sine wave signal produced by 
the reference can be made in either the time domain or in the frequency domain, but time domain 
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FIGURE 42.14  An oscillating sine wave.
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42-20 Time and Frequency

comparisons are more common. A simple time domain comparison that nicely illustrates the con-
cept is the oscilloscope pattern drift method.  This method requires a two-channel oscilloscope.  In 
this example, both the DUT and reference signals are 10 MHz sine waves. The reference signal is 
produced by a cesium oscillator and the DUT signal is produced by a quartz oscillator. The scope 
is triggered with the reference signal on channel 2, and the DUT signal is connected to channel 1. 
The amplitude and position of both waveforms are adjusted on the oscilloscope display so that they 
overlap (Figure 42.15).

If the two frequencies were exactly the same, both sine waves would appear to be stationary on the 
oscilloscope display. However, because the two frequencies are not the same, their phase relationship 
will be continuously changing. The reference sine wave will appear to be stationary and the DUT sine 
wave will move. The direction of the sine wave motion will determine whether the DUT frequency is 
low or high with respect to the reference. A stopwatch can be started when the two signals are exactly 
in phase and stopped after one complete cycle slip has occurred and they are exactly in phase again. 
Frequency accuracy can be estimated as ∆t/T (see Equation 42.8), where ∆t = 100 ns (the period of 
10 MHz) and T is the elapsed time indicated on the stopwatch. If one cycle slip occurs per second, the 
frequency accuracy of the DUT is 1 × 10−7 [1].

As noted, this method is very useful for demonstrating the concept of a phase comparison, and 
oscilloscopes are indispensible for simple measurements and for viewing waveforms. However, the 
shortcomings of the pattern drift method quickly become obvious: If DUT were accurate to 1 × 10−12, 
a single cycle slip would take more than a day to occur. For this reason and others, you will prob-
ably seldom use an oscilloscope to measure frequency, especially if you have a universal counter 
available.

Universal counters can be configured as either a frequency counter (FC) or a time interval counter 
(TIC). FCs are the most common instrument used for frequency measurements, and they are especially 
handy, because they can quickly measure a DUT’s frequency and instantly display the results. The refer-
ence for this type of measurement is the FC’s time base oscillator, which is usually a quartz oscillator of 
unknown accuracy (typically no better than 1 × 10−8). For this reason, the laboratory’s best oscillator 

FIGURE 42.15  Phase comparison with an oscilloscope.
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42-21Frequency Measurement

should be connected to the FC’s external time base input. Frequency accuracy can be estimated by using 
Equation 42.1, where fmeas is the reading taken from the FC display. The smallest frequency offset that an 
FC can detect with a single reading will be determined by its resolution, which is limited by the number 
of digits on the counter’s display. For example, a 10-digit FC will be unable to detect a frequency change 
smaller than 1 × 10−9 without averaging when measuring a 10 MHz signal, but a 12-digit counter can 
reduce this value by two orders of magnitude to 1 × 10−11.

TICs are commonly used to measure frequency in the time domain (Figure 42.16). When the time 
interval method is used to measure frequency, it is no longer practical to work directly with 10 MHz 
signals, because low-frequency input signals must be used to start and stop the counter. The solution is 
to use a frequency divider to convert standard frequency signals to a much lower frequency, typically 
to 1 Hz. Frequency dividers can be stand-alone instruments, integrated into the oscillator design or, in 
some cases, integrated into the TIC. Dividing to 1 Hz can be accomplished by blocking fnom − 1 cycles 
of the frequency from passing through to the counter. The use of low-frequency signals reduces the 
problem of counter overflows and underflows (cycle ambiguity) and helps prevent errors that can occur 
when the start and stop signals are too close together. It is also important to make sure that the TIC is 
triggering at the correct voltage level on the input signal. This involves either carefully adjusting the 
trigger levels or using a TIC with fixed trigger levels and converting both signals to an identical shape 
and amplitude prior to the comparison.

A TIC has inputs for two signals.  Typically, a signal from the DUT starts the counter and a 
signal from the reference stops the counter. The time interval reading will change, typically very 
slowly, to indicate the difference in frequency between the two signals. A single reading from an 
FC can immediately produce useful information, because it can be differenced from the nominal 
frequency. However, in the case of a TIC, at least two readings are required to produce useful fre-
quency information.  As indicated in Equation 42.8, a quick estimation of the DUT’s frequency 
offset can be made by recording a single TIC reading, waiting for a specified period, and then 
recording a second TIC reading. The difference between the two readings divided by the measure-
ment period (∆t/T) provides an estimate of the frequency offset. In practice, data are usually col-
lected continuously, typically every second, and then averaged over longer intervals of time to get 
a better estimate.

Modern universal counters typically have a single-shot time interval resolution of less than 1 ns. The 
best devices have a resolution near 10 ps, which enables them to detect frequency changes of 1 × 10−11 
in 1 s, which is equivalent to the capability of a 12-digit FC. Dedicated TICs can have a resolution near 
1 ps, making it possible in theory to detect a frequency change of 1 × 10−12 in 1 s. However, the ability of 
a time interval system to detect small frequency changes is limited by factors other than TIC resolution, 
including trigger errors, time base errors, and noise from frequency dividers, and 1 × 10−11 at 1 s usually 
represents best case performance [1,14,15].

The time interval method is widely implemented and is an excellent way to measure long-term accu-
racy and stability. However, systems with higher resolution are needed to measure short-term stability. 

DUT

1 Hz

÷ N

÷ N

1 Hz

Comparators

Time base

Time-
interval
counter

Reference

FIGURE 42.16  TIC measurement system.
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42-22 Time and Frequency

These systems continue to use counters but employ heterodyne techniques, rather than frequency 
dividers, to obtain the necessary low-frequency signals. The reason for this is straightforward: When 
dividers are used, both the frequency of the DUT and its phase fluctuations (noise) are divided by the 
same amount, and thus, no resolution is gained. The resolution of the system remains the same as the 
resolution of the counter.  In contrast, heterodyne techniques convert the DUT frequency to a lower 
frequency, known as the intermediate frequency (IF) or beat frequency, without dividing the device’s 
phase fluctuations (noise). Thus, phase information is preserved in the heterodyne process, and when 
the DUT changes frequency relative to the reference, the beat frequency changes by the same amount. 
The resolution of the counter is potentially improved by the downconversion or heterodyne factor, which 
equals fnom/fbeat.  Unlike divider systems, which typically produce 1 Hz signals, the beat frequency is 
usually not lower than 10 Hz, because it must be large enough to account for a wide range of possible 
frequency differences between the DUT and reference, including situations where a quartz oscillator is 
involved in the comparison.

Figure 42.17 shows a simple heterodyne system where a low-pass filter (LPF) and double-balanced 
mixer are used in conjunction with a universal counter in frequency or period mode. Although not 
shown in the figure, in most designs, the reference oscillator is intentionally offset in frequency, nor-
mally by 100 Hz or 1 kHz, by use of a frequency synthesizer. The double-balanced mixer mixes the 
reference frequency with the DUT signal, producing a beat frequency that is nominally the same as 
the intentional frequency offset of the reference. If a 10 MHz frequency is downconverted to 1 kHz, 
the resolution of the counter can be potentially enhanced by a heterodyne factor of 104 (107/103). The 
beat frequency is sent through a LPF to remove carrier frequency harmonics and then measured 
with either an FC or a period counter. If an FC is used, the frequency offset foff = ( ffc − fbeat)/fnom, where 
ffc is the reading on the FC, fbeat is the nominal beat frequency, and fnom is the nominal frequency of 
the DUT.

The dual-mixer time difference (DMTD) method (Figure 42.18) combines the best features of the 
time interval and heterodyne methods. The DMTD method uses a transfer oscillator and two double-
balanced mixers in parallel. The transfer oscillator is offset from the nominal frequencies by a small 
amount, typically by 10 Hz. The transfer oscillator does not have to be particularly stable or accurate 
because the noise it produces is common to both measurement channels and cancels when the phase 
difference is computed. Even so, the transfer oscillator signal is usually obtained by locking a frequency 
synthesizer to the reference oscillator. Typically, both the DUT and the reference must have the same 
nominal frequency, usually 5 or 10 MHz, and DMTD systems are often designed to measure only 
one  nominal frequency.  However, the use of frequency synthesizers allows some DMTD systems to 
measure a number of DUT frequencies within a specified range (e.g., 1–30 MHz) and can even allow the 
DUT and the reference to have different nominal frequencies.

The transfer oscillator signal is heterodyned with both the reference oscillator and the DUT to 
produce two beat frequencies. The two beat frequencies are out of phase by an amount proportional 
to the time difference between the DUT and reference, and this phase difference is measured with a 
TIC. Before being sent to the TIC, the beat frequencies pass through a LPF that removes harmonics 
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FIGURE 42.17  Simple heterodyne measurement system.
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42-23Frequency Measurement

and a zero-crossing detector (ZCD) that determines the zero crossing of each beat frequency cycle. 
A DMTD system works best if the zero crossings are coincident or can be interpolated to a common 
epoch. Thus, a variable phase shifter is sometimes used to put the DUT signal nominally in phase with 
the reference before the DUT signal is mixed with the transfer oscillator. After the mixing process, 
some systems use an event counter to count the whole beat note cycles to eliminate the ambiguity 
of the zero crossings; other systems time-tag the zero crossings. The resolution of a DMTD system 
is determined by the resolution of the TIC or the time-tagging hardware, divided by the hetero-
dyne factor. For example, if the TIC resolution is 100 ns and the heterodyne factor is 106 (based on a 
10 MHz nominal frequency and a 10 Hz beat frequency), then the DMTD resolution can be estimated 
at 10−7 s/106 or 0.1 ps. This high resolution allows some DMTD systems to detect frequency changes of 
1 × 10−13 in 1 s or two or three orders of magnitude better than a typical universal counter. It should 
be noted that all components of heterodyne or DMTD systems must be carefully chosen for optimum 
stability and not all frequency measurement systems are stable enough to support their theoretical 
resolution [1,5,14,16,17].

Recently developed frequency measurement systems employ digital signal processing (DSP) tech-
niques to achieve even higher resolutions. These systems rapidly sample the DUT and reference signals 
with analog-to-digital converters and then fit the digitized signals with a sinusoidal waveform at an IF 
that is much lower than the carrier frequency. Figure 42.19 shows the relationship between the oscilla-
tor signal, the sampling clock, and the resulting IF sine wave. Again, the idea is simply to compare two 
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FIGURE 42.19  Digital sampling of the carrier frequency.
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FIGURE 42.18  DMTD measurement system.
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42-24 Time and Frequency

low-frequency signals, but note that the DSP hardware and software replaces the analog mixers shown 
in Figures 42.17 and 42.18 or the dividers shown in Figure 42.16. After two low-frequency signals are 
obtained for comparison, the subsequent filtering and phase detection is also accomplished with DSP 
techniques.

At this writing (2011), the available digital sampling frequency measurement systems are relatively 
expensive but can outperform DMTD systems by a wide margin. The best systems have a resolution of 
a few femtoseconds (10−15 s) and can detect frequency changes of less than 5 × 10−15 at 1 s. These systems 
can also measure phase noise, can simultaneously estimate time and frequency domain statistics with 
the same hardware, and can measure oscillators with a wide range of nominal frequencies [18].

To provide a practical, “real-world” comparison of the most commonly used frequency measurement 
systems, Figure 42.20 compares the FC, time interval, single-mixer, and DMTD methods by showing an 
ADEV graph of the same OCXO measured with all four systems. The same universal counter, with an 
external time base connection to an atomic oscillator, was used for the first three methods. The counter 
chosen was typical of those found in many metrology laboratories, with a 12-digit display and a time 
interval resolution of 150 ps. For the FC method, the counter was configured as an FC and used by itself. 
For the time interval method, the counter was configured as a TIC and used with a low-cost divider cir-
cuit. For the mixer method, the counter was used in conjunction with a low-cost double-balanced mixer 
and a frequency synthesizer that generated a signal offset by 1 kHz from the reference. A commercially 
available system was used for the DMTD measurement.

Only the DMTD system was able to correctly show that the OCXO reaches its noise floor at an averag-
ing period of 10–20 s, when its stability briefly drops below 3 × 10−12. Due to a lack of resolution and due 
to measurement system noise that exceeds the oscillator noise at short intervals, the other three systems 
incorrectly indicate that the OCXO noise floor is not reached until after several hundred seconds of 
averaging, when a random walk noise process had already begun. The FC and TIC methods provide 
similar results at all intervals, but the TIC estimates are smoother and have fewer variations. The single-
mixer system was not optimized for best performance, but was somewhat quieter than the FC and TIC 
systems at short averaging periods.  It is interesting to note that when the averaging interval exceeds 
several hundred seconds, all four methods produce similar results. This demonstrates that the choice 
of a measurement system is not critical when measuring long-term stability or accuracy, but is critical 
when measuring short-term stability.
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FIGURE 42.20  ADEV graph comparing different measurement methods.
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42-25Frequency Measurement

42.4  Future Developments

Cesium fountain standards currently (2011) serve as the national standards of frequency at NIST and a 
number of other laboratories. These devices implement techniques such as a vertical microwave cavity 
and laser cooling to increase the interrogation period of the cesium atoms. By doing so, they reduce the 
resonance width and increase the oscillator Q to about 1010. As a result, their accuracy and stability is 
about a factor of 100 times better than commercial cesium standards [19]. Perhaps cesium fountains or 
another type of laser-cooled microwave frequency standard will eventually be sold commercially.

It seems almost certain that optical atomic standards will have a huge impact on the future of fre-
quency metrology. Optical standards operate at much higher resonance frequencies than microwave 
standards; the stabilized lasers that serve as their resonators typically operate at a frequency near 1015 
Hz, as opposed to less than 1010 Hz for cesium. As a result, these standards promise accuracies and sta-
bilities that are several orders of magnitude better than the best microwave standards. Optical frequency 
standards have been constructed at NIST utilizing single-ion techniques based on mercury (199Hg+) and 
aluminum (27Al+), as well as neutral atom techniques based on calcium (40Ca), ytterbium (174Yb), and 
strontium (87Sr). It appears likely that the SI second will eventually be redefined, with the new definition 
based on one of these optical atomic transitions [20].

The accurate measurement of optical frequencies had historically been difficult, involving large and 
complex chains of frequency-doubled and frequency-mixed lasers. This changed in the early part of the 
twenty-first century, with the advent of the self-referenced femtosecond laser frequency combs.  These 
devices, which are now sold commercially, have made the linkage of optical to microwave frequencies, or 
optical to optical frequencies, relatively simple. A self-referenced femtosecond laser frequency comb gener-
ates a series of discrete, equally frequency-spaced modes. The mode spacing, frep, is given by the repetition 
rate of a mode-locked laser, which is typically around 1 GHz. The frequency of an individual mode can 
be expressed as f(m) = fo + m × frep, where m is an integer. The frequency offset fo is measured by a method 
called self-referencing. An optical standard can be compared to a conventional frequency standard by ref-
erencing the comb to a cesium standard or a GPSDO and then measuring the heterodyne beat frequency 
fbeat between the optical standard and the nearest tooth of the comb. This will lead to determination of the 
frequency of the optical standard in terms of fo, frep, and fbeat, if the integer m is known. Frequency combs 
also allow the ratio of two optical frequencies to be compared without being limited by the accuracy of 
conventional standards [21]. Frequency comb comparisons of optical standards have successfully mea-
sured relative frequency differences of parts in 1019, an astounding 16 orders of magnitude smaller than the 
requirements that existed less than a century ago for the measurements of radio frequencies.
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