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Abstract.

Relativistic effects play an important role in the performance of the Global Positioning System
(GPS) and in world-wide time comparisons. The GPS has provided a model for algorithms that
take relativistic effects into account. In the future exploration of space, analogous considerations
will be necessary for the dissemination of time and for navigation. We discuss relativistic effects
that are important for a navigation system such as at Mars. We describe relativistic principles
and effects that are essential for navigation systems, and apply them to navigation satellites
carrying atomic clocks in orbit about Mars, and time transfer between Mars and Earth. It is
shown that, as in the GPS, relativistic effects are not negligible.
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1. Introduction: relativity principles in the GPS

The earth and its satellites are in free fall. The principle of equivalence implies that
over some region near earth’s center of mass, the gravitational field strength due to exter-
nal bodies is cancelled by an apparent equal but opposite field arising from acceleration.
Studies of this cancellation have shown that, when transforming from barycentric coor-
dinates to local inertial coordinates, the source of the cancellation is a time derivative of
the synchronization term in the time transformation (Ashby, N., & Bertotti, B. (1986),
Nelson, R. A. (1987)). In the local freely falling frame external bodies can be ignored
approximately. A single coordinate time variable occurs in the scalar invariant ds?. Co-
ordinate time has the property that an event occurs at a unique coordinate time for all
observers.

The basis for computation of relativistic effects in the GPS is the following expression
for ds?:

, 2V 2V
ds* = gy datda” = —(1+ ?)(cdt)Q +(1- ?)(dﬁ + dy? + dz?). (1.1)

Here there are no PPN parameters; the spatial coordinates are isotropic; only leading
terms of order ¢~2 are kept; the effects of external bodies are neglected, and the poten-
tial of the earth is modelled keeping only monopole and quadrupole terms. Even with
these simplifications, numerous relativistic concepts must be employed in understanding
the GPS. These include time dilation, gravitational frequency shifts, the Sagnac effect,
constancy of the speed of light, the principle of equivalence, relativity of simultaneity,
coordinate speed of light, and local inertial frames.
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The proper time elapsed on an atomic clock depends on the clock’s history. The incre-
ment of proper time may be computed from the scalar ds;

2V 2V, dz? + dy? + dz? Vo2

d(cr) =ds = d(ct)\/l + = (1- ?)W ~(1+ pol @)d(ct). (1.2)

In the GPS this result is exploited to synchronize atomic clocks to coordinate time by
tracking the clock’s coordinate time in terms of the proper time:

\%4 v?
At:/patth<1—c—2+@). (13)

When the potential is due only to the earth, the coordinate time is very close to Geo-
centric Coordinate Time (TCG). For a clock at rest on earth’s surface, the gravitational
potential is approximately:

GM Joa? 3cos’ 0 — 1
V=— 1— 1.4
r ( r2 ( 2 ) ’ (1.4)
and the coordinate time increment will be
GM Joa? 3cos?f—1,  w?r?sin?6
dt =dr|(1 1-— 1.5
T< + 2 ( 2 ( D) )+ 22 ; (1.5)

where GM = 3.986004418 x 10* m?/s?; a; = 6.378137 x 105 m is earth’s equatorial
radius, Jo = 1.08268 x 1073 is the quadrupole moment coefficient, w = 7.292115 x 107>
s~! and @ is the the geocentric colatitude, measured down from the north pole. Here we
quote values of the constants that define the WGS-84 system, the basis for navigation in
the GPS.

The coefficient of dr in Eq. (1.5) has very nearly a constant value on earth’s geoid, a
surface of constant effective potential in the rotating frame in which the last term in Eq.
(1.5) contributes a centripetal potential. The constant can be evaluated on the equator,
and the result is

GM GMJy w?a?
c2ay 2c2a, 2c2

= (6.95349 + .00376 4 .01203) x 10~ 'Y = 6.96928 x 1071, (1.6)

2. GPS time

The constant estimated in Eq. (1.6) is, to within the limitations of the model potential,
the same as the defined constant Lo = Wy/c? = 6.969290134 x 10719 that gives the rate
change between TCG and TAIL

d(tTA]) = d(tTcg)(l — Lg). (2.1)

Noise on individual clocks can be mitigated by averaging over many clocks; Eq. (2.1)
can be interpreted as a definition of the TCG time scale in terms of TAI, which is an
averaged time scale maintained by the BIPM that incorporates hundreds of atomic clocks
distributed around the world. The USNO maintains a time scale, UTC(USNO), based
on its own ensemble of atomic clocks, and is a major contributor to TAI (or terrestrial
time TT). To change the coordinate time ¢ of Eq. (1.2) so that it represents TT, let
t —t/(1 — Lg). Solving to leading order in ¢~ for the elapsed coordinate time with the
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14 I@b U2
At:‘/patth<1—C—2—c—2+ﬁ>. (22)

Clocks in GPS satellites are offset so that they beat at the same rate as the references
on earth’s geoid; also the altitude is so great that the orbits are nearly Keplerian, earth’s
quadrupole potential being very small. For such clocks, conservation of energy gives

1, GM GM
S22 T
2 r 2a '

new scale,

(2.3)

where a is the semi-major axis. Substituting for the v?/2 term in Eq. (2.2) and rearrang-

ing,
At :/ dT(l L W, 2GM(1 - 1))
path

2ac? c? 2

C a T
2V/GM
= A7(1 — 4.4647 x 1071°) + #mmz + const,, (2.4)
C

where E is the eccentric anomoly. The constant rate offset, —4.4647 x 10719 contains a
handful of relativistic corrections:

3GM Wy —10
502 2 = 4.4647 x 107 . (2.5)
GPS satellite clocks are given this offset before launch so that in orbit, they will beat
at the correct coordinate rate. GPS clocks are steered (without leap seconds) to the
UTC(USNO) time scale so they provide a realization of the coordinate time scale TT,
except that the last term in Eq. (2.4) must be implemented in all GPS receivers.

A mysterious “break” in satellite clock frequencies occurred when satellite orbits were
adjusted, moving them up or down between their assigned slots and parking orbits. This
was explained in about 2000 in terms of changes in the satellite semimajor axis:

6<3GM) _ 3GMda

_ 2.6
2c2a 2¢2a? (26)
This term is a combination of time dilation and gravitational frequency shifts. A change
of 20 km in the semi-major axis results in a frequency change of a few parts in 10'3. This
correction is currently implemented by hand in the GPS.

3. Earth rotation and the Sagnac effect

To be useful for navigation, GPS clocks are synchronized in a freely falling, locally
inertial frame (the ECI frame) whose origin is at earth’s center of mass. If earth ro-
tation were ignored when synchronizing clocks on earth’s surface, the results would be
inconsistent because light does not travel in a straight line with uniform speed c¢ in an
earth-fixed, rotating reference frame. If we ignore the gravitational potential, the metric
of special relativity in cylindrical coordinates is

ds® = —(cdt)? + dr® + r’d¢* + dz*. (3.1)

If we transform to an earth-centered, earth-fixed (ECEF) reference frame by making the
replacement

¢ — ¢+ wt, (3.2)
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where w is earth’s angular velocity of rotation, then the metric becomes

2,.2

@2:_(1—w§)«%ﬁ)+m2+%m%@m@+dﬁ. (3.3)
c

The coordinate time is still ¢ (or effectively T'T). Solving for dt to leading order in w for

a slowly moving clock,

At = / dr + 2 dA., (3.4)
path & path

where A, is the area swept out by a vector from the rotation axis to the clock, pro-
jected onto a plane parallel to earth’s equator. This correction can be several hundred
nanoseconds and is an important correction that must be accounted for in long-distance
clock comparisons such as when using GPS in common view from laboratories in Europe
and the U.S., or in TWSTFT (two-way satellite time and frequency transfer). The same
effect occurs if electromagnetic signals are used to synchronize clocks.

4. Navigation with the GPS

We henceforth assume that clocks in GPS satellites are synchronized (or equivalently,
that their biases are known). Suppose that at coordinate time ¢ a receiver at position r
detects time ticks originating at times ¢; from satellites at positions r;. The navigation
equations are then

ct—t;) =|r—r;|, j=1,234.. (4.1)

Given four such equations, in principle these non-linear equations can be solved for the
unknown time ¢ and position r of the receiver’s detection event. However, the GPS is
designed so that the satellite positions are transmitted in the ECEF! This is a source of
much confusion. The satellite positions must be transformed to some common ECI frame
before solving, then the solution transformed to the ECEF frame that exists at time ¢.

The basic measurement of the detector is accomplished by alignment of a code unique
to each transmitter, that is impressed on the signal by phase reversals, with a replica of
the code generated within the receiver. The receiver carries a relatively inexpensive (and
noisy) oscillator for code generation and timing. Suppose the clock in the receiver has
an error At,. The time difference between transmitted time ¢; and time ¢ + At, on the
receiver oscillator is called the “pseudorange.” Then the pseudorange PR; is

PR; = c(t+At,—t;) = \/(x —2;)2+ (y — y;)? + (2 — 2j)2+c(Atr — Aty +At e+ At gim )

(4.2)
where At,.; is the eccentricity correction, At; is the transmitter error, and Aty are
atmospheric delay corrections. This is illustrated in Figure 1.

The time bias on the oscillator is continually being recalibrated to within a few nanosec-
onds by internal solutions of the navigation equations, but inexpensive receivers do not
make such precision available to the user.

Signals from the GPS satellites are right circularly polarized, in which the electric and
magnetic fields oscillate in phase. At places in the wave train where a phase reversal is
imposed, all electromagnetic fields will pass through zero. At a physical point where all
fields are zero, the fields are zero in every reference system; these invariant zeros sweep
through free space with speed c.



GPS, Relativity, and Extraterrestrial Navigation 5

ég { I r H —IH” ( WJ[HJNT THHH HW Code tra_nsmitted
=os I B Ol e LI T T sl T2 (1 by satelite
At +At,

s el >

=)

WA ﬁ\‘lﬂ MO I GPS time maintained b
HHHHLZ__J[H_[“_ LM{H]M_ 1 —H]éluj | figo el Master Control Station g
‘\‘F’

| ropagation delay = D/c+At,,
o IO 0 COL I L Replica of code
=Ll 0 aemmg ) AR 1 generated n

At | PRIc

—

Figure 1. Pseudorange is the true range D with corrections due to relativity, clock biases, and
atmospheric delays. The carrier is not shown; the plotted code corresponds to phase reversals
impressed on the carrier.

5. Other satellite navigation systems

Several other navigation systems have been partially deployer or are in various stages
of planning. The Russion GLONASS system is very similar to GPS. Satellites orbit 17
times while GPS orbits 16 times. A clock frequency offset, which is not quite as large
as that for GPS, is applied to the satellite clocks. A full constellation of 24 satellites
was planned but was never completely implemented; currently the constellation is being
replenished and a full constellation is in the works.

The GALILEO system is a European satellite navigation system which at present has
two satellites in orbit. Specifications for this system call for all relativistic effects to be
the responsibility of the receiver. No frequency offsets will be applied in hardware to the
orbiting clocks, which will necessarily run faster than TT by a few parts in 100, It will
be up to software in the receiver to correct the transmitted time ticks for this large time
drift.

The Chinese Republic has plans for a global satellite navigation system involving over
30 satellites; some of these will be geosynchronous and more than one such satellite has
already been launched.

Several augmentation systems such as WAAS, EGNOS, and QZSS monitor GPS signals
and upload data to geostationary satellites for retransmission to users. This mitigates
problems with GPS due to outages, multipath, ionospheric delays, and other problems
that make GPS somewhat unreliable.

6. Effects not currently accounted for

Solar and lunar tidal potentials. At the origin of a locally inertial, freely falling reference
frame such as the ECI frame, the principle of equivalence implies that the gravitational
field strength due to external bodies is cancelled by the induced field strength due to
acceleration. Such a cancellation has been overlooked time and again by no small num-
ber of individuals claiming that relativity has not been accounted for properly in the
GPS. The cancellation is a consequence of the relativity of simultaneity. To summarize
the calculation briefly, consider a time transformation from barycentric or heliocentric
coordinates to a locally inertial, freely falling frame, that has a resynchronization term

of the form
v-r

> (6.1)

where v is the velocity of the local frame’s origin and r is the displacement of the
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observation point from the origin. The tensor transformation of the 00-component of the
metric tensor will then produce contributions including terms

v-r/A\®  2a-r
_<1+T) =2+ (6.2)

where a is the acceleration of the freely falling frame. Let the contributions to ggg of
external bodies be expanded in a Taylor series about the origin of the local frame. The
first term will be the same for all clocks in the neighborhood of the local frame origin
and can be removed by absorbing the term into the local time scale. The second term
will be -2VV - r/c? and these two terms together will be

2

because in free fall, a = —VV. The cancellation does not arise from second-order Doppler
effects as some have claimed. The first terms that contribute are tidal terms, second
derivatives of the external potential evaluated at the origin of the local frame. The net
fractional frequency shift of orbiting GPS clocks due to the moon has an amplitude of
only 7 x 10716 and the sun contributes about half that amount.

Earth’s quadrupole potential. Earth’s quadrupole moment produces a small, predictable
periodic effect on orbiting clocks, that is not currently accounted for. The time correction
that should be applied to the orbiting clock is (Ashby (2003))

GM Jya? 3 [GM Jya?sin®i
Atoblateness = 72@1 (1 - Sin2 Z) AT + 7 M sin(2w + 2f) . (64)

2c2q3 2 2c2

where ¢ is the orbital inclination, w is the altitude of perigee, f is the satellite’s true
anomoly, and a is the mean semi-major axis. It is coincidental that the chosen inclination
1 = 55° so that the secular term is nearly zero. The remaining term has a period of nearly
6 hours and an amplitude of 24 ps, contributing almost a centimeter to navigation error.

Coordinate speed of light. For signals travelling from earth’s surface at radius R to or
from a GPS satellite, at an elevation angle F, solving the equation of the null geodesic
ds? = 0 for the propagation time gives

cAt = (1— Lg)<\/T‘%V — R2cos?2 E — RsinE) +

2GM o rsy + R+ \/r%, — R?cos? E —
c? gTsv+R—\/T‘%V—R2COS2E+R7

where rgy is the satellite’s radial coordinate. The correction factor Lg multiplying the
geometric range very nearly cancels the usual logarithmic Shapiro delay term (Petit &
Wolf (1994)). The isotropic coordinate gauge has been selected and the product GM
for earth is determined as part of the definition of the W(GS-84 reference frame used for
navigation in the GPS. Also, ¢ is defined so GM/c? has fixed units of length. Further
scaling of the length coordinate would be inconsistent since the first-order potential term
GM/(c?r) is unitless and at a given physical point must have the same numerical value
in all coordinate systems. Figure 1 plots both corrections to the delay.

(6.5)

Spatial curvature. A “proper distance” metric can be defined by considering light
propagating back and forth a short distance from an atomic clock to a mirror at the end
of a short rod. For the isotropic metric, Eq. (1.1), the proper distance corresponding to
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Figure 2. Plot of relativistic corrections to coordinate time delay. The log term is nearly
cancelled by the Lg correction to the geometric distance.

a coordinate increment dz* is
do? = (1 2Vd2d2d2—1 2Vd2 2(d6? + sin? 0dg? 6.6
0° = (14 —z)(da® +dy* + d2%) = (1 + —7)(dr® +r*(d6 +sin°0dg”)) . (6.6)

The proper circumference of an equatorial circle of radius R is then

GM
2R

The correction is 2.8 cm. Such effects are not currently considered in geodesy.

2rR(1 +

7. Extension to extraterrestrial navigation

Consider extending the analysis of relativistic effects to the vicinity of another celestial
body such as Mars (Ares). An equipotential surface exists in the Mars-centered, Mars-
fixed rotating frame (ACAF frame) in which atomic clocks at rest beat at the same rate.
Ignoring all masses except Mars, the rate of Aretian coordinate time relative to clocks
at “infinity” may be expressed in terms of a constant like Lg.

GMy GMadog "‘%24@%14

L =
A c2aia 2¢2a;1 4 2c2
~ (1.40362 + .00128 + .00322) x 10~ *° (7.1)
=1.40812 x 1071° (21% of Lg).

Then the frequency offset of an atomic clock in orbit around Ares can be calculated when
the semimajor axis is known. For a circular orbit,

Af  3GMa
7 = 2aA02 - LA . (72)
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Figure 3. Notional areosynchronous navigation system with five satellites in slightly inclined
orbits

For an areosynchronous orbit, a4 = 2.04277 x 107 km, and

A—ff = —1.05738 x 10717, (7.3)

Figure 3 shows an areosynchronous navigation system poised over a possible base near
the Arean equator. The satellites are given slightly inclined orbits; five satellites are
needed in order to provide continuous navigation coverage. The reason for this can be
visualized as follows. Think of the navigation error associated with signals from one
satellite in terms of a narrow space between two concentric shells of nearly equal radii.
Two such shells that intersect in general give a thin torus of position, but if the shells
happen to be tangent such a torus spreads into a disc and the position is not well
determined. This can happen if the centers of the shells are in line with the point of
tangency, and this is the reason that poor navigation precision could result if all the
satellites were in the equatorial plane. Imagine any two of the five satellites, not in
equatorial orbits. The plane generated by vectors from the center of Ares to the satellites
will be wobbling in space and will eventually intersect one of the remaining satellites.
When that happens, with three satellites in line, the geometrical situation is poor for
navigation; one of the three satellites is relatively useless. So in general one needs five
satellites.

For continuous communication coverage between the Arean surface and the satellites,
twelve satellites distributed in three orbital planes will suffice; however such a configu-
ration is not sufficient for navigation, where continuous view of at least four satellites
from points on the surface are needed. A navigational system with 24 satellites similar
to the GPS configuration would be visible most of the time at a radius of about 4.2 plan-
etary radii: if ag4 = 14,259 km, the orbital period would be 51,695 s, and the fractional
frequency offset relative to clocks on the surface would be

3GM4

— L4 =1.90941 x 10719, 7.4
2¢2a A % (7.4)

Barycentric Coordinate Time (TCB). Transfer of time between such an extraterrestrial
time system and a terrestrial one calls for a common time system which overlaps both
systems. We consider here TCB according to the TAU definitions (IAU/IUGG 1991).
The elapsed Barycentric Coordinate Time on a moving clock anywhere within the solar
system is

Vi) 1”2> , (7.5)

At = dr|1— —
TCB /path 7'< 2 +202

where r is the position of the clock and v its velocity. All solar system bodies are included
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in the potential V(r). To obtain terrestrial time in terms of TCB, The vector r and the
corresponding velocity are split up into into vectors from the barycenter to earth, and
relative to earth:

I = Teqrth + R7 V = Vearth + R . (76)
where R is the displacement of the clock relative to earth’s center of mass. The potential

is split into a contribution from the earth and an external potential that is expanded in
a Taylor series for small displacements:

V= ‘/earth + ‘/ezt ~ ‘/earth (R) + ‘/emt (rearth) + V‘/emt ‘R + ... (77)

Then after substitution and rearrangement, and replacing the integration variable 7 by
t in first-order correction terms,

" V. 102
AtTCB :AT+/ dt(— ext(rearth) +_vearth)

t c? 2 2
t Veartn(R)  1R2\ R vVeqren |
dt| — earth L eart 78
+/to ( c? +2C2)+ c? to (78)

The last term in Eq. (7.8) represents the relativity of simultaneity of earth’s ECI frame
moving relative to the barycenter. Only tidal terms from the external potential survive,
because of the principle of equivalence. The first integral in Eq. (7.8) gives hundreds of
correction terms; the principal ones are similar to the corrections discussed in Eq. (2.4)
for a GPS clock:

/t1 dt( _ Veut(Tearth) + lvgarth) N 3GM¢y
to

c? 2 2 2000t
2/ GMcaeqr )
+C—2®th€earth sin Eegrih + ... (7.9)

The second integral in Eq. (7.8) depends on the position and velocity of the clock relative
to the earth, and is just the TCG of the event:

t1 52
Vearn(R) 1R
/ dt< _ % " 5?) = troe = (1+ Le)trr . (7.10)
to

The relation between Arean time and TCB is analagous. The time of an event near Ares
can then be transformed to TCB and thence to TT.

8. Conclusions

Numerous relativistic effects must be accounted for in global navigation systems. A
distributed network of clocks, synchronized in the ECI frame, provides a realization of
coordinate time used for many purposes other than simple navigation. Trends toward im-
proving the precision of navigation algorithms will entail the incorporation of additional
relativistic effects.
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