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Abstract—Many perturbations that affect atomic frequency 
standards vary during the period of measurement. To include 
this time variation, we introduce 3 time-dependent weight 
functions built from the solution of the unperturbed equa-
tions of motion of a 2-level system. The integral of the time-
dependent part of a perturbation with a weight function gives 
the associated first-order change in transition probability. Bi-
ases are then found easily. The same weight function may be 
used for different perturbations, thus unifying the derivation 
of their associated biases. We give several examples of the use 
of weight functions.

I. Introduction

several biases affect the frequencies of primary fre-
quency standards. some of these (black-body, gravi-

tational red shift) are nearly constant throughout a mea-
surement. These biases may be treated independently of 
the method of measurement. other biases (magnetic field) 
may have small spatial variations that moving atoms see 
as time variations. still other biases (e.g., due to leak-
age of the excitation field, distributed cavity phase varia-
tion, second-order doppler effect in fountains) may vary 
considerably during the measurement period. In the past, 
specific theories have been developed to treat each indi-
vidual source of bias. only a few publications collect these 
theories together [1]–[3].

In this paper, we present a formalism that permits a 
unified treatment of biases that vary significantly during 
the period of measurement. We introduce 3 time-depen-
dent weight functions built from the solution of the unper-
turbed equations of motion. These functions describe the 
first-order response of the atomic transition probability 
to time-dependent perturbations. By integrating a weight 
function together with the time dependence of a pertur-
bation over the measurement period, we find the change 
in the line shape and can deduce any associated biases. 
These weight functions incorporate the parameters that 
depend on the method of measurement. The advantage of 
using weight functions is that much of the algebra involved 
in solving the perturbed equations of motion, extracting 
the transition amplitude, and constructing the transition 
probability is done once and need not be repeated for dif-
ferent perturbations. an abbreviated version of this work 
has appeared previously [4].

In section II, we present the schrödinger equation of 
motion for a 2-level system with a small perturbation. We 
then derive the weight functions and discuss their proper-
ties. In section III, we apply the weight functions to rabi 
(single zone) excitation to find the distortions of the line 
shape due to a perturbation. In section IV, we present 
weight functions for ramsey (dual zone) excitation. From 
them we derive several shifts relevant to primary frequen-
cy standards. section V summarizes our results. The ap-
pendix shows the equivalence of our detuning weight func-
tion to the sensitivity function employed in analysis of the 
dick effect [5].

II. derivation of Weight Functions

We present here a formulation based on the time-de-
pendent schrödinger equation for a 2-level system as pre-
sented in [3]. a corresponding analysis may also be carried 
out by use of the 3-component equations derived from the 
density matrix [2], [6], [7].

A. Unperturbed Equations of Motion

The time-dependent schrödinger equation for a 2-level 
system excited by radiation at frequency ω can be writ-
ten as
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here ψs is the 2-component wave function, S is the ham-
iltonian, and w a  and w b are the energies of the upper 
and lower states. The amplitude of the excitation is de-
noted by the rabi frequency 2b; θ is the phase of the ap-
plied field at t = 0. Both b and θ are real and may vary 
with time, but slowly compared with ωt.

The first step in solving (1) is the rotating wave ap-
proximation. We write the cosine in the interaction term 
as the sum of 2 exponentials. We then keep only the ex-
ponential that “rotates” in the same sense as the “preces-
sion” corresponding to the energy levels, where the terms 
in quotes have physical meaning for magnetic resonance 
of a spin-one-half system [6]. That is, we replace the ham-
iltonian by
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when ωa > ωb. The principal correction caused by the “an-
ti-rotating” part of the hamiltonian is the Bloch-siegert 
bias [3], [8]–[10].

The second step in solving (1) is to define new prob-
ability amplitudes that differ from Ca and Cb by time-
dependent phases:

 a f b f( ) ( )exp[ ( )] ( ) ( )exp[ ( )].t C t i t t C t i ta a b b= =and  

The new amplitudes α and β are the components of a 
wave function ψ obeying
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the new unperturbed hamiltonian becomes

  =
-æ

è
ççç

ö

ø
÷÷÷÷

D
D
b

b , 

where the coefficients b and Δ are both real. We have 
introduced the abbreviation Δ = (1/2) (ω − ω0) for one-
half the detuning from the atomic resonance frequency 
ω0  = ωa − ωb. similarly, b is one-half the rabi frequency 
associated with the excitation. We have here assumed θ 
constant, but either or both of b and Δ may be time de-
pendent. With these phase changes, we have eliminated 
the rapid time dependence and complex phase of the cou-
pling coefficients b. We have also made the new hamilto-
nian real and traceless.

In component form, the time-dependent schrödinger 
equation (2) with the new hamiltonian becomes
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We further define α and β as those solutions of (3) obeying 
the initial conditions α(0) = 1 and β(0) = 0. The prob-
ability that a transition has occurred after excitation for a 
time τ is then represented by

 P( ) ( )t b t=
2
. 

The form of (2) or (3) guarantees that the normalization 
of the wave function is constant at all times

 a bt t( ) + ( ) =
2 2

1. 

In general, the solution of (3) cannot be found analytically 
when either b or Δ is time-dependent.

If we write out the real and imaginary parts of the 2 
equations in (3)—compare [11, eq. (4)]—we have 4 cou-
pled equations in 4 real variables. When the initial condi-
tions hold, we see that reα and Imβ are even functions of 
the detuning Δ, while Imα  and reβ  are odd functions. 
The transition probability, which is the sum of the squares 
of the real and imaginary parts of β, is thus an even func-
tion of detuning and hence centered on the resonance. 
This remains true independent of any time variation that 
b may have.

The general solution of (2) can be expressed by

 y y( ) ( , ) ( ),t U t= 0 0  

where the unitary evolution matrix U(t,0) satisfies (2) and 
the initial condition that U(0,0) is the unit matrix. For 
our 2-level system, the evolution matrix must have the 
form
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Thus the probability amplitudes when the system starts 
from one state are trivially related to those when the sys-
tem starts from the other state (change the sign of the 
detuning Δ).

B. Perturbation Hamiltonian

a 2-level perturbation hamiltonian can be represented 
by  1 = å G ti ii

( ) ,s  where the index i ranges over x, y, 
z, and σi are the Pauli spin matrices. The perturbation 
functions Gi(t) are real to preserve hermiticity of the ham-
iltonian. The x component of the sum represents a pertur-
bation in the amplitude of the exciting field. The y com-
ponent represents a perturbation in the phase of the 
exciting field. The z component represents a perturbation 
in either the frequency of the exciting field or the energy 
level separation. note that here and in the following, 
quantities without subscript refer to the unperturbed 
hamiltonian and wave function, while quantities with sub-
script 1 refer to first-order corrections due to a perturba-
tion.

In the presence of the perturbation hamiltonian, the 
wave function is altered by ψ1, which satisfies

 i
t



d
d

y y y1 1 1= +   

to first order in the perturbation. a formal solution to this 
equation at time τ is

 y t t y
t
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The perturbation correction ψ1 is thus expressed as an 
integral over the time dependence of the perturbation 
weighted by functions known from the solution of the un-
perturbed schrödinger equation (3).
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C. Definition of Weight Functions

The first-order perturbation correction to the transi-
tion probability is

 P1 12t b t b t( ) = ( ) ( )[ ]Re * , (5)

where the transition amplitude perturbation β1 can be 
extracted from the wave function in (4). To first order, 
the correction to the transition probability is thus also an 
integral over the perturbation time dependence. We write 
it as

 P W t G t ti ii1
0

t t
t

( ) = ( ) ( )åò , .d  (6)

We have substituted the expression for  1 in terms of the 
Gi(t) into (4). We then extracted β1(τ) from ψ1(τ), in-
serted it into (5), and combined β*(τ) with all the other 
unperturbed quantities from the evolution matrices into 
the coefficients Wi(τ,t) of the Gi(t). We call the resulting 
real functions Wi(τ,t) weight functions, because they 
weight the averaging of the perturbation time-dependence 
implied by the integral. Each weight function depends on 
intermediate and final times, as well as the unperturbed 
excitation amplitude and detuning.

The weight functions can be expressed in terms of the 
unperturbed transition amplitudes α and β. When we 
carry out the matrix multiplications in (4) we find the 
definitions
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and

 W t t tz t a t b t a b, Im * * .( ) = - ( ) ( ) ( ) ( )[ ]4  (9)

In deriving these definitions, several terms in β1 have been 
dropped, because they do not contribute to the real part 
in (5). In accordance with the nature of the perturbation, 
we refer to Wx as the amplitude weight function, Wy as 
the phase weight function, and Wz as the detuning weight 
function. other equivalent ways of writing these defini-
tions may be found, for example, in terms of α and β with 
argument τ-t.

D. Properties of Weight Functions

1) Detuning Symmetry: If we insert the symmetries of 
the real and imaginary parts of α and β into the defini-
tions of the weight functions, we find that Wx is an even 
function of the detuning Δ, while Wy and Wz are odd 
functions. Thus, an amplitude perturbation adds a sym-
metric contribution to the line shape but does not shift 
the resonance. Phase and detuning perturbations contrib-
ute asymmetrically to the line shape and may shift the 
resonance.

2) Time Symmetry: From the time symmetry of the un-
perturbed schrödinger equation, one can show that if the 
unperturbed excitation amplitude b(t) is symmetric about 
the mid-excitation time τ/2, then Wx and Wz are symmet-
ric about τ/2, while Wy is antisymmetric. conversely, if 
b(t) is antisymmetric about time τ/2, then Wy and Wz are 
symmetric about τ/2, while Wx is antisymmetric. These 
symmetries can combine with the time symmetries of per-
turbations to null certain effects.

3) Values at End Points: From the initial conditions on 
α and β, we find the following initial values of the weight 
functions:
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similarly, the final values of the weight functions are
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E. Relations of Weight Functions

The 3 weight functions are closely related to each other. 
From (3) and the definitions (7)–(9), we deduce that the 
weight functions obey the following differential equations:
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These equations have the same form as the 3-component 
equations of motion [2], [7], but may have different initial 
conditions. From these equations plus (10) and (11), we 
can determine the initial and final slopes of the weight 
functions. For example,
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hence, the initial and final slopes of the detuning weight 
function depend on the initial and final values of the ex-
citation.

F. Weight Functions for Constant Excitation

When b and Δ are constant, an analytic solution of (3) 
can be found:

 a b( ) cos ( )sin ( ) ( )sin ,t pt i p pt t i b p pt= + = -D/ /and
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where p2 = b2 + Δ2. When inserted into (7)–(9), the 
weight functions can be expressed as
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These expressions obey the symmetries just described. 
They also obey the differential equations (12).

In Figs. 1(a)–(c), we plot the 3 weight functions for 
constant excitation as a function of t with bτ = 0.50π (op-
timum power) and Δτ = 0.40π (half width of the rabi 
line shape). also plotted are the same weight functions 
for half-sine-wave excitation b(t) = (π/2)b0 sin(πt/τ) for 
b0τ = 0.50π (optimum power) and Δτ = 0.544π (half 
width of the rabi line shape). The latter functions were 
found by inserting numerical solutions of (3) into (7)–(9). 
note the change in the initial and final slopes of the de-
tuning weight function with the change in the form of 
excitation.

G. Conversion Between Phase and Detuning Perturbations

Phase and detuning perturbations are closely related. 
consider a small, time-dependent phase perturbation θ1 
added to the constant phase θ. The hamiltonian then has 
the off-diagonal elements b exp(iθ1) ≈ b + ibθ1 and its 
complex conjugate. The imaginary part is the phase per-
turbation. It causes a line-shape perturbation given by 
(6):

 P W t b t t ty1 1
0

= ( ) ( ) ( )ò t q
t

, .d  

From the last relation of (12), we can replace bWy by half 
the derivative of Wz. an integration by parts then leads 
to

 P W t t tz1 1
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1
2

= - ( )( )ò t q
t

, ,d d d/  (13)

because Wz vanishes at both endpoints by (10) and (11). 
Thus, we have re-expressed the phase perturbation as a 
detuning perturbation. If we had included θ1 with θ in 
our phase factoring, half its time derivative would have 
appeared along with Δ in our original hamiltonian. We 
could have interpreted this appearance of dθ1/dt as a vari-
ation of the detuning. Thus, we have 2 equivalent ways 
of treating phase perturbations. This equivalence has al-
ready been noted by lemonde et al. [7].
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Fig. 1. Weight functions for rabi excitation evaluated at optimum power 
and half-width detuning. The solid line is for constant excitation am-
plitude. The dashed line is for half-sine-wave excitation. (a) amplitude 
weight function, (b) phase weight function, and (c) detuning weight func-
tion.
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III. Perturbations in rabi Excitation

Following are examples of the use of each weight func-
tion for analyzing some perturbations occurring in single 
zone or rabi excitation.

A. Variation of Excitation Amplitude

1) Asymmetry: The excitation amplitude b(t) may be 
nearly, but not perfectly, symmetric about τ/2. asym-
metry could exist if, for example, the losses are unequal 
at the entrance and exit planes of the microwave cavity 
enclosing the exciting field. also, if the atoms are inter-
rogated during vertical flight, as in fountains, the gravi-
tational slowing of the atoms will cause them to perceive 
an asymmetry in time even when the spatial dependence 
is symmetric. For symmetric excitation, the amplitude 
weight function is symmetric. The integral (6) of a small 
asymmetric part of b(t) then vanishes. Thus, there is no 
first-order change in the line shape.

2) Line Shapes for Half-Sine-Wave Excitation Versus 
Constant Excitation: Many primary frequency standards 
use a cavity mode such that the atoms see a half-sine-wave 
excitation amplitude. But no analytic solution of (3) is 
available for this case. Fig. 2 shows the difference in b(t) 
between half-sine-wave and constant excitation, scaled so 
they each enclose the same area. although the difference 
is not very small, we have treated it as a perturbation to 
obtain an analytic correction to the analytic line-shape 
formula for constant excitation. The relevant integral is

 P W t b t b tx1 0 0
0

2= ( ) ( ) ( ) -[ ]ò t p p t
t

, sin ./ / d  

When the amplitude weight function for constant excita-
tion is inserted, the integral can be evaluated as
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This correction is surprisingly good, illustrating the power 
of the method.

The corrected line shape is plotted in Fig. 3 together 
with the uncorrected line shape for constant excitation 
and the actual line shape for half-sine-wave excitation 
found by numerical integration of (3). optimum power 
(bτ = π/2) was chosen. The width of the approximate line 
shape is a little less than the width of the real line shape 
but much closer than the uncorrected line shape. however, 
where the real line shape goes to zero, the approximation 
becomes negative, an unphysical result.

a better approximation may be obtained by choosing τ′ 
shorter than τ for the uncorrected line shape. The choice 
τ′ = 0.74τ matches the line widths of the uncorrected and 
actual line shapes. The correction then greatly improves 
the fit near the first null and matches the height of the 
first side lobe. For the range of detunings shown in Fig. 
3, the difference between the corrected and actual line 
shapes is then no more than 1.5% of the peak height. 
For larger detunings, the weak-excitation approximation 
is better [3], [12].

B. Frequency Biases From Asymmetric Line Shapes

Phase and detuning perturbations introduce asym-
metric corrections to the line shape, because the corre-
sponding weight functions are antisymmetric in detuning. 
To find the resonance position in such cases, we consider 
slow square-wave modulation of the exciting frequency 
with amplitude ωm. The resonance position is defined by 
that detuning δω that makes the signals at the detunings 
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Fig. 2. comparison of constant (solid line) and half-sine-wave (dashed 
line) excitation amplitudes enclosing the same area. The difference be-
tween these (shaded areas) was treated as a perturbation.

Fig. 3. comparison of rabi line shapes for different excitation amplitude 
time dependences. The solid line is for constant excitation. The dotted 
line is for constant excitation with a first-order correction to simulate 
half-sine-wave excitation. The dashed line is exact for half-sine-wave ex-
citation.
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ωm + δω and −ωm + δω equal. That is, we require the 
perturbed transition probabilities to match
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here we have emphasized the dependence of P on detun-
ing and left its time dependence implicit. If we approxi-
mate P with a Taylor series

 P P Pm m mw dw w dw w w+( ) » ( ) + ¶ ( ) ¶/ , (14)

the resonance position becomes
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to first order in P1. The denominator is the slope of the 
unperturbed line shape at a detuning corresponding to the 
modulation amplitude.

We could also approximate P in (14) by considering a 
perturbation that adds a constant shift δω to ω. From the 
form of the unperturbed hamiltonian and the definition of 
Δ, the perturbation would be Gz = −(1/2)δω. Then from 
(6) we would have the correction to P:

 P W t tz1
0

1
2

= - ( )òdw t
t

, d .  (16)

comparing (14) and (16), we see that, to first order in 
δω,

 ¶ ( ) ¶ = - ( )òP W t tm zw w t
t

/
1
2 0

, d ,  (17)

where Wz is also evaluated at the detuning ωm. This rela-
tion can be used to provide an alternative expression for 
the denominator of the shift (15). For constant excitation, 
(17) can be verified analytically.

C. Inhomogeneity

a ubiquitous perturbation of frequency standards is the 
magnetic field seen by the atoms. This field often var-
ies a little across the excitation region. suppose the field 
amplitude can be described by a constant field H0 plus a 
small addition H1 f(t), where H1 denotes the change in 
amplitude and f(t) contains all the time dependence and 
is of order unity. Then the bias due to the magnetic field 
can be described as a constant plus a small part linear 
in f, whether the bias is linear or quadratic in the total 
magnetic field.

We write the variable part of the bias as εω0f(t), where 
ε is very small [13]. The associated perturbation of the line 
shape is then given by

 P W t f t tz1 0
0

1
2

= ( ) ( )ò t ew
t

, .d  

The associated frequency shift, given by (15), can then be 
expressed with the aid of (17) as δω = εω0fx, where the 
“excitation mean” fx is given by the average of f(t) with a 
normalized detuning weight function WN defined by

 W t W t W t tN z zt t t
t

, , , .( ) = ( ) ( )ò/ d
0

 

For constant excitation, WN is given by [13]

 W t
p t p p

p p pN
m m m

m m m
( , )

[cos ( ) cos ]
sin cos

,t
t t

t t t
=

- -
-

2
 

where  pm
2 = b2 + ωm

2/4. Because Wz is symmetric about 
τ/2, the excitation mean vanishes for any f(t) antisym-
metric about τ/2.

In Table I [13], we list some sample symmetric func-
tions f(t), their mean (time average) fm, mean square fms, 
their excitation mean fx for constant excitation, and the 
value of fx for small a ≡ pmτ. For half-sine-wave excitation, 
the excitation mean is even smaller, because the weight 
function is smaller where f(t) is larger; compare Fig. 1(c).
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TaBlE I. Inhomogeneity Functions and Their Means. 

name f(t) fm fms fx fx(small a)

linear V |1 − 2t/τ| 1/2 1/3 1
1 2 12

+
+ -( )cosa a

aD
/

3/8

quadratic (1 − 2t/τ)2 1/3 1/5 (2sin a + D)/3D − 2/a2 1/5
cosine cos(2πt/τ) 0 1/2 −a2sin a/(π2 − a2)D −3/π2

End steps 1, 0 ≤ t ≤ τ1 
0, τ1 ≤ t ≤ τ − τ1 
1, τ − τ1≤ t ≤ τ

r r [sin sin( ) cos ]a a ar ar a
D

- - - r2(3−r)/2

In this table, r = 2τ1/τ is the fraction of the excitation period occupied by the end steps and 
D = sin a − acos a. When r is small, fx for end steps has no term constant or linear in r, but is approximately 
a2r2(sin a − arcos a/3)/2D. This r dependence is a direct consequence of the weight function decreasing 
linearly to zero at the ends. The quantity fx is generally less than one-half except when the line shape slope 
(proportional to D) is small.
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D. Sideband Pulling

In the rotating-wave approximation, a single sideband 
offset Ω from the excitation frequency ω with half rabi 
amplitude b1 and initial phase φ can be represented by

 b e i t
1

W +( )j . 

The real part corresponds to amplitude modulation and 
does not cause a shift. The imaginary part corresponds 
to phase or frequency modulation and does cause a shift. 
From (6), the perturbation transition probability for the 
latter is
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If we add and subtract (1/2)Ωτ to the argument of the 
sine, we can rewrite it as follows:
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For excitations symmetric about t = (1/2)τ, Wy is anti-
symmetric. The second term is symmetric; hence, its in-
tegral with Wy vanishes. The factor cos(Ωτ/2 + φ) in the 
first term is independent of t; hence, it may be removed 
from the integral, leaving

 P W t b t ty1 1
0

1
2

1
2

= ( ) -
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è
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ö
ø
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The cosine factor completely describes the dependence of 
P1 and the corresponding shift on the initial phase. as 
discussed in [11], any thorough average over φ eliminates 
this first-order shift. The sideband pulling shift computed 
by ramsey [14] (independent of initial phase) is second 
order in the sideband amplitude and cannot be obtained 
from our first-order weight functions.

For constant excitation, we can perform the integration 
analytically. The result is P1 = (2Δb/p2)sinpτX(τ), where
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When we insert this P1 into (15), we obtain the rabi side-
band pulling shift

 dw
t

t t t
=

( )
-( )

2 2p X
b p p psin cos

. 

This is the same shift given in (11) and (12) of [11]. By 
using the weight function, we have bypassed much of the 
derivation given in [11].

IV. Perturbations in ramsey Excitation

ramsey excitation consists of 2 short, usually identical, 
periods of excitation separated by a relatively long “drift” 
interval T free of excitation. To use weight functions with 
ramsey excitation, we must understand that the proba-
bility amplitudes defined by (7)–(9) now refer to the com-
plete cycle of excitation. We must therefore express them 
in 3 consecutive time intervals spanning both excitations. 
For simplicity, we shall assume that we can ignore detun-
ing during excitation. We introduce the abbreviation 
¢ = ¢( ) ¢òa b t t

t
d

0
 for the integrated excitation. We write a 

for a′ evaluated at t = τ. For constant excitation, a′ = bt 
and a = bτ. For half-sine-wave excitation, a′ = b0τsin2(πt/2τ) 
and a = b0τ. Table II shows α and β in the 3 time intervals 
using these abbreviations. We then used (7)–(9) to con-
struct the 3 ramsey weight functions in the 3 time inter-
vals, as also shown in Table II. The symmetries of these 
weight functions are the same as given earlier. But note 
that the time symmetry is now about the midpoint of the 
drift interval (time of apogee for fountains).

Figs. 4(a)–(c) show the shape of the 3 weight functions 
as a function of time for T = 4τ and 2a = 0.79π/2 (2 dB 
below optimum excitation). Because of the factor cos2a, 
all of Wx and the central part of Wy vanish when the ex-
citation is exactly optimum. The difference between con-
stant and half-sine-wave excitation is only in the excita-
tion regions and primarily affects the slopes of the weight 
functions at either end of the excitation regions.

From the final value of β(t) we find the unperturbed 
transition probability,

 P a T= +( )1
2

2 1 22sin cos ,D  

and its derivative with respect to detuning,

 
¶ ¶ = -P T a T/ w

1
2

2 22sin sin .D
 

(18)
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TaBlE II. Transition amplitudes and Weight Functions for ramsey Excitation. 

region 0 ≤ t ≤ τ τ ≤ t ≤ τ + T τ + T ≤ t ≤ τ + T + τ

α(t) cosa′ cos expa i tD -( )[ ]t cos (a + a′) cos ΔT 
+ icos (a − a′) sin ΔT

β(t) −isina′ - - -( )[ ]i a i tsin exp D t −sin (a − a′) sin ΔT 
− isin (a + a′) cos ΔT

Wx(τ,t) sin4acos2ΔT sin4acosΔTcosΔ(2t − 2τ − T) sin 4a cos2ΔT
Wy(τ,t) sin2acos2a′sin2ΔT −sin4acosΔTsinΔ(2t − 2τ − T) −sin2acos(2a − 2a′)sin2ΔT
Wz(τ,t) sin2asin2a′sin2ΔT sin22asin2ΔT sin2acos(2a − 2a′)sin2ΔT
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For slow frequency modulation, we can use (15) and (18) 
evaluated at the detuning 2Δ = ωm to convert a perturba-
tion transition probability into a shift of a ramsey fringe. 
We have assumed only that the shift is small compared 
with the fringe spacing.

A. Asymmetry of Excitation in Fountains

In cesium fountains, the atoms are slowing as they go 
up through the first excitation region and accelerating as 
they come back down. Thus, the time intervals spent by 
the atoms in the first and second halves of the excitation 
cavity are not equal. If the excitation amplitude is not 
constant in space, the atoms see an excitation amplitude 
asymmetric in time during each pass through the cav-
ity, even though the overall ramsey excitation may be 
symmetric in time. From Table II, we see that the ampli-
tude weight function is constant in the excitation regions. 
hence, the first-order perturbation caused by any asym-
metry of the excitation amplitude averages to zero. There 
is no effect on the ramsey line shape. This remains true 
even if the 2 excitations have unequal amplitudes, pro-
vided their average amplitude is used. Unequal excitation 
amplitudes may occur when an atom’s average trajectory 
does not pass at the same distance from the cavity axis on 
both transversals.

B. Inhomogeneity

consider first that the atomic resonance ω0 is chang-
ing, as it might in an inhomogeneous magnetic field. For 
changes occurring during the drift time, Table II shows 
that Wz is constant. hence, the unweighted time average 
of ω0 will appear; compare [3, eq. (49)]. however, changes 
in ω0 during excitation are weighted toward the end of the 
first excitation and the beginning of the second excitation 
(toward the top of the excitation cavity in fountains). In-
homogeneity at either end of the total ramsey excitation 
is underweighted.

as an example of a change in resonance, consider that 
light scattered from atom preparation is not cut off be-
fore some atoms enter the excitation region. That is, the 
resonance frequency ω0 is perturbed by a shift δωS that is 
present for only a short period tS at the beginning of the 
first excitation. The perturbation can then be described 
by Gz = 1/2δωS for 0 ≤ t ≤ tS and 0 for larger t values. 
From (6) and Table II, the associated perturbation prob-
ability becomes

 P a T a tm S

t S

1
0

1
2

2 2= ¢òsin sin sin .w dwd  

For tS much smaller than τ, 2a′ will be small enough that 
sin 2a′ can be replaced by 2a′. The ramsey shift associ-
ated with this perturbation then becomes

 
dw
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S t
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Fig. 4. Weight functions for half-sine-wave ramsey excitation numeri-
cally evaluated at 2 dB below optimum power and small (one half fringe 
width) detuning. The artificial ratio T/τ = 4 was chosen to bring out the 
time dependence during excitation. (a) amplitude weight function, (b) 
phase weight function, and (c) detuning weight function.
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For constant excitation, 2a′ = 2bt, and the integral be-
comes bts2. For half-sine-wave excitation, 2a′ ≈ (1/2)
b0t2/τ, and the integral becomes (π2/6)b0ts3/τ. The shift 
for half-sine-wave excitation is smaller than the shift for 
constant excitation by the factor tS/τ, due to the less 
abrupt turn-on of the excitation. More gradual turn-offs 
than the sharp cutoff assumed above reduce the coefficient 
in the evaluated integrals. alternatively, we can say that 
gradual turn-offs allow larger values of ts.

The next 4 perturbations are all treated using the same 
phase weight function Wy. however, the range of integra-
tion varies with the time-dependence of each perturba-
tion.

C. End-to-End Phase Shift

assume that the phase of the excitation in the second 
excitation region differs from that in the first by δθ, but 
that the phases are otherwise constant. We can describe 
this by considering δθ to be a phase perturbation in only 
the second excitation region. For a small phase change, 
the phase perturbation is Gy = b(t)δθ. The perturbation 
probability becomes

 P W t b t ty
T

T

1 = ( ) ( )
+

+ +

ò t dq
t

t t
, ,d  

where the integration is carried only over the second ex-
citation region. From Table II, the only part of Wy in the 
second region that depends on t is a′. Because b is the 
derivative of a′, the integral can be performed, yielding

 P a T1
21

2
2 2= - dq sin sin .D  

From (15) and (18), we then find the ramsey resonance 
shift −δθ/T, independent of excitation or modulation am-
plitude. This reproduction of a familiar result illustrates 
the wide applicability of the weight function analysis.

D. Excitation Leakage Into the Drift Region

Biases due to leakage of excitation fields out of the 
nominal excitation region have been discussed in [15]. 
From the detuning symmetry of (3) and the weight func-
tions, we know that only that part of any excitation field 
leakage out of phase with the primary excitation causes a 
shift. For leakage during the drift time, we also see that 
the leakage amplitude must be partly antisymmetric in 
time to cause a shift, because the phase weight function is 
antisymmetric. as an artificial example having a nonzero 
shift, consider a constant weak excitation of amplitude bL 
for a period tL less than T beginning immediately after the 
first excitation. From the phase weight function we find 
the perturbation probability is
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This result agrees with (14) and (15) in [15]. For tL equal 
to half of T, it reduces to half the error signal in (16) of 
[15].

For leakage before or after ramsey excitation, the defi-
nition of our weight functions must be extended to include 
the leakage region.

E. Distributed Cavity Phase

Biases due to distributed cavity phase variations in 
cesium fountains have been discussed in [16]. We illus-
trate here how the same results can be obtained by using 
the phase weight function shown in Table II. let b1′(t) 
and b2′(t) represent the cavity field amplitudes in phase 
quadrature with the primary excitation field during the 
first and second excitations, respectively. The perturba-
tion transition probability is then
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Inserting the phase weight function from Table II we can 
write this
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where the time argument in the second term has been 
readjusted to the same range as for the first term. If we 
substitute the definitions of ε and η from [16, eq. (9)] 
into [16, eq. (14)] and apply trigonometric identities, 
we can show that [16, eq. (14)] is equivalent to (19). 
For the example given in [16], b1 is zero and b2 is pro-
portional to (t/τ − 1/2)2. For half-sine-wave excitation 
2a − 2a′ = bτ[1 + cos(πt/τ)]. Expanding the cosine of 
this argument then leads to the same results given in (17) 
of [16].

F. Sideband Pulling

as in the rabi case, we can find the perturbation effect 
of a sideband by integrating the associated phase pertur-
bation Gy = b1sin(Ωt + φ) with the ramsey phase weight 
function. The integration extends only over the 2 excita-
tion regions. But note that in the second region, φ will be 
replaced by φ + Ωτ + ΩT. This change accounts for the 
sideband’s phase advance at the later time.

For symmetric excitation about the mid-time t =  
T/2 + τ, Wy is antisymmetric. We can then factor out the 
initial phase dependence just as we did in the rabi case. 
We find
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The symmetry of the integrand assures us that the inte-
gration result is the same for both excitation regions. For 
constant excitation, the integral can be evaluated
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The shift due to the sideband perturbation is then
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in agreement with (15) in [11]. however, the derivation 
here is much shorter.

our first-order weight functions do not predict the 
much smaller second-order ramsey sideband pulling shift, 
which is independent of the initial phase [17].

V. summary

We have expressed the first-order effect of a perturba-
tion on the 2-level transition line shape as a time integral 
over the perturbation with a weight function indepen-
dent of the perturbation. We have introduced 3 different 
weight functions for the 3 different types of perturbation. 
a weight function needs to be calculated only once to be 
used for any perturbation of its type. We have thereby 
unified the derivation of shifts due to several disparate 
perturbations. We have presented several examples of the 
use of these weight functions to predict line-shape changes 
and frequency biases.

appendix   
relation of the detuning Weight Function to 

the “sensitivity Function”

In developing the theory of the “dick effect” in atomic 
frequency standards, the so-called sensitivity function was 
introduced [5], [7], [18]. It has been defined as the re-
sponse of the atomic system to a small step in the phase 
of the excitation. We carry out this definition here to show 
the equivalence of the sensitivity function to the detuning 
weight function Wz.

We consider a small phase step δθ occurring at time t 
and continuing for the remainder of the excitation. The 
corresponding phase perturbation is bδθ times a unit 
step function starting at time t. The corresponding small 
change in transition probability is this perturbation aver-
aged from time t onward with the phase weight function:

 d t dq
t

P t W t b t ty
t

( ) = ¢( ) ¢( ) ¢ò , .d  

From the last of the differential equations (12), we can 
rewrite this as

 d dq
tt

P t
W t

t
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t
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¢ò
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2

,
.d  

Because Wz vanishes at the upper limit, we are left with

 d t dqP t W tz( ) = - ( )1
2

, . 

From [18], the sensitivity function g(t) is defined as twice 
the change in the transition probability due to a phase 
step in the limit of a small phase step. In our notation, 
this becomes

 g t P t W tz( ) º ( ) = - ( )2d dq t/ , . 

This result could also have been obtained directly from 
(13) by recognizing that the derivative of a step function 
is the dirac delta function.
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