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We show that a multistep quantum walk can be realized for a single trapped ion with an interpolation

between a quantum and random walk achieved by randomizing the generalized Hadamard coin flip phase.

The signature of the quantum walk is manifested not only in the ion’s position but also in its phonon

number, which makes an ion-trap implementation of the quantum walk feasible.
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Introduction.—Quantum information processing prom-
ises revolutionary advances in communication and com-
puting, with secure long-distance quantum key distribution
[1] and quantum computing [2] as two important long-term
goals. In the medium term, progress in quantum informa-
tion implementation has been most pronounced for quan-
tum communication protocols [3], which consume
entanglement to enable quantum-enhanced communica-
tion. An experimental quantum walk (QW) [4–6] would
be a major advance forward towards the ultimate goals of
quantum information processing: benchmarking coupling
between the qubit and ‘‘bus’’ mode, test models of the
environment and controlling decoherence, and simulating
exponentially enhanced quantum algorithms over classical
counterparts [7]. Our aim is to realize a multistep coined
QW, which would be implemented in an ion trap [8].

The random walk (RW) is ubiquitous in physics, chem-
istry, mathematics, and computer science: this process
underpins Brownian motion and diffusion process, is
used in satisfiability proofs (SAT), and is intimately con-
nected with the Wiener measure [7]. Quantization of the
RW [4] has led to new quantum algorithms [9] and fasci-
nating physics such as decoherence-induced diffusion re-
duction [6]. Our goal is to see the QW realized in the
laboratory. For this purpose, we consider the simplest
RW: a single walker whose 2 degrees of freedom are
positioned on a regular one-dimensional lattice and on a
single two-sided coin that generates random bits. Each coin
flip generates a result 0 or 1, causing the walker to step left
or right on the line, respectively. In the quantum version of
this walk on a line, each position is a state in Hilbert space,
and the coin is a qubit whose flip is a unitary evolution:
superpositions of position and entanglement between the
coin state and the walker’s position are now possible. In the
QW, the walker commences at a point on the line and
alternates between unitary coin flipping and making left
or right steps that are entangled with the coin state.

This single-walker QW has not yet been realized experi-
mentally. Most proposals focus on implementing the QW
in phase space (walking around a circle in an abstract
position-momentum space) [6], and even this easier case

(due to wandering in position space being strongly
bounded) has not been realized. Here we show that the
QW on a line is indeed achievable in an ion trap.
Travaglione and Milburn (TM) first proposed a QW

implementation: the walker’s degree of freedom would
be the position state jxi of a single trapped ion [5], and
the coin state corresponds to the up state j"i and down state
j#i of the ion’s electronic degree of freedom. Although a
seminal proposal, it is unfortunately not viable due mainly
to four drawbacks: (i) impracticality of measuring x,
(ii) unavoidability of higher-order Lamb-Dicke (LD) con-
tributions for large numbers of steps [10], (iii) the need to
control decoherence to enable interpolation between the
RW and the QW so that complementarity, hence quantum-
ness, can be verified [11], and most importantly, (iv) the
impossibility of reading the coin state (projection onto j#i
or j"i), because this procedure requires scattering many
photons on the ion, which inevitably destroys its motional
state. One suggestion for addressing the impracticality of x
measurement by using a quantum network and multiple
ions [12] instead is interesting but also impractical, and
suggestions of quantum walks on circles in phase space are
also of value but entirely avoid the core issue of realizing a
QW on a line [5,6].
TM’s concept of an ion-trap implementation of the QW

is laudable, but clearly major advances are required to
bring their concept of experimentally realizing a QW on
a line to feasibility. Here we overcome all four drawbacks:
(i) we replace x measurement by measuring phonon num-
ber n via Rabi flopping instead and show that the phonon
counts exhibit an unambiguous QW signature; (ii) we in-
clude higher-order LD contributions and show how they
lead to breakdown of the QWon the line; (iii) we introduce
a random-phase generalization to the coin flip and show
how averaging enables interpolation between the QW and
the RW [11]; (iv) we devise a method for inferring the
phonon number distribution from electron shelving by
looking at the carrier transition instead of the first blue
sideband [13]. In making the advance from concept to
design of an ion-trap implementation for a QW, we intro-
duce some new and valuable methods that have broad
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beneficial implications for ion-trap-based quantum infor-
mation processing in general.

Ideal QW on a line.—Before discussing the full feasible
implementation of the QWon a line in an ion trap, here we
study the ideal QW on a line and show that the phonon
number distribution Pn carries the signature of the QW as
well as the inaccessible position distribution PðxÞ.

Sufficient criteria for experimentally demonstrating the
QWare (i) a single walker whose position x is restricted to
a one-dimensional lattice k 2 Z with step size � between
lattice points (the position is incremented k � kþ 1 if the
coin state is j"i and decremented k � k� 1 for j#i),
(ii) capability of unitarily flipping the coin such that j"i,
j#i evolve to equal superpositions thereof, (iii) quadratic
enhancement of spreading for the QW compared to the
RW, and (iv) controllable decoherence to interpolate be-
tween the QW and the RW.

Mathematically, the unitary coin toss operator C is given

by
ffiffiffi
2

p
Cð�Þ ¼ 1� i�̂x cos�þ i�̂y sin� for 1 the identity

and �̂x (flip), �̂y (phase flip), and �̂z ¼ diagð1;�1Þ (phase
gate) designating Pauli operators. The phase � is arbitrary
but must be constant for a unitarily evolving QW. The
walker’s step to the left or right, entangled by the coin
state, is enforced by the unitary operator T � expði�p̂ �
�̂zÞ for p̂, the position translation generator (i.e., a mo-
mentum operator), and �, the step size in a line. Each step
is effected byQð�Þ � T½1 � Cð�Þ�, and the evolution toN
steps is QNðf�‘gÞ ¼

Q
N
‘¼1 T½1 � Cð�‘Þ�. For the ideal

QW, �‘ is constant over all steps and typically assigned
a value of �=2. For �k � ðN � 2kÞ�, an initial walkerþ
coin state jc 0i ¼ j0iðj #i þ j "iÞ= ffiffiffi

2
p
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The reduced walker state is �N � Trðjc Nihc NjÞ, which
has position distribution PðxÞ ¼ hxj�Njxi and phonon
number distribution Pn ¼ hnj�Njni. Position variance
�2ðxÞ, momentum variance �2ðpÞ, and mean phonon num-
ber �n are shown in Fig. 1(a): evidently �2ðxÞ / N2 and
�2ðpÞ � constant up to N ¼ 17 steps; for the RW,

�2ðxÞ / N, and this quadratic enhancement of position
spreading is a signature of the QW.
Figure 1(a) also shows that the mean phonon number

�n / N2, which we identify as an alternative QW signature:
our choice of initial state yields �n ¼ ½�2ðxÞ þ �2ðpÞ�=2 /
N2, whereas for the RW, �n / N. Therefore, a quadratic
enhancement in spreading of �n is just as good a signature of
the QW as is enhanced spreading of �2ðxÞ! Figure 1(b)
reveals the invariance of the state under x � �x or p �
�p mappings by depicting the Wigner function [14] for
the state after ten steps. Position x and momentum p
distributions are marginal distributions of Wðx; pÞ.
Controlling decoherence.—Although decoherence oc-

curs naturally in the laboratory, for example, due to mag-
netic field fluctuations, which generate random z rotations,
this undesirable decoherence is largely eliminated by spin
echoes (built into our technique). To introduce controllable
decoherence, we uniformly randomly choose each �‘ 2
ð��=q;�=qÞ with q � 1 a controllable parameter that
yields the RW for q ¼ 1 and the QW for q ! 1. The
resultant walker state is �ðf�‘gÞ. Decoherence is achieved
by running the experiment many times with different ran-
dom sequences ðf�‘gÞ each time, then averaging the den-
sity matrix at the Nth step of each run to obtain ��N . For
��ðxÞ the position spread and ��n the mean phonon number
for ��N , we conjecture the power-law rules ln ��ðxÞ / & lnN
and ln��n / � lnN, with (& � 1=2, � � 1) for q ¼ 1 and
(& ! 1, � ! 2) for q ! 1. Thus, q controls decoherence
and interpolates between the two extremes of QWand RW.
Ion-trap implementation.—A single trapped ion (e.g.,

9Beþ) is confined in a radio frequency (rf) ion trap.
Electronic (coin) and motional (walker) degrees of free-
dom are coupled by ‘‘carrier’’ and ‘‘displacement’’ laser
beams [15]. The carrier-beam difference frequency is set to
the frequency difference of the coin states fj#i; j"ig. The
difference frequency � of the displacement Raman beams
is close to the ion’s motional mode frequency !z.
The initial state is prepared by laser cooling the ion to

the motional and electronic ground state, j0ij#i, then ap-
plying a�=2 pulse, which creates an equal superposition of
j#i and j"i. By applying displacement Raman beams, the

interaction Hamiltonian is ĤI ¼ ½e�ið�t�’ÞDði�ei!ztÞ þ
H:c:�ð�#j#ih#j þ�"j"ih"jÞ for Dð�Þ � expð�ây � ��âÞ
the unitary displacement operator and the carrier Rabi
frequencies �" ¼ ��#=2. This interaction approximates

the desired evolution.

We expand ĤI perturbatively in powers of the LD pa-
rameter �; this expansion is valid provided that �jhâij and
jhâ2ij � jhâij2 ¼ �2ðxÞ þ �2ðpÞ þ 2Covðx; pÞ are small,
so �2ðxÞ, �2ðpÞ, and Covðx; pÞ are each small. Thus,

ĤI �
�
e�ið�t�’Þ X3

‘¼0

½i�ðâyei!zt þ âe�i!ztÞ�‘
‘!

þ H:c:þOð�4Þ
�
ð�#j#ih#j þ�"j"ih"jÞ: (1)

FIG. 1 (color online). (a) Mean phonon number and variances
of position and momentum with � ¼ 0:565 up to N ¼ 17 steps.
(b) Wigner function Wðx; pÞ for the walker state at N ¼ 10.

PRL 103, 183602 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

30 OCTOBER 2009

183602-2



Evolution U ¼ exp½�i
R
t
0 ĤIðt0Þdt0� over time t is approximately

Dð2�"�tÞBð2�"�3tÞUoffð2�"Þj#ih#j þDð��"�tÞBð��"�3tÞUoffð��"Þj"ih"j þOð�4Þ; (2)

with each product of unitary operators in the sum comprising resonant unitary evolutions, whose exponents are linear in t,
and nonresonant evolution, with rapid terms such as expði!ztÞ.

Evolution (2) is dominated by resonant terms of the Taylor expansion of ĤI such as Bð	Þ ¼
e	=6½ðâyÞ2âþâyââyþâðâyÞ2��H:c: ¼ e	=2â

yðn̂þ1Þ�H:c:, which arises from the third-order resonant terms, and

Uoffð2�"Þ � D

�
�i�"�

e2i!zt

!z

�
Sð2zÞB

�
i�"�3 e

2i!zt

!z

�
e2i�"ð��2½ðsin!ztÞ=!z�âyâþf�3½ðe4i!zt�2e2i!ztÞ=24!z�ây3þH:c:gÞ (3)

to Oð�4Þ. Here SðzÞ ¼ expf12 z�â2 � H:c:g, for z ¼
�"�2ðei!zt

!z
þ e3i!zt

3!z
Þ, is the squeezing operator, which arises

from second-order resonant terms of the Taylor expansion
for ĤI. Compared to resonant terms, the effect of Uoff on �n
and �ðxÞ is small. We also neglect commutators arising
from expanding expf�i

R
t
0 ĤIðt0Þdt0g except for D, B, and

S, which are non-negligible.
Without B andUoff , Eq. (2) is essentially a displacement

of 2�"�t or��"�t if the coin is # or " , respectively. These
asymmetric steps can be replaced by identical leftward and
rightward steps by alternating two � pulses on the spins
with two displacement steps U and Uy to yield a desirable
evolution from U: Utot ¼ ð1 � XÞUyð1 � XÞUð1 � CÞ,
with X ¼ j#ih"j þ j"ih#j. Ignoring higher-order on-resonant
term B and off-resonant term Uoff yields Utot �
Dð3�"�tÞj#ih#j þDð�3�"�tÞj"ih"j to obtain a symmetric

step size of �	 3�"�t.
In Fig. 2(a) we see that the position peaks remain closer

to the center compared to the ideal QW. The change in
displacement of peaks is small but non-negligible: the
evolution is dominated by displacementsDð3�"�tÞ � 1þ
3�"�tðây � âÞ, with first-order term �3�"�t

ffiffiffi
�n

p
for

jhâij ¼ ffiffiffi
�n

p ¼ 3N�"�t, whereas the third-order

Bð	3�"�3tÞ contribution scales as �"tð�
ffiffiffi
�n

p Þ3=2, which
is responsible for �n-dependent displacement. Thus, the LD
parameter needs to be kept small to ensure the largest

number of possible steps Nmax with � 

ffiffi
2
3

4

q
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmax�"t

p
.

Whereas higher-order resonant terms modify the QWas
shown in Fig. 2(a), nonresonant effects are much smaller
than resonant contributions. We test the contribution of
each unitary operator in Uoff by forcing some unitary
operators to be identities; then, we evaluate how much
each of those operators affects the dynamics. By this
procedure, we ascertain that nonresonant operator contri-

butions Dð�i�"� e2i!zt

!z
Þ and Bð	i�"�3 e2i!zt

!z
Þ are primarily

responsible for creating the pincerlike momentum side-
bands observed in the walker’s Wigner function shown in
Fig. 2(b). These momentum sidebands are directly respon-
sible for the small monotonic increase of momentum vari-
ance observed in Fig. 1(a), whereas momentum variance is
constant for the ideal QW on a line.
We establish numerically that squeezing S in the evolu-

tion is responsible for slight asymmetry of the position
distribution in Fig. 2(a). This asymmetry arises because the
position distribution peaks are squeeze conditioned on the
coin state. Off-resonant contributions also effect a small
rotation of the Wigner function in phase space due to a ei
n̂

contribution to Utot for small 
.
Counting phonons.—Previously [13], the motional num-

ber distribution has been determined by driving the ion on
the first blue sideband and Fourier transforming the atomic
population in the j#i as a function of drive duration P#ðtÞ ¼
1=2½1þP1

n¼0 Pn cosð�n;nþ1tÞ� for Pn the n-phonon
probability and �n;nþ1 the j#; ni $ j"; nþ 1i Rabi

frequency.
Outside of the LD regime,�n;nþ1 / �ffiffiffiffiffiffiffi

nþ1
p L1

nð�2Þ, where
the generalized Laguerre polynomial Lm

n ðxÞ is nonmono-
tonic in n, thereby leading to ambiguities in determining
Pn by this method. This problem can be redressed for low
� by Fourier transforming the carrier signal for the tran-
sition j#; ni $ j"; ni, where �n;n / L0

nð�2Þ [13]. These

frequencies �n;n are monotonic and distinguishable for

n < 60, which is a sufficient range to observe QWs versus
RWs. For � � 0:2, the carrier alone is sufficient to find Pn

for n < 25. However, once Pn is known for n < 25, this
information can serve to lift the ambiguities on the blue
sideband, which then in turn can be used to determine Pn

for 25 � n < 60.
Simulations.—We simulate the walkerþ coin dynamics

and calculate the mean phonon number ��n and posi-
tion spread ��ðxÞ in two cases: the ideal walk on a line in

FIG. 2 (color online). Quantum walker after N ¼ 10 steps.
(a) Position distribution for the ideal QW on a line (black)
with � ¼ 0:565ð�3�"�tÞ and for the ion-trap implementation

(gray) with parameters ð�;!z;�"Þ=2� ¼ ð4; 4; 0:3Þ MHz, � ¼
0:1, and pulse duration t ¼ 1 �s. (b) Contour plot of Wigner
function (min¼ �0:095, max¼ 0:052) for ion-trap implementa-
tion, with each contour corresponding to a step of 0.025.
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Figs. 3(a) and 3(b) and the walker as a trapped ion in
Figs. 3(c) and 3(d). Decoherence is controlled by q: RW
for q ! 1 and QW for q ! 1. Step size � ¼ 0:565 cor-
responds to 3�"�t.

The ln-ln plots reveal the small- and large-q power-law
relationship between either ��n or ��ðxÞ and step number N,
as predicted; furthermore, the slopes approach 1 for the
RWand 2 for the QW, thus confirming that both ��n and ��ðxÞ
suffice for observing the RW-QW transition through con-
trolling q. Slopes of ��n and ��ðxÞ for the ion-trap case are
slightly smaller than for the ideal QW, but this small
degradation is fully explained, namely, nonlinear and non-
resonant contributions to the evolution. The RW-QW tran-
sition is excellent despite these pragmatic considerations.

Conclusions.—In summary, we have developed a
scheme for realizing the first single-walker QW in the
laboratory, with the ion’s electronic degree of freedom
serving as the two-state coin and the motion as the walker’s
degree of freedom. Our approach is true to the spirit of
RWs over unbounded domains but required important in-
novations taking this idea well beyond TM’s first concept
for the QW in an ion trap [5].

Although the walk is over position, we show that the
experimentally accessible phonon number equally reveals
the RW-QW transition. We have shown that phonon num-
ber measurement is feasible for dozens of phonons by
driving the ions at the carrier frequency, then Fourier trans-
forming the ground state population to reveal the Rabi
frequencies �n;n, hence the phonon number distribution.

This approach is similar to the approach of blue-sideband
driving [13] but is more effective in revealing Pn over

wide-ranging phonon number n. In addition, we introduce
an experimentally controllable phase randomization pro-
cedure that is parametrized by q. The RW-QW transition is
a key part of any experiment that plans to demonstrate QW
behavior [11], yet the ion-trap dynamics are almost per-
fectly coherent. Finally, we have been quite careful in
studying LD corrections, which are clearly non-negligible.
In conclusion, our theory establishes a pathway to realizing
a many-step QW, and our techniques for counting phonons
should be useful for general quantum information
protocols.
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Note added.—Subsequent to submitting this manuscript,

a trapped-ion three-step coined quantum walk, which
shows beautifully the difference between the QW and
RW, has been reported [16]. However, their walk is limited
to three steps to avoid higher LD contributions, and they
measure motional wave packet overlap rather than posi-
tion. Our scheme overcomes such limitations.
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FIG. 3 (color online). ln-ln plot of ideal walker’s (a) mean
phonon number ��n and (b) position spread ��ðxÞ and ion-trap
realization of walker’s (c) mean phonon number and (d) position
spread as a function of step number N for decoherence q ¼ 1
(j), q ¼ 5 (w), and q ¼ 20 (m). Experimental parameters and
� for the ion-trap realization (c), (d) are as in Fig. 2. The slopes
of the dotted lines, which interpolate from the ideal QW to RW
(shown in each figure as solid lines with greatest and least slope,
respectively), are (a) 1.003, 1.660, and 1.938, (b) 0.510, 0.860,
0.990, (c) 1.061, 1.530, and 1.902, and (d) 0.496, 0.824, and
0.985.
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