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Propagation of the Low-Frequency Radio Signal*
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The following paper was solicited for the PROCEEDINGS by the Tutorial Subcommittee
of the IRE Wave Propagation Committee, and appears below as a part of a continuing |
program of presenting review and tutorial papers on subjects of general interest and im- |

portance.—The Editor

Summary—The propagation of a radio signal and the propagation
in the time domain is reviewed for linear amplitude systems. The
particular case of the propagation of a ground wave pulse is con-
sidered in detail. A stretching in the form or shape of the pulse is
noted as a result of the filtering action of the propagation medium.
Theoretical transfer characteristics for the media of propagation of
LF signals are introduced and methods of computation are con-
sidered. The particular case of a signal transmitted between two
points on the earth’s surface is considered from the viewpoint of
propagation in the time domain.

The field of LF waves propagated around the earth is, in large
measure, influenced by the reflection and transmission processes at
the ionosphere. Such processes are evaluated theoretically with the
aid of Maxwell’s equations together with an equation which describes
the electron motion in the presence of a static magnetic field, a
superposed electrodynamic field together with mechanical collisions
between electrons and ions, such as the Langevin equation of motion
of the electron. The use of full mathematical rigor in the application
of these equations is feasible and indeed desirable at LF. Thus, the
application of these equations to an electron-ion model plasma with
arbitrary orientation of the superposed magnetic induction results in
anisotropic transmission and reflection properties. The full rigor
can be applied to model plasmas in which the electron density and
collision frequency vary with altitude. This leads to the notion of
reflection and transmission at a continuously stratified plasma.

Four distinct magneto-ionic propagation components exist in the
ionosphere. These can be identified as ordinary and extraordinary,
upgoing and downgoing waves. All of these propagation components
are coupled to each other as the electron density changes with
penetration depth into the plasma.

The anisotropy as a result of the electron gyration (Lorentz
force) caused by the superposed static magnetic field of the earth
clearly introduces a nonreciprocity in the propagation of the field
between transmitter and receiver since the ionosphere reflection
coefficient would not in general be the same if transmitter and re-
ceiver were interchanged.

The nature of the signal as a result of ionospheric propagation
can be determined from the CW field with the aid of the Fourier
transform-integral techniques employed on the ground wave in
detail.

I. INTRODUCTION

HE ELECTRICAL properties of the ground, the
ionosphere, the space between the ground and the
ionosphere, and outer space determine the propa-
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gation of low-frequency (LF) electromagnetic waves in
the vicinity of the earth. The electrical properties of
these media (Fig. 1) are by convention described in
concise form by means of the angular wave number
k=Fky, ko, ks, - - -, written k=nw/c, which involves the
index of refraction n=m;, s, 72 - - -, the angular fre-
quency w = 2xf, and the speed of light c~3(108%) m/sec. A
time-harmonic electromagnetic wave, 7.e., a wave which
oscillates harmonically in time ¢ from ¢(=— o to
t=+4 © (a wave uninterrupted in time) can be de-
scribed in terms of the electric field E, volts/meter,

E = | E| exp (iot — ikD),

at a distance D when such a wave is propagated through
a particular medium % of infinite extent. The principal
task of the theoretician in the development of a de-
scription of the propagated field comprises the deter-
mination of the wave number or index of refraction
from the electrical properties of the medium, applying
Maxwell’s equations for the propagation of electromag-
netic fields E, H (H =electrodynamic magnetic field)
to the boundaries between and within the various media
and introducing the nature of the source of the radia-
tion.

In the past, attention has been focused upon the
propagation of these waves around the surface of the
earth taking account of the ground, the ionosphere and
the space between the ground and the ionosphere. Re-
cently, as might be expected, considerable interest has
developed in the propagation of LF waves in outer
space, and there seems to be little doubt that interest
in this type of propagation will increase with time.

The theoretical treatment of low frequencies ap-
parently differs quite markedly from the theoretical
treatment usually employed at high frequencies as to
the degree of mathematical rigor. Indeed, the mathe-
matical rigor required for a theory of propagation of
radio waves in the vicinity of the earth increases rapidly
as the frequency is decreased. This is not difhcult to
appreciate intuitively since the wavelength becomes
quite long and even approaches in magnitude certain
critical dimensions of the medium at LF/VLF, such as
the altitude of the lower boundary of the ionosphere
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Fig. 1—Propagation media in the vicinity of the earth, illustrating
propagation of waves about the earth.

h (Fig. 1). Thus, for example, at 100 kc, A =f/c~3000
m at 10 kc, A~30,000 m. Therefore, the conventional
geometric-optical treatment requires more rigorous
corrections since such a treatment in the classical sense
implies rays or waves of zero wavelength (f= «) or
practically speaking, waves the length of which is small
compared with the critical dimensions of the medium.
Indeed, as the frequency under consideration is de-
creased to the VLF region and the distance between
transmitter and receiver d (Fig. 1) is great, it seems to
be quite necessary to abandon ray theory altogether
and employ the full mathematical rigor to Maxwell's
equations together with the appropriate boundary
conditions and electrical description of the media. Such
an approach is, of course, more difficult and the geomet-
ric-optical methods can be derived from this viewpoint
[1], [2] as an approximate theory for higher frequencies
and/or shorter distances. Whereas the full rigor results
in a more satisfying mathematical treatment, the dif-
ficulties of maintaining full rigor increase with increas-
ing frequency. Low frequencies are, therefore, on the one
hand, in a part of the frequency domain where full rigor
is difficult to apply and, on the other hand, complete
confidence in the geometric-optical theory does not ob-
tain. LF viewed from this perspective is, therefore, a
difficult and challenging field of study for the particular
species of investigator interested in the explanation of
observed LF phenomena from the more penetrating
viewpoint of electromagnetic theory.

Interest in LF waves has persisted from the early
days of the radio science. More recently the require-
ment of precision radio navigation systems, such as the
Loran-C pulsed radio navigation system [3], [4] and
the requirements for high reliability in communications,
especially in the Arctic, has stimulated interest in the
favorable properties of these waves. Interest in these
waves is also indicated by the extensive measurements
of Belrose [S] and the theoretical work of Budden
[6] and Barron [7].

This paper reviews the theory of propagation of LF
waves with particular emphasis on the propagation of
a signal and propagation in the time domain.

II. ProrPAGATION OF LF SigNALs NEAR THE EARTH

Radio waves are employed to transmit information
from point to point (Fig. 1), s to o (source to observer)
around the earth. This is accomplished in a restricted
sense as a form of modulation of the fields of time-
continuous waves, E(w, d) volts/meter which depend
upon frequency, f=w/2x, cycles/second and distance d,
meters. This is accomplished in a most general sense by
means of an electromagnetic signal or transient electro-
magnetic field E(¢, d) volts/meter, which field depends
upon time ¢ and distance d, both reckoned from the
transmitter.

The Hertz dipole [8] has been employed with re-
markable success by theoreticians to represent a trans-
mitter of such a signal in the LF {requency domain.
Such a transmitter implies a point source (either ver-
tical electric or vertical magnetic polarization) of radia-
tion. But such a point source (except for fields very
close to the transmitter) is not difficult to approximate

‘experimentally at LF since the wavelengths are quite

long relative to the dimensions of practical antennas.
It is further implied that more complicated antennas
could be synthesized by application of the superposi-
tion principle. A corresponding dipole probe has been
utilized to define the field at a distance d from the
source s (Fig. 1). Such a signal [ E(¢, d) volts/meter ] if it
is to convey useful information, communication, or
provide a radio navigation fix or time difference or in-
deed synchronize a system of clocks at different geo-
graphic locations to a common frame of reference [3], is
varying in time (is modulated) and indeed is typically
discontinuous in time. Thus, the signal E(¢, d) is an
electromagnetic pulse in the quite general sense of the
Fourier integral, assuming linear amplitude media of
propagation

1 o0
B ) = o f exp (iwl) E(w, f,(@)f,(@)dw, (1)

m

or using the symbol §! for the inverse Fourier trans-
form or Fourier integral

E(" @) = (v, d) )
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where f(w, d) is the complex Fourier transform of a
signal. The source transform f,(w) is determined from
the time domain F,(¢) by the direct transformation

5@ = [ esp (—ienm0ar 3)

or
folw) = FF(0) “4)

where the source F,(t) represents a Hertz dipole current
moment, I,/ ampere-meters as a function of universal
source time ¢ and the CW field E(w, d) represents the
complex transfer characteristic of the propagation
medium. Since practical systems for the transfer of in-
formation affect the signal, it is necessary to introduce
the complex transfer characteristic of the system (prin-
cipally the receiver) f.w). The local time ¢ [9] is
reckoned locally from the beginning of the first pre-
cursor [10], [11] of the pulse, which can arrive at a
point o (Fig. 1) no sooner than a signal propagated over
the distance d at the speed of light ¢, but which will in
general arrive later. Thus,

'=1—md/c (5)

where ;~1 (for air, 7,~1.000338 typically at the sur-
face of the earth).

The completely degenerate case of a signal varying
harmonically in time from negative to positive infinity
((=— o to t=+4 ») is a very special situation which
can convey theoretically zero information between the
point s, the transmitter, and the receiver o (Fig. 1),

E(t'd) ~ E(w, d), (6)

but which is nonetheless frequently employed as an
approximation for “narrow bandwidth” communica-
tion systems with the inference that such systems are
satisfactorily described by the “zero bandwidth”
asymptote and where the notion of bandwidth implies a
finite spectrum of frequencies f(w, d). Indeed, most
theoretical calculations of the field E evaluate this
transform E(w, d) with the implication that such a
function, evaluated over all frequencies of concern in
the Fourier integral (1) from negative to positive in-
finity, together with a specification of the source as a
function of time [f,(f)] vield the nature of the propa-
gated signal.

III. PuLseEs AND PROPAGATION IN THE TiME DOMAIN

The theoretical notion of the signal as a pulse implies
important consequences as to the interpretation of
propagation in the time domain. This can be more
readily explained from the viewpoint of geometric-
optics. Indeed, the use of full mathematical wave theory
rigor would yield the same general conclusions as those
which are reached with the aid of geometric-optics.

A signal transmitted around the earth between two
points (Iig. 1) s to o, could arrive at the point o, ac-

PROCEEDINGS OF THE IRE

April

cording to the principle of relativity, no sooner than a
signal transmitted at the speed of light over some ray
length D. This point was established many years ago
(1914) by Sommerfeld [10] and Brillouin [11] in a pair
of memorable papers which established the consistency
of electromagnetic theory with relativity. Whereas the
CW concepts of phase velocity and group velocity in
the presence of anomolous dispersion gave velocities
which varied between positive and negative infinity,
the full transient solution demonstrated that a light
wave signal velocity properly defined was always less
than the speed of light and thus consistent with the
principle of relativity. Therefore, the shortest “ray”
(Fig. 1) has a length D=d, the distance along the sur-
face of the earth (since waves in the earth are com-
pletely absorbed). The first wave to arrive at the re-
ceiver o is then the ground wave 7=0. Other waves will
arrive later as a result of propagation over some dis-
tance such as D=D; where j=1, 2, 3, - - - (Fig. 1)
and correspondingly arrive at the receiver at ever later
times t={;. This fact is not obvious to the observer of a
CW “signal” [E(w, d)] since such a signal cannot re-
solve the individual ordered rays j which arrive at the
receiver. Thus, the observer sees only the resultant
vector field E(w, d) of the sum of a number of individual
fields Ej(w, d) of each ordered ray j,

»

E(wr d) = Ej(w) d)a ] = 0) 1) 2) 3) Ty (7)
0

o=

in which the zero order field j=0 is the ground wave
and each higher order field j=1, 2, 3, - - - or j0 cor-
responds to ionospheric waves or waves reflected by the
jonosphere [12],
E_,»(w, d) = iwdDj_]C exp (1.(.-.7[‘,‘/)Gj[GjrajF‘,'Cj, (8)
where
C = Igb*/4mxd?® = 1077/d, Iy =1, = 1/c%, (9)
and the local time for the ground wave ¢, is
f(), = t bt b,
b = ﬂld/C,

(10)
(11)
where Ey(w, d) = | Eo(w, d)| exp [—i(wb+¢.) ], consider-
ing ¢, a phase lag or phase correction [13], and simi-

larily, the local ionospheric wave time or ijonospheric
wave delay

tf,(j= 1’2;3’ T ')iS,
lj, =1 bfy
bj = ﬂle/c)

(12)

The quantity b;—b, a time, is called the relative iono-
spheric wave delay, Fig. 2 (relative to the ground wave).
The physical length of the particular type of ray D;
represented in Fig. 1 (other types of rays are feasible)

can be evaluated geometrically for a reflection at an



1962

§
i
& ggm
-9400 éw
& L 560
» 3200 & g
3 L Tago
] E >
240 \ 33
= 3 0 80
£ 180 \\ - | d/j
3 T ‘ — STML
g 8¢ NS e I R |
S
B % 8 160 240 320 400 480 560 640 720 800

DISTANCE d/j, STATUTE MILLES
o 129 257 386 55 644 772 901 1030 158 1287
DISTANCE d/j, KILOMETERS

Fig. 2—Relative skv-wave delay for various altitude % of
the lower ionosphere boundary.

altitude % above the surface of the earth of radius a,
D; = 2j[(a + k) cos ¢i,; — (14)

where (Fig. 1) ¢, is the angle of incidence of the ray on
the ionosphere and 7; is the corresponding angle of in-
cidence on the earth and the subscript j reminds the
reader that the equation refers to a particular iono-
spheric wave (j=1, 2, 3, - - - ) or ground wave (j=0)
under consideration. The angles ¢; and 7; are evaluated
quite simply from the geometry. If,

a cos 75,

[/] 1/2
A = [Za(a + k) (1 — cos —) + h*] , then  (15)

2j
sin ¢;,; = A7l sin —, (16)
2j
0
cos ¢;,; = A;! [a (1 — cos ~—) + h], an
2
.6
sin7; = Aj7Ye + k) sin —» (18)
2j
0 0
cos T; = Aj7! |:a (COS_—- - 1) + & cos ——_:l, (19)
2j 2j

where 6 (Fig. 1) is the angle at the center of the earth
subtended by the distance d along the surface of a
spherical earth, or simply d=af. The relation between
distance d/j, angle of incidence ¢;, and height % of the
lower boundary of the ionosphere can therefore be
quite simply illustrated as in Fig. 3.

The transmitting and receiving antenna factors G;
have been included to take account of antennas other
than Hertz dipoles, where for the particular case of a
vertical magnetic Hertz dipole G;=1 in the equatorial
plane of the dipole and G,=sin 7; for the vertical elec-
trical dipole.

The geometric-optical theory permits the use of plane
reflection coefficients or Fresnel type reflection coef-
ficients for rays reflected at the ground (Fig. 1) or the
ionosphere. However, the ionosphere is not plane and it
is necessary at low frequencies to introduce certain
spherical corrections to the geometric-optical theory.
The relation between plane and spherical reflections is
defined by the convergence-divergence coefficient «;
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Fig. 3—Geometric-optical relation between the angle of incidence ¢;
distance from the source d/j, j=1, 2, 3, - - -, j#0, and the alti-
tude % of the lower boundary of the ionosphere.

which converts the former to the latter or from the view-
point of the ray theory, takes account of ray focusing
by the ionosphere and a corresponding defocusing of
rays by the earth. Bremmer [1] has developed for-
mulas for such a correction. A modification of this
focusing or convergence correction A4; has been de-
veloped by Wait [14] to take account of rays near the
geometric-optical horizon 7;~7/2 and beyond. The
complete expression can be written

o = (1 + /e [(2]' sin %) / sin 0]1/2
X {[a(l - cos-%) + h]
/ l:(a + &) cos% - a]} l/2,4,-, (20)

in which 4; can be evaluated from the cylindrical
Hankel function of order » =1 of the second kind, which
for =1 can be written

Aj~ (%Zf)wHumz,-) exp { —i[5v/12 — Z,]} (21)

where

Z; = kia cos® r;/3 sin? 7;. (22)

Wait [14] has developed numerous graphs of the func-
tion a; and 4; and Johler [12] has detailed some com-
putation methods, especially for the Hankel function
H]/gm (Z)

The factor F; is an antenna pattern factor since it
describes a plane wave incident on a sphere with a re-
ceiver dipole antenna located on the surface of the
sphere. The factor F; accounts for the presence of the
spherical earth at both the transmitter F;* and the re-
ceiver Fy, and if it can be assumed that the geometric-
optical ray is not too close or beyond the geometric-
optical horizon (Fig. 1), the Fresnel approximation
again sufficies to determine F;, or for vertical polariza-
tion
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Fi~[1+ RAr)][1 + Ro()] (23)

where the superscripts ¢ and 7 refer to the transmitter
and receiver respectively, and the subscript e refers to
vertical electric polarization and

Ro(rj) = {ks? cos 7;/ks® — [ka?/Ry2 — sin? 7;]1/2}

[k cos7i/ka2 + [Ro2/ki® — sin?7;]' 2}, (24)
or for horizontal polarization
Ru(rj) = {cos 7; — [R:2/ks? — sin? 7,]1/2}
/{ cos 7j + [k22/ki2 — sin? 7,172} (25)
where
by = 3[62 - ia’“’cg]m, b= S~ (26)
¢ w ¢ ¢

which defines the wave number of the air and the
ground in terms of the dielectric constant e, relative to
a vacuum, the conductivity, ¢, mhos/m and the per-
meability po=4w(10"7) h/m. The dielectric constant is
e2=15 for typical land and ;=80 for sea water; also
¢ =0.005 and 5 mhos/m for land and sea water respec-
tively. Here again it has been found necessary to correct
the rays near and beyond the geometric-optical horizon
T,~m/2. A contour integral developed by Wait [15]
can be employed close to the geometric-optical horizon
for the calculation of F;= F;'F;:

F]_t,r ~ (7‘.)—1/2 exp [—ikldol]
fw exp [—i(k1a/2)'1%0'p]
Wi (p) — qWi(p)

where 6’(d —dy)/a, where dy is the distance from trans-
mitter to geometric-optical horizon (r;~m/2) and

(k10)1? Ry
g=—i —
2 ko

dp,  (27)

wexp[—i2n/3]

ky?

R

(28)

Wi(2) and W1'(2) are airy integrals related to the cy-
lindrical Hankel Functions [12] (also see Appendix).

WI(P)

= exp [~ 2xi/3]v/7/3 (—p) *H1s®[3(—p)*],  (29)

W) = exp [—4mi/3)/7/3 pHan®[3(=p)*?],  (30)

where
—— =Sargp < —>
8073

and

arg (—p) = argp — m,

m
arg p™/» = —arg p where m and = are integers.
"

These restrictions on arg p make all functions involved
single valued. Note that a separate conductivity ¢ and
dielectric constant e, can be ascribed to transmitter and

PROCEEDINGS OF THE IRE

A pril

receiver. Wait [15] has developed curves of this func-
tion and some computation methods have been out-
lined by Johler [12]. Close to, but beyond the geometric-
optical horizon, the factor /;= F;/F;* can be evaluated
as noted by Wait [15]. A residue series summation [12]
Fit~ — 2in/mexp [—iki(d — dy)]
= exp [—i(kia)V30'r,]
=0 (2137, — ¢ W (2'37,)

31)

where the permittivity lapse factor «, which takes ac-
equation of Riccati, noted by Bremmer and tabulated
by Johler, et al., [16]

s
— — 2% 41 =0,

(32
dr 32)

where the factor & (which depends on dielectric constant
e, and conductivity o) for vertical electric polarization
of the Hertz dipole 6 =46.,

_{k‘)2a1/31"/k12

b, = e (33)
k)| 22—
(kra) [ = ]

where the permittivity lapse factor «, which takes ac-
count of the variation in index of refraction of the
atmosphere with altitude is a~0.75 to 0.85. Howe
[17], Johler, Walters, and Lilley [16], and Walters and
Johler [18] have developed methods for taking the
special roots =7, of (32), where the limiting roots
6=0, 6= » are found from

Hyps@[3(—2r)%2] = 0, 6, = ©, (34)
Hys®[3(=27)%2] =0, 5.=0, (35)
s=0,1,2,3---.

The reflection process at the ground and the iono-
sphere is represented (8) in concise form Cj, according to
Bremmer [1], for the case of a vertically polarized
transmitter and receiver (Fig. 4).

14+ A

1 &
Ci=—7 — ] ; (36)
]!Re daill — Agx - Asxz z=0
where
Al = - Rmem
A2 = ReTee + Rmem

A:; = Rng[— TeeTmm + Tcmee;]

where R, and R, are the conventional Fresnel ground
reflection coefficients for plane waves of angle of in-
cidence 7; (Fig. 1) of both vertical and horizontal
polarization respectively, and the 7"s represent, the
ionosphere reflection coefficients for plane waves with
angle of incidence ¢;; thus, the essential nature of the
propagation of the CW signal around the earth via the
ionosphere can be described in terms of four reflection
coefficients Too, Tomy Tme, Imm. The reflection coefficient
T, refers to vertical electric polarization of the incident
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Fig. 4—Geometric-optical ray propagation mechanism, illustrating
the development of the factor C; and illustrating coupling exterior
to the ionosphere as a consequence of the generation of the abnor-
mal components.
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plane wave and a similar vertical electric polarization of
the reflected wave. The coefficient T, describes the
generation of the abnormal component by the incident
vertical polarization (reflected horizontal electric po-
larization for wvertical electric excitation). Similarly,
Tm refers to the incident horizontal electric polariza-
tion and the corresponding reflected horizontal electric
polarization. Also, the abnormal component of the
horizontal electric polarization (reflected vertical elec-
tric polarization for horizontal electric excitation) is de-
scribed by the coefficient T, Referring these matters
to a local coordinate system (Fig. 5) at the ionosphere
lower boundary [12], [19], [20],

Tee = y’r/Ey'i, Tmm = E.’c’r/E:c’i,

Teom = EI’T/Ey'i Twe = Ey’r/Ex’i’ (37)

where the subscripts 7 or 7 refer to the incident and re-
flected wave, respectively, at the lower boundary of the
ionosphere. The techniques for evaluating the reflection
coefficients for an anisotropic model electron-ion plasma
are quite complicated and will be discussed later.

The ground wave CW, E,(w, d) (i.e., the zero order
ray j=0 can be evaluated from the classical series of
residues) formulated by Bremmer can be written in the
form [1], [13], [23] for vertical electric polarization

d L2
E(O), d) = 2iwC |:21ra?/3(kla)1/3 _]

a
d ad T
exp {—i |:(Ie1a)”3uoz‘-’/3 —+ —+ ——]}
% i a 2a 4 39)
ot [27,—1/5.] '
where s=0, 1, 2, 3, - - -, C is given by (9), and again

a~~0.75 to 0.85 and é,, 7, have been defined (32), (33).

A horizontally-polarized Hertz dipole radiation field
can also be found (vertical magnetic field, H,, ampere-
turns/meters) simply by replacing 8, by 8,. 6, =206.k3/ks?,
re-evaluating 7, and substituting in (38).

The notion of a CW signal E(w, d) as the vector sum
of individual rays ordered in time (7) is obscure to the
observer of such a signal. However, a signal in the true
sense, 7.¢., one which can convey information and hence
is interrupted in the time domain, manifests the indi-
vidual propagation rays. The Fourier integral (1) for a
pulse transmission can be rewritten as a consequence of
propagation of such signals E(¢, d),

P

E(t,d) = 2 Et';, d)
J=0

¢

i=0 2w

[ exp Gor o, dr@frdn. 69

This merely represents the sum of separate Fourier in-
tegrals for each ray, separated in time by the iono-
spheric wave delay ¢';.

The signal E(, d), (1), (39) which has been de-
scribed in the time domain, is in general complex if com-
plex source functions F,(¢), (3) are employed. The signal
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Fig. 5—Local coordinate system for ionosphere boundary.
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Fig. 6—Observations of propagated pulses of various lengths illustrating the time separation of the ground wave (j=0) and the various iono-
spheric reflections (j=1, 2, 3,- - ). The measurement of a point in time on the leading edge of the pulse with the amplitude envelope
minus the derivative of the amplitude envelope method is also illustrated (b, d=>512). (Oscillograms traced from original photographs of
July-August, 1953, CYTAC/Loran-C field tests).
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which is observed and recorded as an oscillogram, for
example, is typically the real part of the complex field,
Re E(t', d), while the amplitude l E(t', d) ] , can represent
some sort of envelope detection process in the receiver.
Thus, an envelope can be synthesized with the aid of a
complex source and propagated with the signal as an
index of the pulse dispersion (change in form or shape)
as a result of the propagation.

The physical notion of a signal observed at a point o
(Fig. 1) as the sum of ordered rays in the time domain
is illustrated [21] in Fig. 6 for various length pulses em-
ployed during the development of the Cytac/Loran-C
system [22]. The pulse radiated at the source, undis-
turbed by the ionospheric time rays (pure ground wave)
is shown as oscillograms [Re E(#, d) ] at short distances.
The action of the propagation medium on the signal is
demonstrated by the complicated, multiple (=0, 1, 2,
3, - - - ), overlapping pulses observed at great dis-
tances. Thus, the oscillogram or amplitude-time func-
tion Re E(#, d) observed at a great distance comprises
the overlapping individual signals E;(¢’, d), =0, 1, 2,
3, - - -, apparently added together according to the
complex field specification E; of each and separated in
time by the ionospheric wave delay ¢'; of each ray j or-
dered in the time domain j=0, 1, 2, 3, - - -. The ap-
proximate area in the amplitude-time plane occupied
by each ordered ray is shown in Fig. 6. Areas of overlap
in which both constructive and destructive interference
between cycles of the multiple pulses produce notches.
Enhancements in the composite pulse can be observed.

Notwithstanding the areas of overlap, the instru-
mentation has been developed which can sort out the
individual ordered rays E;(w, d), 7=0,1,2,3, - - -, in
the time domain and study or measure the amplitude,
phase and dispersion of these individually [3], [4],
[22]. Thus cycles and minute fractions of a cycle can be
measured by tagging a point in time on the pulse. One
such method utilizes the amplitude envelope and hence
employs amplitude envelope detection. In effect, the
method forms the difference between the amplitude
envelope |E(#, d)| and the derivative d| E(,d)|dt’,
and an elaborate null seeking device [4] seeks out a
null point or zero crossing for the time function so de-
sired, thus determining a time-root 7’ of the differential
equation

d
F{t',d) = | E¢,d)| — ¢ | E(¢,d)| =0, (40)

where ¢; and ¢, are constants which move the point in
time which is to be tagged on the pulse, such as the time
gate shown on Fig. 6(b), which can be set by the oper-
ator to pick out a particular point on the pulse. Both
amplitude and time (phase) can be measured at such a
point. Additional techniques are used to detect cycles
and minute fractions of a cycle under the envelope on
the leading edge (pure ground wave signal) or elsewhere
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on the pulse (a particular ionospheric ray signal can be se-
lected). The existence of an ordered (=0, 1, 2, 3, - - -)
sequence of signals E;(w, d) as a result of propagation
over such rays as D; (Fig. 1) has therefore been estab-
lished both theoretically and experimentally.

IV. THE GROUND WAVE SIGNAL

The particular case of a ground wave pulse, E(¢, d)
=Eo(t', d), j=0 has considerable theoretical and prac-
tical interest. The source dipole current F,(f) can be
specified in a variety of forms. The complex damped
cosine form has considerable theoretical interest [23].

Re F,(t) = Reexp (—»t)
= exp (—at) cos w.t,
=0, (t<0)

0<t< =)

(41)
or for the sine source,
— Im F,(t) = Reiexp (— vt) = exp (— c1f)
csin =0, ( <0) wet,(0 <t < o) (42)
where
v = ¢; + tw,. (43)

The direct transformation can be accomplished for
this particular source by evaluating the integrals (3),
(4) and inserting in the integrand of the Fourier inte-
gral (1),

1 oc
E(,d) = — f exp (iwt') E(w, d)
2rJ

. wae(t) exp (—iwt)dtdw (44)
0

or upon evaluating the inner integral for the specified
source F,(f), (41)—(43),

1 o«
E(, d) = E;f l E(, d)‘

{ B . —\We
l CcOS wc[/ — ¢c’ + tan—l __(id___’___._a:’)_:l
L C1

Ve + (oo + w)?
—wl’ + ¢c' + tan™! :_(w_c__wl]‘l
n L C1
Ve + (v — w)? -l
- (wc + w) 7]

1 .

sin [wt’ — ¢/ + tan™!

+ ' \/612+(wc+w_)2-

sin [—-wl’ + ¢,/ + tan™! j—u] }

C1

_|_

S — d 45
Vo t (o — o) Jjde @9
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where ¢,/=—¢.—71/2=arg [E(w, d)] and E(w, d)=
Eo(w, d)

The real part of the amplitude-time function (45) Re
E(¢, d) is the desired function for the cosine source (41),
and the imaginary part —Im E(#, d)=Re [E(¢, d)] is
the desired function for the sine source (42). This inte-
gral can be evaluated with the aid of quadrature tech-
niques [23]. Thus, the problem has been reduced to the
evaluation of a real integral

E({,d) = wa,(w, d)dw
0

= Re fw flw, d) exp (twt)dw. (46)

The transfer function for the ground wave, E(w, d),
(38) which can now be inserted directly in the integrand
of the Fourier integral is illustrated in Figs. 7 and 8.
Since the transfer characteristic E(w, d) =E)(w, d) is
complex, both amplitude and phase are presented as a
function of frequency for various distances. The phase is
presented as the phase lag ¢, where the total true phase
arg [E(w, d) | = — [kid+¢.+7/2]. The effect of the con-
duction currents in the earth on the propagation has
been introduced as the conductivity for typical land,
¢=0.005 mho/m. The effect of the displacement cur-
rents in the earth on the propagation has been intro-
duced by the dielectric constant ez=15 (relative to a
vacuum). The permeability po=4w(10~7) henry/meter
has been assumed. The use of the series of residues ap-
plicable to propagation about a spherical earth takes
account of the vertical lapse of the index of refraction of
the earth’s atmosphere [1] by the factor o (38) where
a~0.75. Although it has been assumed that both trans-
mitter and receiver are located on the surface of the
earth, the effect of elevating transmitter and/or receiver
can be introduced by multiplying eack term of the series
of residues (38) by the factor f.(k1)f.(hs) where ki and k.
are the height of the transmitter and receiver, respec-
tively, above the surface of the earth, and (1), (13), (18)

() oo

el — (2)37,}

y o (47)

fo(h) =

in which & (2) is the modified Hankel function tabulated
by Furry [24].

The integrand of the Fourier integral (Fig. 9) in the
frequency-amplitude plane at some given local time ¢
can be related to the more conventional notion of the
Fourier spectrum f,(w, d) by eliminating the notion of a
negative frequency w. Thus, the amplitude spectrum is

| flo,d)| = | flw,d) + f(—w,d)| (@>0) (48)

Johler: Propagation of Low-Frequency Signal

413

and the phase spectrum is

arg [fz(w, d)]
arg [f(w, d) + f(—w,d)] (0> 0). (49)

¢x("’: d)

The phase, ¢,(w, d) can be reckoned (Fig. 9) from the
origin # =0 to the crest of the continuous wave or Fou-
rier spectrum wave at a certain frequency (0.2 Mc, Fig.
9). The corresponding amplitude |f,(cw, d)| does not
correspond to the amplitude of the integrand Fi(w, d).
The two waves do intersect, however, at the point
' =10 psec, (see, e.g., Fig. 9), at which point the Fourier
spectrum wave enters the integration (45) with a phase
shift beyond the crest of the wave. Thus, the Fourier
spectrum waves will all be phase advanced by different
amounts between the zero and infinite frequency limits
of integration. The Fourier spectrum wave, f.(w, d),
could, therefore, represent exactly the signal observed
through a receiver, if and only if the receiver transfer
function, f(w), as shown in (1), (39), introduced an
“infinite Q” or zero bandwidth circuit into the trans-
form, Fi(w, d), such that only a single frequency was
admitted. But this is another way of saying the receiver
circuit rings or oscillates indefinitely as a result of the
“high Q” of the circuit. Thus, in general, it is necessary
to perform the integration (1), (39) for each time ¢ from
zero to infinite frequency to describe the signal E(¢, d).
Fortunately the wave (Fig. 9) Fi(w, d) damps out rap-
idly as the frequency f is increased. Indeed, the particu-
lar wave illustrated (Fig. 9) applies to short distances
(d =50 statute miles) whereas for greater distances [23]
the integrand for the case of the ground wave pulse is
rather severely mutilated by the transfer function
(Figs. 7, 8) such that the wave Fi(w, d) damps out in a
cycle or fraction thereof, which is another way of saying
the integral E(#, d), (1) converges rapidly. This con-
vergence phenomenon, together with any further muti-
lation introduced by the receiver transfer characteristic
J+(w), can be exploited in the application of quadrature
techniques on the integral [23].

The detailed structure of the transient for various
combinations of characteristic frequency f.=w./2r and
damping ¢, for both sine and cosine source functions are
illustrated in Figs. 10-13 (pp. 414-415). The dispersion of
the pulse at great distance is evident in the illustrations.
The most noteworthy attribute of this dispersion was an
increase in the natural period of the pulse or a stretching
of the pulse in the time domain. The propagation me-
dium thus illustrated, assuming a perfect (infinite
bandwidth) receiver f.(w)=1 filters the signal, and
indeed at the greater distances the exact form of the
source becomes obscured by the filtering action.

The cosine source (Figs. 11 and 13) employs an
abrupt initial current. The radiated field therefore prop-
agated an impulse type of function which is superposed
upon the sinusoid. This can be explained quite simply
for the case of an infinitely conducting earth with the
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Fig. 10—Instantaneous signal and corresponding damped LF sine
wave source current of a propagated ground wave pulse.

aid of the convenient Laplace transform

E(is) =1 vy =0) (30)
where s =1w. The inverse Laplace transform £ is
E({', d) = £'E(s) = §(¢) (51)

where the Dirac impulse function 6(¢) can be defined in
relation to the step function «(¢) ; thus,

fta(l)dt = u(t), (52)
where
u(t) =1, >0
u(t) = 0, < 0. (53)

The impulse is, of course, finite in the damped cosine
wave (amplitude and duration finite) as a result of the
finite conductivity of the ground, the displacement cur-
rents in the ground and the effect of the earth’s curva-
ture. The transient response of the ground wave at
great distances illustrates (Figs. 12-14, pp. 415-416) the
stretching of such pulses in the time domain.

Time, f. Microseconds

Fig. 11—Instantaneous signal and corresponding damped LF cosine
wave source current of a propagated ground wave pulse.

The finite bandwidth of a radio receiver or filter,
fi(w) #1, can be introduced by a mutilation of the Fou-
rier transform with one or more frequency selective net-
works. Perhaps the simplest network is the following
series network:

R
— (iw)
fr(w) = R 1 ’
-0’ 4+ — (lw) + -
L CL

(54)

where R is a resistive element (ohms) L is an inductive
element (henry) and C is a capacitive element (farads).
The modification of the pulse by the finite bandwidth
so described (54) for particular values of R, L and C is
illustrated in Figs. 15 and 16, p. 416). The ringing of the
circuit becomes evident (Fig. 16) as the constants R, L
and C are changed so that the bandwidth becomes quite
narrow, .e., the Fourier spectrum wave, f,(w, d) is ap-
proached asymptotically.

The damped sine-squared pulse, of which the enve-
lope shape, defined by sin® w,, can serve as a useful model
for the type pulse employed in radio navigation sys-
tems. Such a pulse can be synthesized quite simply by
redefining the source function F,(¢), (41), (42),
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Re F,(1) = exp (—cuf) sin? w,f sin wet (55)
Re F,(f) = % exp (—cit) sinwed
— Lexp (—cyf) sin (w, + 2w,)t
— L exp (—cif) sin (we — 2w,)t.  (56)
Fo(l) = %exp (—vt) — % exp ()
)
P (—va), (57)

where

v = ¢1 + iw. (as before)
V1 = €1 + i(wc + pr)

Ve = €1 + i(wc - pr).

The typical radio navigation type pulse has a value
for c; of the order of w,. It is quite obvious, however, that
the amplitude time function E(#, d) for the damped
sine-squared pulse is merely the sum of three waves
calculated as previously described (45).

E(@,d) = ALE(0,d) + A:E,.\ (¢, d) + A:E,(, d), (58)
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where A1=1/2, A.=—1/4, As= —1i/4. A particular
sine-squared pulse Re E(t/, d) is illustrated in Fig. 17
(p. 417) together with the amplitude envelope |E(t’, d) I .

The source functions which represent natural phe-
nomena, such as sferics (the electromagnetic radiation
from thunderstorms), will not, in general, have the pre-
cise mathematical form of a damped sinusoid, impulse
function or step function. Since the application of the
superposition principle is not always practical, another
approach to the general problem is appropriate [23],
[25]. Indeed, it is quite possible to extend the theory to
complicated waveforms. Consider an experiment in
which the signal Re E(#, d) is observed and recorded
at some distance d, from the source. The theory is then
required to predict the form of the signal recorded at
some other distance ds. The theory is also required to
determine the form of the source F,(¢).
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The complex spectrum (48), (49) can be determined
directly from the observed signal Re E(¢/, d):

folw, d) = f i exp (—iwt’) Re E(¢, d)d'.  (59)

The complex spectrum of the source f,,;(w) can then be
determined

filod)
E(w, d)

fralw) = (60)

Since the real part of the signal Re E(¢, d) was em-
ployed, the source function Re F,(f), can be described

PO = [ e Godfeuddo, (6D
s - 27]' . CXp tw. fZ.a w ’ (

or

1 0
Fm=;flmemW+%mmm (62)

normal component cannot be ignored in the case of ver-
tically polarized transmitter and receiver for the or-
dered propagation rays, j>1, ¢.e., j=2, 3,4, - - -. This
is a form of coupling between wave polarizations quite
distinct from the coupling between the magneto-ionic
propagation components within the ionosphere to be
described subsequently.

The evaluation of the reflection and transmission
processes at the ionosphere is the most complicated part
of the problem of describing the transform of the signal
Ej(w, d) for any individual time-ordered ionospheric
propagation ray j=1, 2, 3, - - - . The index of refraction
of the ionosphere is first determined. The lower bound-
ary of a model electron-ion plasma (Fig. 5) below which
(2<0) the ionization is nil (N=0) or zero electron
density, is considered to be the xy plane. The region
above the xy plane (2>0) is characterized by an electron
density N and a collision frequency v which vary with
respect to altitude z. A plane wave E; gives

-_— w
E;= | E:| exp [iwt - —,,D], (65)
c
where the index of refraction (2<0), n=n0=1, ¢ is the
speed of light c~3(10%) m/sec and the quantity D is re-
lated to other parameters (Fig. 5) [19], [20], [27].

D = x sin ¢; sin ¢, + v sin ¢; cos ¢, + z cos ¢;, (66)
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is varying harmonically in time ¢ at a frequency f=w/2m
and is assumed to be incident upon the xy plane at an
angle of incidence ¢, and a magnetic azimuth ¢, is meas-
ured clockwise from the yz plane for the direction of
propagation. The earth’s magnetic field vector H,
ampere-turns/meter is contained in the yz plane at a
dip or inclination angle I (measured from the hori-
zontal).

A resultant wave E, transmitted into the ionosphere
model (z>0) (Figs. 5 and 18) is then assumed to have

the form
_ w
E, = | E| exp[i(wt - —npjl
c

where, in the plasma model,

nD = xsin ¢, sin ¢, + y sin ¢; cos ¢, + 2

(67)

(68)

in which { is, in general, a complex number, the value of
which will depend upon altitude z, { =¢(2).
The quantity { is determined by a simultaneous solu-
tion of Maxwell's equations
- oH
VX E 4+ po— =0,
ot
- oE
VXH—-—J—e— =0,

ot (69)

and the equation of motion of an electron (Langevin
equation)
dv - - —
mE— + mgV + poe(V X Hy) +eE =0 (70)
with the electric field E, the magnetic field H (electro-

dynamic as distinguished from H,, the static field of the
earth), the convection current J= — NeV for N elec-
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trons per cubic meter (usually expressed as electrons/cc)
with charge e, mass m, and vector velocity V, where u,
and ¢ are the permeability and permittivity of space,
respectively. The collision frequency factor g is as-
sumed to be a constant real number with respect to
frequency; g~w is the classical magneto-ionic theory.

After eliminating the vectors ¥ and H, it can be con-
cluded that field E exists in the medium if a quartic
equation in { is satisfied [1],[19], [20], [ 28],

aft + af® + ot + af + a0 =0 (1)

where the coefficients of this quartic are defined in the
Appendix. The roots of this equation ({) are quite
simply related to the index of refraction of the medium
n or the wave number k= (w/c)9, since

7® = % 4 sin? ¢,. (72)

The existence of a quartic equation in the index of
refraction as a direct consequence of the simultaneous
solution of Maxwell’s equations, (69) and the equation
of motion of the electron (70) was first noted by Booker
and the Booker quartic is more or less equivalent to (71).

Two pairs of roots { can be found [19] where each
root can be identified as either ordinary or extraordi-
nary, upgoing or downgoing magneto-ionic propagation
component within the model ionosphere plasma.

Since the electron density and collision frequency
can vary with respect to altitude 2z, a model plasma
which can be deformed to fit most any measured or
theoretical electron-ion profile, N(k), N(2), is desirable
from the theoretical viewpoint to completely describe
the reflection and transmission process at the iono-
sphere. Several approaches to this problem have been
utilized by various authors such as Budden [6] and Bar-
ron [7]. The notion of a continuously varying medium
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Fig. 18—Structure of the flexible plasma model, illustrating ordinary
and extraordinary propagation components, coupled at the bound-

aries. Each slab (z,, n=1, 2, 3, - - -

, p) becomes smaller as the

number of slabs (p) is increased, until a stable reflection is ob-
tained. z is always infinite where each N=N,, »=u», corresponds
to median values of the intervals (Z,), respectively, of the par-
ticular profile under investigation.
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has been treated by approximating the medium with
one or more slabs of uniform composition as exemplified
by the works of Brekhovskikh [29], Hines [30], Ferraro
and Gibbon [31]. Such methods have been exploited
by Johler and Harper [27], and carried to the limit,
such that the number of slabs p for each calculation de-
pends upon the computation precision required and the
particular values of the electric and geometric pa-
rameters.

The detailed structure of such a flexible model is il-
lustrated in Fig. 18 as a stack of plasma slabs of arbi-
trary thickness (but consistent with computation effi-
ciency) 2z, except the topmost slab of thickness z,= .
The number of such slabs p is also quite flexible, since
the notion is implied in such a model that the measured
electron density-altitude, N(k) or N(z) profile, and col-
lision frequency altitude, »(%) or »(2) profile, can be ap-
proximated to any desired accuracy by decreasing z,
and increasing p simultaneously until a stable reflection
process is obtained.

A constant electron density and collision frequency
with respect to altitude z is of course assumed for each
slab. A set of four roots {={, of (71) are found to exist
in each slab. Two of the roots will exhibit a negative
imaginary (Im { negative) corresponding to an upgoing
wave (+z direction, Figs. 5 and 18) and two of these
roots will correspond to a positive imaginary (Im ¢{
positive) corresponding to a downgoing wave (—z direc-
tion, Figs. 5 and 18). It is necessary to consider both up-
going and downgoing waves in the analysis of either the
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Cpopta " ° °
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reflection or transmission process at the ionosphere,
except for the topmost slab, where only the upgoing
waves are considered.

It is necessary to distinguish between the ordinary
and extraordinary magneto-ionic components of propa-
gation for both the upgoing and downgoing waves.
This is accomplished by an examination of the form of
the index of refraction function with respect to fre-
quency and altitude (or electron density and collision
frequency which varies with respect to altitude). Thus,
the index of refraction 7 [as defined by (71), (72)] is de-
tailed for each frequency and slab z,, n =7,. The upgoing
ordinary and extraordinary 775,";& and the downgoing
ordinary and extraordinary nfy'f,)ye function continuity is
examined in detail as a function of frequency to deter-
mine, if any, the crossover points of the functions for
each slab or electron density under consideration.
The absolute distinction between ordinary and extraor-
dinary magneto-ionic wave components [19], [27]
remains quite arbitrary, but the analysis must be con-
sistent between each slab and consistent within each
slab for upgoing and downgoing waves.

The reflection and transmission coefficients are de-
termined by the boundary conditions which express at
the boundary of each slab the principle of continuity
of the tangential E and H and the normal H fields
(Figs. 5 and 18) of the model plasma. These fields are
equated immediately above and below each boundary

and after considerable ado, a matrix equation is ob-
tained [27],

AT T em, Trm ] [ Goey Gom |

Tee’ TMG boe, bom

Uty Unis Cosy Com

Usir, Umie doey dom
Ueey  Unmo
U, Unn
Uty Uy
DA
B ot
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+ =0, (73)
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Fig. 19—Electron density-altitude [N (k) or »(z)] (quiescent
and disturbed) profiles.

where the elements of the matrix a;,1 - « - are defined in
the Appendix.

The upgoing ordinary and extraordinary and the
downgoing ordinary and extraordinary magneto-ionic
components of propagation are coupled within the iono-
sphere (Fig. 18) as a result of the introduction of the
boundary conditions described in concise form in the
matrix equation (73). Thus, at the upper and lower
boundary of each slab, energy is transferred between
the four magneto-ionic components of propagation
[four roots of the quartic equation (71)]. This type of
coupling is distinct from the coupling of the polarization
components, external to the ionosphere described pre-
viously [beginning of Section V—see also Fig. 4 and
(36) ].

The continuously stratified technique can be illus-
trated by evaluating reflections from an ionosphere
model determined by actual measured profiles of elec-
tron density (Fig. 19) and collision frequency (Fig. 20).
A typical daytime-room profile N(k) presented by Way-
nick [32] (Fig. 19) and a corresponding disturbed pro-
file of Seddon and Jackson [33], indicative of the in-
tensity of ionization during a local auroral zone iono-
sonde blackout, were selected for purposes of illustrating
application of the described continuous stratification
techniques. The region of the ionosphere on the latter
curve, below 1000 electrons/cc, was represented (dashed
curve, Fig. 19) with a Gaussian distribution [6],

N = Npax exp [“"(Z - zmax)Q/k,]’

where the constants Nuax, Zmax, and k&’ were determined
by the measured profile >1000 electrons/cc. In par-
ticular, Nmax = 26,000, 2., =85,000, &' =1.92 (108).

The Nicolet/3 collision frequency [34], [35] was em-
ployed in this analysis. These collision frequencies are
applicable to the classical magneto-ionic theory employ-
ing the approximation g~w [27], [36] in the equation of
motion of the electron (70).
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Fig. 20—Collision frequency-altitude [v(k) or v»(3)] profiles
(Nicolet/3 was employed in calculations).

The reflection coefficients 7', 1'emy Tme, and T wWere
evaluated (Figs. 21-28, pp. 421-422). The reflection co-
efficients for the quiescent profiles are illustrated in Figs.
19-25. The disturbed profiles reflection coefficients are
illustrated in Figs. 26-28.

The reflection coefficients | T|, | Tn| show a steady
decrease in amplitude as the frequency is increased. A
small perceptible rise is noted near the gyrofrequency,
however. This was a result of the approximation
g~ [27] and the assumed model, whereas the use of a
complex collision frequency g could exhibit higher at-
tenuation near the gyrofrequency. Such a complex col-
lision frequency can be deduced from the work of Phelps
[36], Molmud [37], Jancel and Kahan [38], where a
collision frequence »=v(u) proportional to the electron
energy or temperature is derived. Johler and Harper
[27] have introduced electron collisions proportional to
energy as a modification of the coefficients of the quartic
equation (71). This, of course, introduces some changes
in the detail of the reflection coefficients, but the general
form of the reflection coefficients of the classical mag-
neto-ionic theory remains unaltered at LF/VLF.

The magnitude of the abnormal components l Te,,,l,
| | also shows a decrement as a function of frequency.
These components are quite small for the assumed
model (<0.1 at 10 ke, for example). The corresponding
disturbed blackout reflection coethcients imply a slight
change in the angle of incidence ¢; as a result of a lower-
ing of the ionosphere. However, the principal cause of
change as a result of this profile is, nevertheless, the re-
distribution of the electron density-altitude profile. It
is interesting to note an increased attenuation at the
higher frequencies 100 kc to 1000 kc. However, the high
attenuation or total ionosonde blackout which char-
acterizes high frequencies does not seem to exist at LF.
Indeed, an enhancement in the field is anticipated from
this profile at VLF (<30 kc).
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Fig. 21—Reflection coefficients (amplitude and phase) of the lower
ionosphere for LF’s, illustrating the frequency dependence of the

classical magneto-ionic theory (¢, =0, 180°).
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Fig. 22—Reflection coefficients (amplitude and phase) of the lower
ionosphere for LF’s, illustrating the frequency dependence of the

classical magneto-ionic theory (¢,=90° 270°), vertical polariza-

tion (Tee, Tem).
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ionosphere for LF’s, illustrating the action of the Lorentzian force
(earth's magnetic field) in the classical magneto-ionic theory
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Fig. 24—Reflection coefficients (amplitude and phase) of the lower
ionosphere for LF’s, illustrating the action of the Lorentzian force
(earth’s magnetic field) in the classical magneto-ionic theory
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Fig. 26—Reflection coefficients (amplitude and phase) of the lower
ionosphere for LF’s during disturbed conditions, illustrating the
frequency dependence of the classical magneto-ionic theory.
|Te| and |Town| are also illustrated for comparison with the
quiescent conditions (see Figs. 21-25 for complete reflection co-
efficients). (¢,=0, 180°.)

Fig. 27—Reflection coefficients (amplitude and phase) of the lower
ionosphere for LF's during disturbed conditions, illustrating the
frequency dependence of the classical magneto-ionic theory.
| Tee] and |Tom| are also illustrated for comparison with quiescent
conditions (see Figs. 21-25 for complete reflection coefficients).
(¢ =90°, 270°, vertical polarization Tes, Teom.)
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Fig. 28—Reflection coefficients (amplitude and phase) of the lower
ionosphere for LF’s during disturbed conditions, illustrating the
frequency dependence of the classical magneto-ionic theory.
|Tee] and |Tm| are also illustrated for comparison with quies-
cent conditions (see Figs. 21-25 for complete reflection coeffi-
cients). (¢a=90° 270°, horizontal polarization, Ty, Twe.)

The effect of the Lorentzian force, ue(V X H,), [see
(70) ], or the action of the earth’s magnetic field on the
reflection process is also illustrated in Figs. 24 and 25.
The reflection coefficients are illustrated here as a func-
tion of magnetic azimuth @, (Fig. 5). Note the propaga-
tion into the west, ¢,=270° shows a smaller reflection
coefficient than the propagation into the east, ¢, =90°,
for the particular example illustrated. This seems to be
quite generally valid {or grazing incidence type trans-
mission, ¢;~82° This clearly indicates a nonreciprocity
in the transmission, 4.e., the interchange of transmitter
and receiver would not produce the same field.

Although the ionosphere reflections are quite intri-
cate, it is quite feasible to evaluate the field of each
ionospheric propagation ray, E;(w, d), (7), (8) or the
total field, E(w, d). The application of the transforma-
tion techniques (1)-(4), (39), (41)~(46) can then be
applied to particular signal sources (as was illustrated

for the ground wave, Section 1V), F,(¢). The propagated
ionospheric signals E;(¢’, d) will thus be determined.

VI. CONCLUSIONS

Low frequencies exhibit properties which are quite
favorable to high reliability and precision radio naviga-
tion-timing. In particular, the ground wave signal is
especially favorable at distances less than 2000 statute
miles (3200 km), 7.e., the pulse type transmissions re-
solve or sort out the individual propagation rays. At
greater distances the signals propagated via ionospheric
propagation rays also exhibit favorable properties, pro-
vided again the individual ionospheric propagation
rays are sorted in the time domain. The detailed investi-
gation of these properties is now required as a result of
the economic and scientific importance of the navigation
timing and communications systems now operating
at LF.
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The coefficients of the quartic equation (71) are
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and the electron density of the particular slab » (Fig.
18) under investigation is
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The elements of the matrix equation (73) are defined:
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Both transmission coefficients U and reflection coeffi-
cients T previously introduced (37) are determined by
the matrix. The U’s are defined as
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426 PROCEEDINGS

The analytic expressions for the complex numbers

PR, PY, PR, PP, O, O, 07, Q% can be derived
from the definitions by a simultaneous solution of Max-
well’s equation (69) and the equation of motion of the

electron (70) with the following result:
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