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PREFACE

The following two papers represent a treatment of frequency
modulation noise that is typically found in many signal generators.
The papers are not aimed at pinpointing the noise sources, but rather,
at methods of measuring and classifying the particular spectral types
of noise that an individual signal generator may exhibit.

The first paper, '"Atomic Timekeeping and the Statistics of
Precision Signal Generators, ' is devoted to the consistent treatment
of "flicker noise'' type of frequency modulation with applications to
time standards and measures of frequency stability. The second paper,
"Statistics of Atomic Frequency Standards,'' presents practical
approachs to the classification (as to spectral type) of noises that might
be found on signal generators in general with a specific application

to the maser type of oscillator,
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Atomic Timekeeping and the Statistics of

Precision Signal Generators

ABSTRACT

Since most systems that generate atomic time employ quartz
crystal oscillators to improve reliability, it is essential to determine
the effect on the precision of time measurements that these oscillators
introduce. A detailed analysis of the calibration procedure shows
that the third finite difference of the phase is closely related to the
clock errors. It was also found, in agreement with others, that quartz
crystal oscillators exhibit a ''flicker' or |w l-l type of noise
modulating the frequency of the oscillator.

The method of finite differences of the nhase is shown to be
a powerful means of classifying the statistical fluctuations of thve phase
and frequency f/ojx"£ signal generators in general. By employing finite
differences it 1s possible to avoid divergences normally associated
with flicker noise spectra. Analysis of several cesium beam frequency
standards have shown a complete lack of the |w |-1 type of noise
modulation but an unexplained noise with a spectral variation

/3

: 1 .
proportional to 'w l for frequency fluctuations was observed for

| w| less than 10-3 tol 0_4 sec -1 depending on the particular standard.

Key words: Atomic frequency standards, time standards, and
stability.
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Atomic Timekeeping and the Statistics of
Precision Signal Generators

James A. Barnes

Introduction

An ordinary clock consists of two basic systems: a periodic
phenomenon (pendulum), and a counter (gears, clock face, etc.) to
count the periodic events. An atomic clock differs from this only in
that the frequency of the periodic phenomenon is, in some sense,
controlled by an atomic transition (atomic frequency standard). Since
microwave spectroscopic techniques allow frequencies to be measured
with a relative precision far better than any other quantity, the
desirability of extending this precision to the domain of time measure-
ment has long been recognized. (1

From the standpoint of precision, it would be desirable to run
the clock (cqunter) directly from the atomic frequency standard.
However, atomic frequency standards in general are sufficiently
complex that reliable operation over very extended periods becomes
somewhat doubtful (to say nothing of the cost involved). For this
reason, a quartz crystal oscillator is often used as the source of the
""periodic'' events to run a synchronous clock (or its electronic
equivalent). The frequency of this oscillator is then regularly checked
by the atomic frequency standard and corrections made.

These corrections can usually take on any of three forms;

(a) correction of the oscillator frequency, (b) correction of the
indicated time, or (¢) an accumulating record of the difference

from atomnic time of the apparent or indicated time shown by the clock.

Both methods (a) and (b) require a calculation of the time difference and



it is sufficient to consider only the last method and the errors
inherent in it,

A careful consideration of the calibration procedure leads to
the development of certain functionals of the phase which have a very
important property-- existence of the variance even in the presence of a
flicker (-’:1-,—> type of frequency noise. The simplest of these
functionals- the second and third finite differences of the phase- turn
out to be stationary, random variables whose auto-covariance function
is sufficiently peaked to insure rapid convergence of the variance of a
finite sample toward the true (infinite sample) variance. These func-
tionals of the phase have the added features of being closely related to
the errors of a clock run from the oscillator as well as being a useful
measure of oscillator stability.

With the aid of these functionals, it is possible to classify the
statistical fluctuations observed in various signal sources. In agreement

(5-8)

with work done ,_b’y' others, a flicker noise frequency modulation

was observed for all quartz crystal oscillators tested. Contrary to

(8,15, 16) it was found that,of

expectations and some published works,
the several cesium beams tested, all were frequency modulated by a
noise whose spectral shape was essentially Iw | -1/3 for small Iw I
The source of such a noise spectrum is still unexplained. Similar
studies on several commercial rubidium gas cells gave uniform
indications of flicker noise modulation of levels comparable to those
of the better quartz crystal oscillators.

In Chapter I, the effects:;on the precision of a time scale due

entirely to the calibration procedure of the quartz crystal oscillator

and the oscillator's inherent frequency instability,are considered,



In Chapter II the experimental results of Chapter I are used
as the basis for a theoretical model of oscillator frequency fluctuations
and the results are compared to other experimenters,

In Chapter III the statistics of an atomic frequency standard of
the passive type (e.g., Cs-beam or Rb-gas cell) are considered.
Also in Chapter III the composite clock system is treated. Chapter
1V is devoted to a brief discussion of stability measures for signal
sources,

Chapter V is devoted to an explaination of the NBS-A time

system and an evaluation of its precision.



I. QUARTZ CRYSTAL OSCILLATOR PHASE FLUCTUATIONS

Typical Gross Behavior

Figure 1 shows a typical aging curve for a fairly good quartz
crystal oscillator. The oscillator had been operating for a few months
prior to the date shown in the graph. On May 1, 1963, the frequency of
the oscillator was reset in order to maintain relatively small corrections.

Least square fits of straight lines to the two parts of Figure 1,
yield aging rates of 0.536 x 10_10 per day and 0,515 x 10-10 per day,
respectively. This difference in aging rates could be explained by an
acceleration of the frequency of about -9 x 10-15 per day per day. This
acceleration of the frequency is sufficiently small over periods of a few
days when compared to other sources of error that it can be safely
ignored. Thus the frequency of conventional quartz oscillators can be

written in the form

Q(t)= Qo [1 + at +E(t)] (1)

where o is the aging rate, £(t) is a variation of the frequency probably
caused by noise processes in the oscillator itself, and t can be considered

to be some rather gross measure of the time (since o and £ are quite small

corrections).

Actual Calibration Procedure of a Clock System

(2)

The fundamental equation for atomic timekeeping is

- d¢
Q= 2, @)

where @ is the instantaneous frequency of the oscillator as measured by
an atomic frequency standard, d¢ is the differential phase change, and dt

is an increment of time as generated by this clock system. Since time

is to be generated by this system, and ¢ and Q are thedirectly measured
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quantities, it is of convenience to assume that Q = Q (¢) and write the

solution of Equation (2) in the form,

4,
Z i' do
At . e (3)
1

If one divides the output phase of the oscillator by 2, and defines the

apparent or indicated time, tA’ to be
= &
th = oo (4)

E}quations (1), (3), and (4) can be combined to give

At =

t
A2 dt
g = (5)

thy lFat,+E(t,)

As it is indicated in Figure 1, it is possible to maintain the magnitude of
the relative frequency offset, |at,+¢&|, within fixed bounds of 10-8.

A
Expanding Equation (5) to first order in this relative frequency offset
yields
‘a2
At = At, - 5 [at, +&(t,)]at, . (6)

tAl

16
Equation (6) should then be valid to about one part in 10",

Normally the frequency of the oscillator is measured over some
period of time (usually a few minutes) at regular intervals (usually a
few days). At this point it is desirable to restrict the discussion to
the case where the calibration is periodic (i.e., period T, determined

by tA) and then generalize to other situations later. One period of the



calibration is as follows:

tA start of calibration interval

tA+% (T-1) start of frequency measurement (1<T)

tA+% (T+T) end of frequency measurement

tA+T end of calibration interwval.

If §¢ were constant in time, the frequency measured during the interval

leT-
t,t3(T-7) tot,

complete measurement interval, T, since the oscillator would have an

+1 (T+7) would be just the average frequency during the

exactly linear drift in frequency. Also, if £ were constant, Equation (6)

could be written as

' At = AtA—T(—-—)T (7)
52 . o . ,
where (5— >'r is the average relative frequency offset during the interval
o

+3i(T-7)tot, +3 (T+7).

‘A A
Even though, in general, § is not constant, € and § are not
knowable, and thus one is usually reduced to using Equation (7) anyway.
The problem, then, is to determine how much error is introduced by
using Equation (7).
The time error, 6t, accumulated over an interval T committed

by using Equation (7) can be expressed in the form,

A
6t=5t [atA+é]dt - T (§—9-)T, (8)



Q
where the quantity (g— )T is given by
o

tA+—;—(T+T)
(-6£) - [ata+g] at (9)
= = A -
Go’T 7 £, +(T-7)

Equations (8) and (9) can be combined to give

B eyt T) - sley) - syt ) ce 0] L 00

T

It is this equation which relates the random phase fluctuations with the
corresponding errors in the time determination,

Meaningful Quantities

It is again of value to further restrict the discussion to a
particular situation and generalize at a later point. In particular, let

T = 37 then Equation (10) becomes

5t = z(ti+37) - glt,) - 3[5(tA+2,T) - E(tA+T):l. (11)

It is now possible to define the discrete variable, £ , by the
n

relation

and rewrite Equation (11) in the simpler form (see Table I)
5t = A ¢ (12)

3 . .
where A sn is the third finite difference of the discrete variable, Sn.



TABLE 1

FINITE DIFFERENCES

Discrete variable Definition
+ nT
e s(tA nT)
sn+1- en e(tA+'r)—s(tA)
- +271) -2 +
A£n+1 Asn s:(tA T) s(tA +T)+ ¢ (tA)
§ s ale gt +371)-3[et +2
) 0t N A - 3lele, T)—S(tA+T)]—E(tA)
A3s A3s gt +4r)-4[e(t +3T)+e(t, + )]
ntl ~° n AT A AT
+6€(tA+ZT) + s(tA)




Similarly, Equation (2) may be integrated directly using

Equation (1) to obtain

2
¢(tA)=QO t:tA+%tA+€(tA)]+¢(o)‘ 13)

Thus, by defining another discrete variable,*\qi'n, the third difference of

Equation (1 3) yields the relation
ATd = Q Ae (14)

or equivalently
1 3
Gt-(qﬂ ¢ - (15)

It is now possible;to set up a table of meaningful quantities for time

;

measurement (see Table II).

Experimental Determination of Phase Fluctuations

If one measures the phase difference between two oscillators,

Equation (15) applies to both,and hence the difference phase,

-, (D (2) . . : _
en = cpn - ¢n ,is related to the difference time, 6t12 = 6t1 ﬁtz,
by the relations,
st == ate =ade (N _ A3 @ (16)
12 Q4 n n n

Provided that the cross-correlation coefficient, (( A3 £ (1))( A3 E> (2))> ,
(1) - i

is zero (i.e., the gn are non~correlated), the variance of 6t12 becomes

2 3 2
5 = (et )y = ((a sn(l)) Y+ ((A3sn(2))2> , (17)

-1 0-
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since it is assumed that ( A3 gn> = 0, The assumption that the cross-
correlation coefficients vanish is equivalent to postulating an absence
of linear coupling between the oscillators either electrically or through
their environment., It is of value to develop a scheme which is capable
of classifying individual oscillators rather than treating ensembles of
assumed identical members, Thus this development is restricted to

time averages of individual oscillators rather than ensemble averages.

If three oscillators are used, it is possible to independently

measure the three quantities 0., o 3 and ¢, ,. Thus there exist

12 1 23

three independent equations:

2_ 2, 2
Ti12 7% T,
2 2 2
_ 18
13 T 0y tog . - 19
; 2_ 2, 2
23 =T TO03

While the three equations,

st - adpli) L A3.0) {1 j=1 2,3
ij n n i< j

are not linearly independent, the standard deviations o—fj given by Equa-

tions (18), in fact, form linearly independént equations (subject only to

certain conditionsanalogous to the triangle inequalities). Thus the systems
2. (st )2 It i
=/ 6i Y- is

of Equations (18) are solvable for the three quantities o,
i
thus possible to estimate the statistical behavior of each individual oscillator.

-12-



The block diagram of the phase meter which was used is shown
in Figure 2 ., The basic system was alligned with an electrical-to-
mechanical angle tolerance of about £ 0.25% of one complete cycle,
and since the phase meter is operated at 10 Mc/s, this implies the
possibility of measuring the time difference to £ 0. 25 nanoseconds.
The output shaft in turn drives a digital encoder with one hundred
counts per revolution and a total accumulation (before starting over)
of one million. Thus the digital information is accurate to within one
nanosecond and accumulates up to one millisecond. Since measurements
are made relatively often, it is easy for a computer to spot when the
digital encoder has passed one millisecond on the data and this
restriction on the data format in no way hampers the total length of

the data handled.

Since the oscillator is assumed to have a linear drift in frequency

L J

with time, the variance (about the mean) of the second difference of
the phase should depend only on the én(i). For the evaluation of clocks,
it is the mean square time error which is important and thus the mean
square (rather than variance) of the third difference of the phase is

the quantity of importance. Calculations of these quantities from the
phase, en, were accomplished on a digital computer. Normally the
phase difference is printed every hour for at least 200 hours and the
computer program computes the A?‘en and A 3Gn for 7 equal to 2, 4,
6,8, etc., hours. Thus it is possible to plot the square root of the
variance of the second difference and the root mean square third
difference of the phase as a function of the variable . A typical plot

of these two quantities appears in Figure 3.

Since many revolutions of the phase meter are normally en-

countered between data points, the combined effects of non-perfect

-13-
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electrical-to-mechanical phase and rounding errors of the digital
encoder can be combined into one stationary, statistical quantity, v,

that can be assumed to have delta-function auto-correlation, Let x
represent the rounding errors of the digital encoder defined by the
difference between the encoded number and the actual angular position

of the shaft. Then these rounding errors form a rectangular distribution

from -0.5 nanoseconds to +0. 5 nanoseconds, and thus contribute an

amount

= 0.08 nanoseconds

2. . . .
to (y ). The non-perfect electrical-to-mechanical phase conversion
is sinusoidal in nla;ture and thus contributes an amount equal to

’

2 2
£(0.25)" = 0.03 nanoseconds .

The final value for <y2> should then be about 0.11 nanosecondz.

This was checked by taking two very good oscillators operating
at a rather large difference frequency (~ 5x10-9), and printing the phase
difference every 10 seconds for several minutes. Since frequency
fluctuations of the oscillators are small compared to 1x10-10, the resultant

scatter can be attributed to the measuring system, The results of this

2 2
experiment gave the value 0.19 nanosecond for (y ).

-16-



Since y is assumed to have a delta-function autocorrelation,
3 .2 2
reference to Table I shows that ((A'y) ) = 20(y ), and thus Equation

(18) may be more precisely written,

2 2 2 2
0‘12 —0‘1 +0'2 +20<Y>
2 2 2
0'l3=0'1 +0"3 +20<Y> ) (18')
2 2 2
T, 50, +o‘3 +20 (v )

For the best oscillators tested, o-izj became about 2<(A3y)2> for T = 103
sec.,, and therefore measurements were limited on the lower end to
20 min. or 1200 sec. The longest run made lasted a little over 2 month
or about one thousand hours. Thus the largest value of 1 which might
have reasonalgle averaging is about one hundred hours or 3. 6 x 105 sec,
This limits the results to about two orders of magnitude variation on 7.
While it is possible to build appropriate frequency multipliers
and mixers toimprove the resolution of the phase meter and reduce the
lower limit on T, it was considered that the longer time intervals are
of greater interest because T (=31) is normally between one day and one

week,

-17-



II. THEORETICAL DEVELOPMENT

Introductory Remarks

In the development which follows certain basic assumptions are
made. It is assumed that the coefficients Qo and ¢ of Equation (1) may

be so chosen that the average value of £(t) is zero; i. e. ’
(e(t)) = O.

It is also assumed that a translation in the time axis, tA—> tA + £,

(stationarity) causes no change in the value of the autocovariance function,

R_(7) (e(t) - £(t+T))

(E(t+E) - £(tHE+T)). 19)

The justification of this assumption lies completely in the fact that the
results of the anz;a,lgrsis agree well with experiment and the results of
others. In the development which followé, one cannot assume that
R_(0) = ([e®]%)
€
exists (i. e., is finite) and hence reference (17) cannot guarantee that Equa-
tions (19) are valid. While it may be that RS(T) does not exist,

quantities such as

U(r) = 2[Rg(0) - Ré(Tﬂ (20)
may exist and be meaningful if limits are approached properly. Itis

thus assumed that relations such as Equation (20) have meaning and

may be handled by conventional means.

-18-



Development of Experimental Results

All oscillator pairs tested which exhibited a stable drift rate as
indicated in Figure 1 and did not have obvious diurnal fluctuations in
frequency, showed a definite, very nearly linear dependence on T for
both the standard deviation of the second difference and the
root mean square third difference of the phase. It was observed that
if an oscillator were disturbed accidentally during a measurement, the
plot would have a more nearly 3/2 dependence. This is probably
because the assumption of a negligible quadratic dependence of frequency
with time is not valid when the oscillator is disturbed. All oscillators
tested, therefore, were shock mounted and all load changes and physical

conditions were changed as little as possible,

A least square fit of all reliable data to an equation of the form

‘\/((Amsn)2> = ka“ m = 2,3,4 (21)

gave a value of 1. 09 for the average of the u's. The values of u ranged
from about 0. 90 to 1.15(and even to 1. 5 when the oscillators were
disturbed during the measurement). It is of interest to postulate that,
for an '"ideal, ' undisturbed quartz crystal oscillator, the value of pu
is exactly the integer one, and investigate the consequences of this
assumption.

Because certain difficulties arise at the value p=1, it is essential
to calculate with a general . and then pass to the limits H“’l(—) for
the quantities of interest. This is equivalent to considering a sequence

of processes which approach, as a limit, the case of the "ideal' crystal

oscillator. Thus equation (21) may be rewritten for m=2 in the form

<(A25n)2> = k|t |28 (22)
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Using Table I,Equation (22) may then be rewritten as
6([e(t ]2 8¢eft ) et + + 2¢e(t, ) et +2 —k||‘7"“L
(et )17y - 8(elt,) elt, +7)) + 2(e(t,) et +27)) = K |7
or equivalently

6R_(0)-8R_(7)+2R_(27) = kle lz“ . (23)

As mentioned above, the function U(r) is defined by the relation

U(v)

([ett,) - e(tA+T)]2>

2[R_(0)-R_(7)] (24)

and is assumed to exist, Equations (23) and (24) may be combined to

give -

4U(r)-U2t) = k| l?‘“. (25)

5|
If a trial solution of the form

Utr) = A@- |7
is used, one obtains

a@: [ [Pra-zPr= i |- %

from which one concludes that

1
P

(¢-2Ra(p)
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and

k2

2
U(r) ST Ir| (26)
4-2
where p < 1 since U(r) and k2 are non-negative. Equation (21) may thus

be satisfied if

Lim (4-2°")A @2y = k,, (27)
Wl (-)
which implies that A(2) is infinite. It is for this reason that the

limiting process must be employed.

It is not necessary , however, to assume a particular form for A(2})
e .
because Fquation (27) is sufficient for the purposes of this development,
It is now possible to determine the mean square third difference of

an; i.e., from Table I,

<(A38n)2> = 20<[s(tA)]2> -30([eft ) eft ,+m)]) 28)
+12<[e(tA)~ s(tA+ZT ) —2<[s(tA)- S(tA+3T R

where use has again been made of Equations (19), Equation (28) may

equivalently be written in the form
3 2
(A Sn) y= 15U (r)-6U(27)+U(37), (29)

which may be combined with Equation (26) to yield

2
k, |7
((A3sn)2> = —3——2—-[15-6(22“)+3

(4-2"H

M7 (30)
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If one now passes to the limit p—»l(-),Equation (30) becomes
kZTZ (24 In2 - 91ln3)
41n2

3 .2
€ = 1
(e )% (31)
Thus a quadratic dependence of the variance of the second difference of
the phase implies a quadratic dependence of the mean square third

difference, and the ratio

3 .2
(A sn) N

= 1,5601... (32)
2
((Azen) )

is independent of T. The average ratio of the points plotted in Figure 3
is 1, 65, Values ranging from 1.4 to 1.7 were observed for various
runs on different oscillator pairs. The average value for all reliable data

taken is 1, 52,

Generalization of ithe Time Error Problem

The average frequency of an oscillator over an interval of time is
just the total elapsed phase in the interval divided by the time interval.
Since errors of the frequency standard are not presently being considered,

the calibration interval of page 7 gives rise to an error time, &t, which

could be expressed as a sum

6t = a o, +b T), (33)

(o]

13

L
Q
o

where m+l is the total number of terms and the set {an, bn} are chosen
to fit the particular calibration procedure. Indeed, any calibration
procedure must give rise to an error time which is expressible in the

form of Equation (33).
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There are, however, certain restrictions on the {an, bn} which
are of importance. First, it is a matter of convenience to require that
b1>bn for £>n, Also, if the oscillator were absolutely perfect, and
s(tA) were identically zero, one should logically require that the error
time, 6t, be identically zero, independent of,tA, the drift rate ¢ and

the basic time interval, 7. That is, from Equation (13)

m m
- a % <
ot = Zan (tA+bnT)+2 Zann (tA+bn-r) =0 (34)
n=o n=o

for all tA’ o and 7. One is thus led to the three conditions:

m
Z a =0, (35)
n
n=o
m
’ Z a bn =0, (36)
n=o
m 2
Z a b =0, (37)
n=o

It is of interest to form the quantity

m m m m m
2
(Za b2>(Za>: a2b2+ Zaab+2a abz,(38)
n n ] n n n £ n n £ n
n=o n=o n=o n</t <n

and it is now possible to interchange the subscripts n and 4 in the last

term of Equation (38) and write the equation in the form

m m
2.2 2 2

Zanbn+Zanal (bn+b£) = 0, (39)

n=o n<f
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Subtracting the square of Equation (36),

m m m m
(2 am )32 ) 2ain e 2wy
n n L2 n n n{ ng’
n=o =0 n=o n<{
one obtains
m
a (b b )2 = 0 (40)
Zan £ 1 n

as another condition on the {an,bn}. Equation (40) is, of course, not
independent of Equations (35), (36), and (37).

For the acutal situation where S(tA) is not identically zero,
one is reduced, as before, [see Equation (7)] to using conditions (35),

(36), and (37) since S(tA) is not knowable, The time error then becomes

m

; 5t = zan- eft, +b_T) (41)

n=o

where use has been made of Equations (13), (33), and the restrictions
(35), (36), and (37). Note that Equation (41) is the generalization of

Equation (10). The square of Equation (41) can be written in the form

m m
2 2 2
(6t) = Z a_ £ (tA+bn-r )+ ZZ anal I[e (tA+bn-r ) s(tA+b£-r )] (42)
n=o n<f
which may be averaged over tA to yield
m m
(Zi'c)2 —Z 2 t 2 +2 [ 4
( ) - an <(8( A)) > Z anal < s(tA) ’ E:(tA.i_ (bl -bn)T )]> (#3)
n=o n</

where use has again been made of Equation (19).
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The square of Equation (35) may be written as
m m
2
+ =
Zan 2 Zanal 0,
n=o n<{ .

and Equation (43) then becomes

m

((6t)2> = - Zanal {2(82(1:A)> - 2<[s(tA)- et + (bl-bn)T)b}.

n</g

Combining Equation (44) with Equation (21) one obtains

(1% = - Zanal Ulfb, - b_)7).

n</{

Substitution of; Equation (26) in (45) yeilds
. m

2p
-b
anal (bl n)

2 2
<(6t) )y = _kZITI K n<l4 ,
2u
4.2

(44)

(45)

(46)

which is indeterminate of the form (0/0)for p=1 because of Equation (40).

Making use of L'Hospital's rule, the limit of this expression as p—1

is
k'r2 m

2 2
(60)°y = = Zanaz(bl—bn) In(b,-b ).
n</{

(-)

(47)

Equation (47) is thus the generalization of Equation (31). Since many

terms appear in the summation in Equation (47), a computer program

was written for evaluation with particular sets of {an, bn}.
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Comparison With Others

If one were to assume that Equation (20) could be solved for

RS(T), one would obtain
R ()= R_(0) = U(r) 48
g\T) = Rl0) -5 Ulr (48)

which expresses the autocovariance function in terms of U(71). If one
assumes still further thatthe Wiener-Khinchin theorem applies to
Equation (48), the power spectral density of £(t), is then the Fourier

transform of RS(T ); i.e.,
2
k|7

2(4-2%H } )

S_(6) = F.T. [Rs(o) :

2
Fortunately Fourier transforms of functions like |7 | M have been

worked out in refe¥ence (3), page 43. The result is

8 (w) - , .

=
2w

i

Ss(w) = (49)

2m (4-2°F

1
( 2w
relative to an angular frequency,w, rather than a cycle frequency

(f=

The factor of ) occurs because Sg(w) is assumed to be a density

wa ) as is used in reference (3). The first term on the right of
Equation (49) indicates an infinite density of power at zero frequency,
i.e.,a non-zero average. The zero frequency components are not
measurable experimentally and hence this term will be dropped as not
being significant to these discussions. The second term on the right
of Equation (49) is indeterminate for p= 1. As before,the limit as

(-)

po—> 1 may be obtained, yielding K

Saﬁﬂ)=

|2 (50)
8ln2

for the final result.
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The assumptions needed to arrive at Equation (50) are not wholely
satisfying and it is of value to show that Equation (50) implies that
((Azen)z) is indeed given by Equation (21) for m = 2. Only one additional
assumption is needed - - the Wiener-Khinchin theorem, Since Rs(T) and
Ss(w) are real quantities, this theorem may be written in the form

(o0}

Re(T) = 2 S.SS(w) cos wt dw, (51)

o

From Table I, one may obtain (after squaring and averaging) the

expression
A g - 6R 0 - 8R T t ZR 21 52

Substitution of Equation (51) in (52) yields

Qo

(I(Azsn)2> = 4 gSg(w)[3-4cos(wT) + cos (2wt )] dw . (53)

O

Using Equation (50) for Ss(w), it is a lengthy but straightforward
process to evaluate the integral in Equation (53). The result is,

in fact,
2

L]

2 2
(A sn) y = kZT

in agreement with Equation (21).
If gs(w) is the Fourier transform of &€(t), it is shown, for example,

in reference (3) page 20, that

g: (w) = iogs(w)
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is the Fourier transform of £(t). Thus the power spectral density of

£(t) is related to the power spectral density of £(t) by the familiar

relation

Sé (w) = wZSS(w) .

Thus the power spectral density of the frequency fluctuations of an
""ideal'' oscillator may be given as
kZ l l-l

S¢ ) = gTnz

?

that is, flicker noise frequency modulation. The existence of this
type of noise modulating the frequency of good quartz crystal oscillators

4—
has been reported by several others (4-8)

Comments on the ''Ideal'’ Oscillator

It has thus beén shown that the assunﬁptions of stationarity and ''ideal"
behavior form a Ibasis for a mathematical model of a quartz crystal
oscillator which is in quite good agreement with several experiments
and experimenters., On the basis of this model it is now possible to
predict the behavior of systems employing ''nearly ideal'' oscillators
with the hope of committing no great errors. There are compelling
reasons to believe that U(r) actually exists (see Chapter IV) for real
oscillators in spite of Equation (26). Such conditions require that the
lwl -1 behavior for the power spectral density of the frequency fluctuations,
cut off at some small,non-zero frequency. From some experiments ()
conducted, however, this cut-off frequency is probably much smaller

than one cycle per year, Such small differences from zero frequency

are of essentially academic interest to the manufacturer and user of
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oscillators. Quantities which may be expressed in the form of

Equation (41), however, where the coefficients satisfy conditions (35),
(36), and (37) have finite averages even in the limit as flicker noise
behavior approaches zero modulation frequency. Such quantities are
called cut-off independent in contrast to quantities like U(r) which

will exist only if the flicker noise cuts off at some non-zero frequency.
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II. ATOMIC FREQUENCY STANDARDS

Passive Devices

There are in use today two general types of atomic frequency
standards: (1) the active device such as a-maser whose atoms actually
generate a coherent signal whose frequency is the standard, and (2)
the passive type such as a cesium beam or rubidium gas cell. In the
passive type, a microwave signal irradiates the atoms and some
means is employed to detect any change in the atom's energy state.
This paper is restricted to the passive type of frequency standard.
Some experiments are in progress, however, to determine the
statistical behavior of a maser type oscillator.

It is first of value to discuss in what way a ''standard' can have
fluctuations or errors. Consider the cesium beam. Ideally the
standard would be the exact frequency of the photons emitted or
absorbed at ze;g magnetic field in the kF=4, mf=0) ~— (F=3, mf=0)
transition of cesium133 in the ground electronic state for an infinite
interaction time., This is, of course, impossible. This means that
the standard is at least less than ideal and one is thus lead to speak,
in some sense of the word, about "errors'' or even ''fluctuations' of the
standard.

Figure (4) shows a block diagram of a typical standard of the
passive type. An equivalent diagram of this frequency-lock servo is
shown in Figure (5),where Vl(w) is the Fourier transform of the noise
generated in the detectors, associated demodulating circuitry, and
the frequency multipliers of Figure (4). V2 (w) is an equivalent noise
voltage driving the reactance tube in the oscillator to produce the

é(tA) term in the unlocked oscillator. The power spectrum of
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Vz(w), then, is given by

2 -—
C SV2 = -l—;-‘ (54)

h
s . .
where -I—Jl is the power spectral density of the frequency fluctuations

of the unlocked oscillator.

It is easiest to treat the servo equations by the use of the
variable Q, defined to be the difference between the output frequency
of the multiplier and the '"ideal'' frequency of the atomic transition
(the output of the '"atomic device'' as shown in Figure 5 is then assumed
to be the constant zero). In order to preserve the dimensions of
voltage for the addition networks, it is convenient to assume that the
output of the subtraction network is -By where phas the dimensions of
volt-seconds. Thus the equation governing the operation of the servo

can be expressed, in the frequency domain, as

V() - BY ()
{—VZ (@) + jwT

:ICN =y (@) . (55)
1

This leads to a power spectral density for y given by
2 2 2
(NCO)°s,, @)+ N7 "h_ ]
1 (56)
2

) -rl2 + (ﬂ\IC)Z

S. (w) =
Y

where use has been made of Equation (54).
Normally, T, becomes of the order of (BNC) for w of the order

of 10 sec. _1. Thus for small w, Equation (56) becomes

S.. (W) (57)

for lwl <1 sec,



By applying the techniques of Chapter I to the difference phase
of two cesium beams, the curves shown on Figure 6 were obtained.
Through least square fits to the data and comparing the ratios of the
variances of differences (see Appendix ), the result was obtained that

the data fit curves of the form
m 2. _ ul
(A& y =8 ||

for n=l. 34,with an uncertainty (standard deviation) of about +0.04. Again

using reference (3) as before, this leads to the result that

s.@=—E, g=n 2 r (1) (58)
v l‘*”“ 1 4w 3

where p=0,34 + 0,04, One is thus led to the very strange conclusion

that the spectral ,d;stribution of the detector and multiplier noise

varies as ~ lwl-ll 3. It is not clear physic‘ally where such a noise

source might find its origin, although similar spectra have recently

been found in other equipment.

Ideally, for measurements over times large compared to the
servo time constant, the error accumulated during one measurement
interval should be independent of errors accumulated during non-
overlapping intervals, i. e., mathematically analogous to Brownian

(10)

-1
motion, This implies that S.(w) should be constant for |w|< 1 sec
Y

which does not seem to be the case in actuality, (15, 16)
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The Composite Clock System

If an oscillator's frequency is measured by an atomic standard,

the error in measurement of the frequency is given by

81 = lerT v{tA+1/a(T+r))Qy(tA+ VAT 7)) (59)

for a calibration interval as given on page 7. Also, if fs is the de-
fined output frequency of the frequency standard, the total error time
for the entire calibration interval, T, due to the Standard, is given

by T&f, and if the clocks contribute an additional error (uncorrelated
f
s

to the standard's error), of &t, the total error, 8T, is given by

_ref | (60)

f
s

8T = 6t +

i 2
It is of value to explore the dependence of ((&t) ) on the ratio
of T/7. In particular, let T= (2nt+l)T for Equation (10). This can be

put in the form of Equation (41) with the following assignments:

n an bn
o -1 | 0
1 2zat1 0 on
2 || -2n -1 n+1
3 | 1 2n +1

It is easy to show that these coefficients satisfy conditions (35), (36),

and (37).

Substitution of these coefficients into Equation (47) yields
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((6t)2> = 2ht2 {-2n°@n+ 1) 1n (0) + 2(n+ 1) @n+1)1n (n+1) (61)

- (.Zn’!-l)2 ln (2n+1)},

k,

h z —
where h 8 1n 2

Since T is normally small compared to T, it is reasonable to
approximate Equation (61) for large n. That is, the relative time

error is approximately given by

2
iﬁ%ﬂ-i ~ N2hln (n) |, (62)

where the approximations,

2

n>>1, In (n+1)'zln(n)+;11-,

have been used. It is apparent from Equation (62) that for a given
interval, T, the errors accumulated by the clock are not critically
dependent on the measuring time, T, since Nln (n) is a very slowly
changing quantity.

The mean square error associated with the standard, however,
can be written in the form

2 2. /T \2 2
0% = (2 )7 (e (63)

since Equation (59) may be written as the first difference of =

From Equation (57) it is apparent that the relative time error is then

given by
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2 2
T%((65)°) _ By n

2, 2 173, 2 ' (64)

T f @nmTt Tf)

s s

for n=1. 34 *0.04. Or, combining Equations (59), (62), and (64),
/ o j B

2 = N2hln(n) + (65)

T

1
(2n71/3fs)2

As one should expect, for a given T, the errors get less for larger T

but not very rapidly. In the limit of T =T [not using the approximate

Equation (65)], the errors are those of the standard alone, i. €.,

1 -2 _-2/3
2T Bl fs T - Also, as T-=0 the clock errors are unbounded,

Compounding Time Errors

Equation (65) represents a reasonable approximation to the
time errors of a clock system after one calibration interval. The
next question is: how do the errors of many calibrations compound

to give a total error, & (NT), after N calibrations? Returning to

Equation (59), one may write

N
§(NT) = E 8T (66)
n=1

where 6Tn is the time error associated with the n-th calibration

(11)

interval. There have been papers published that assume that the
errors of one calibration interval are not correlated to the errors of
any other calibration interval. It is now possible to investigate this
assumption more precisely.

In particular, the clock errors (not including the frequency

standard errors), 6tn, compound to give §(Nt), given by
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N
6(Nt) = Z 6tn, (67)

n=1
which can obviously be put in the form of Equation (41). For N equal
to any number larger than one, the algebra becomes much too lengthy
for actual calculation by hand and it is desirable to make use of a digital
computer. Table III shows the results of this calcualation for compound-
ing several third-difference-type calibrations. It is interesting to
note that, in fact, the total mean square error after N calibrations is
very nearly equal to N-times the mean square error after one calibration.

This is in quite good agreement with reference (11),

The errors associated with the frequency standard, unfortunately,
are not so easily assessed due to the uncertainty of the origin of the
-1/3
ol / type of noise, If this noise arises from non-fundamental

(12)

processes eﬁecting such things as phase shifts in the cavity of a

cesium bea'rn using Ramsey type excitation, the auto covariance
function of this noise must vanish for times of the order of the time
between phase alignments of the cavity. On the other hand, if it is,
in fact, a fundamental property of the frequency standard itself, one
must calculate the errors entirely on the basis of the fwf_1/3 type of
noise.

In the absence of experiment or theory relating the ’w]—1/3
type of noise with fundamental processes in the standard, it does not
seem unreasonable to assume the noise to be of a non-fundamental
nature and approximate the total mean square error as N-times the
mean square error of one calibration. Within one calibration
interval, one must certainly calculate on the basis of !w[-1/3 type

noise, Thus the RMS relative ervor may be approximated by the

relation
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TABLE III

THEORETICAL DETERMINATION OF TIME ERROR PROPAGATION

N
{3 ?—>
n
n=l
2
N <( th >
2 2.054
3 3. 109
4 _ 4, 165
5 5.220
6 6.276
7 7.332
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“2/3
feoery® _ [*Rin+ By L2 (68)
NT N

where h, n, B,, fs’ and T have the same meanings as in Equation (65).

1
. -1/3 .
It is worth noting that if the lwl / noise is of a more fundamental

nature than was assumed for Equation (68), the total RMS error of

_ -1/3 -
Equation (68) would have a term decreasing as N / instead of N 1/2.

The conclusions which can now be drawn are that: (1) the total
RMS time error of this clock system from an ''ideal' atomic clock is
unbounded as time increases, and (2) the relative RMS error time to
total elapsed time [Equation (68)] approaches zero about as fast as
N_l/z. It should be mentioned here that systematic errors in the
atomic standard have not been considered, While this is a very

12,
important problem, it has been treated rather thoroughly elsewhere(

13, 14)
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IVv. MEASURES OF FREQUENCY STABILITY

General Restrictions

It is of value to consider the problem of establishing a stability
measure in a very general sense. Consider some functional of the

phase,

X =X ($(t)) ,

from which the stability measure, ¥, is obtained according to the

relation

2

\172= Lim% S\

T—>o0

NI v

provided this limit exists.

In practice it is not possible to pass to the limit T - o0, and
P .
thus one measures for some fixed time, T; i.e.,

T
o -1 g’z I 12 a .

°-T
P

Under favorable conditions, ¥ _, may be a reasonable approximation to

T
¥. Unfortunately, this may not always be the case,

The frequency emitted by any physically realizable device
must be bounded by some upper bound, say B. The following

inequalities must, then, be valid:

[2(t) |<B, for some B> 0;

T
1 2 2 2
Lim-,f, 5 ©t)) dt = B
T—>00 _I
2
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With Sq;(w) being the power spectral density of 2 (t), it follows from

the definition of power spectra that

T
— o'}
Liml,I; ‘S\Z (Q(t:))2 dt = 2 g\ S&) (w) dw
T -T Y o
2
for real 2 (t), and thus
® 2
zS‘S 5 (w) dw = B™ . (69)
o

If S (w) has a flicker noise spectrum for small w, it is
apparent that this Ti—-l- type of noise cannot persist to absolute zero
frequency or the inequality (69) would be violated. It is thus
reasonable to postulate the existence of a lower cut-off frequency,

w for the flicker noise modulation.

L’

It is apparent from the above considerations that there may
exist stabiliitay measures for which \IfT begins to approachW¥only after T
is several times larger than z— . From some of the
experiments on crystal oscillators, (5) this may require T to exceed
several years in duration. This is quite inconvenient from a
manufacturing or experimental standpoint. The logical conclusion
is to consider only those stability measures, ¥, which are '"cut-off
independent, '"that is, those measures of stability which would he
valid even in the limit w_ - 0+.

1
Finite Differences

It was shown in Chapter II that an expression of the form

5t = a_¢(ttb T) (70)

&)

"N18

L
Q
o

-43_



will have a finite variance if the {an, bn} satisfy conditions (35), (36),
and (37). It is easy to show that the first difference of the phase (i.e.,
frequency) cannot be put in the form of Equation (70) with the coefficients

satisfying conditions (35), (36), and (37). Indeed, the limit

2
k, | |7
Lim U(T)= Lim ———E;——
1 ) L1 () 472

does not exist, and hence U(t) is not a good measure of stability.
The variances of the second and third finite differences,
however, are convergent. It is of interest to note that the first line

of Table III may be expressed in the form

<IA3¢n+3 +A3¢n|> 3 2.054 ,
((4%,)%)

which may be sir;qplified to the form

(Ea)Eo))y L
()

This equation expresses the fact that a third difference has a very

small correlation (~3%) to an adjacent, non-overlapping third difference.
By extending this procedure with the other values given in Table III, it

is found that the correlation of one third difference with a non-overlapping
third difference becomes small very rapidly as the interval between these
differences becomes large. This is sufficient to insure that the variance
of a finite sample of third differences will approach the "true' variance
(infinite average) in a well behaved and reasonable fashion as the sample

gets larger.

~44-



Variance of Frequency Fluctuations for Finite Averaging Times

Even though the variance of the first difference of the phase
does not satisfy the condition of being cut-off independent, it is possible
(by specifying both the sample time and the total averaging time) to
construct a cut-off independent measure of the frequency fluctuations.

Instead of ¥ the variance of N adjacent .samples of the frequency

T’
will be denoted by ¢ (7,N) where T is the sample time for each of
the N measurements of frequency. The variance is given by the

conventional formula

N
200 Ny = L E [A‘bi _¢N+1-¢1 2
e Na T NT ‘
i=1

If one neglects the drift rate, o, which is essentially equivalent to

obtaining the standard deviation around a linear drift, one obtains

<‘2(T,N> =.’ '(—N,_-—i);—z {N<[S(t+T) - S(t)]2> -}I\T <[8(t+I‘IT) - S(t)]2> -(71)

For the case of an ''ideal' crystal oscillator, Equations (19), (24), and

(26) allow Equation (71) to be simplified (after passing to the limit
(-)

)} to the form

<T2(T’N> ) Zhl\l\II_lix(N)-

2 ) .
Thus as N increases, the expected value of ¢ (7v,N) increases without

p=1

1 . .
bound (at least until Nt ~ ——— ). It is interesting to note that for a
2 . .
given oscillator, (o (T, N> I1‘1as a minimum value for N = 2. Obviously
one would have to average several experimental determinations of

2
O'Z(T ,2) in order to have a reasonable approximation to {o (7, 2>
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While ¢ (T, N) is a cut-off independent measure bf frequency
stability, it has the significant disadvantage of being a function of two
variables. Indeed, in order to compare the stability of two oscillators,
both the T's and the N's should have nearly corresponding values.

Delayed Frequency Comparison

In radar work,often the frequency of a signal is compared to
the frequency of the same source after it has been delayed in
traversing some distance--often a very great distance. One might
thus be interested in defining a stability measure in an analogous

fashion:

\I/Z(T,T) =([<p(t+T+1T-) -$t+ T) ¢(t+-Tr) - $(t) 2 (72)
N

~
Again neglecting the drift rate, a, of the oscillator, Equations (24)
and (72) combine, to yield
2 1 7
v (t,T) = - 2U(t) - U(T-7) + 2U(T) - U(T+7) | . (73)

T

After substitution of Equations (26) into Equation (73) the

equation can be rearranged to give (again passing to the limit, p»l(-))

\I/Z(T,T) = -Zh]fz Inp - (1+p)21n (1+p) - (p-l)zln (p-l)} ,

where p = —3_-: . Although this is a rather complicated expression,
T
it may be simplified with the approximation p = p >>1. The
result is
N (T,T)=4h(z+1n%),for % >> 1 (74)
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for an "'ideal'" oscillator. It is interesting to note here that even
s 1 . .
when considering only -l——,- type of noise, one cannot pass to the limit
w

+
T = 0 for this problem. In the limit as T — 0 ,the expression

Lim +[4’(t 1) 'é(t)] = $(t)

Q (1)
T>0 T .

and thus

Lim \I’Z(T,T) =<[Q (t+T) - 9(t)}2> -
+

T -0
from Equation (74), even though T << —;1— .
Again ¥(t,T) is a function of two %’ariables with all of the
associated annoyances. It may, however, be useful in certain

applications.
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V. THE NBS - A TIME SCALE

The Clock System

For reliability of operation it is necessary to have several
independent oscillator-counter (clock) systems. In order to determine
a malfunction of a particular unit with skome degree of reliability, three
independent systems are an absolute minimum. For a more certain
determination of such a malfunction even in the event that one system
is down for maintainance purposes (e.g. its frequency is being reset to
maintain agreement with nominal value * one point in 10°® ), five
independent clocks is a more desirable number.

The clock system maintaining the NBS-A time scale is comprised
of five independent oscillator-counter (clock) systems. Each clock has
its own, independent power supply with battery back-up to maintain
uninterrupted operations in the event of failure of the 60 Hz commercial
power., These batteries will maintain clock operation in excess of 10
hours. Emergen/cy power from a diesel generating system is available
for more prolonged outages. The mean '""down time'' for a clock in the
system is less than one day per year of operation and hence the
probability of simultaneous failure of all five clocks is less than
the probability of some catastrophic event (e.g., a flood) destroying
the time kept by the whole system. During the past three years no
interruption of operation or complete loss of time has, in fact, occurred.

The frequencies of the oscillators are measured against the
United States Frequency Standard (USFS) by ''beating' the nominal
5 MHz signal from each oscillator in turn with the 5 MHz signal from
the USFS. The period of the beat note is counted on a frequency counter
and about a 15-minute average of each oscillator's frequency is

obtained. The date, time-of-day, period, and coding information
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are automatically transferred to punched cards for computer analysis.

Also the five clocks are intercompared by using the frequency counter

in a time-interval mode. With the counter set to count a standard 10 MHz
signal,the gate is opened by a one-second ''tick” from one clock and closed
by a ''tick' from another clock. Thus time differences between clocks

are readable to + 0.1 usec, and again all data are automatically transferred
to punched cards.

Operation of the Clock System

In Chapter IV it was shown that the expected value of the variance

of the frequency fluctuations, {(6® (1, N)), is given by

2 ~2h Nln N
(o™ (7, N =—F 7 —
kg . . .
where h = 813 Also, in Chapter I it was shown that for a given

calibratibn procedure [Equation (47)] the mean square error time,
{(6t)®), is proportional to k. For the situation where there exists
M non-identiclal clocks (M=5 for the NBS-A system), the errors of the
(1)

i-th clock may be determined from the constant ky ', or equivalently,
the merit of one clock relative to the other M-1 clocks may be expressed
in terms of (oie('r, N)) since all clocks are calibrated with the same T, and N.

That is,

(68)%) = K (02 (T, N)), §= 1,2, M, (75)

where K is the same for all oscillators.

The final form of the time error problem may now be stated as
follows: After N calibrations of frequency have been performed on
M (=5) oscillators (which should not be assumed identical), what is the

least biased estimate of the true elapsed time? That is, if we take Wi
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to be the weighting factor for the i-th clock and define the elapsed time, t,

to be given by

M
t = }:Wi t, (76)
i=1

where the weighting factors satisfy the equation

M
zwi - 1, (77)
i=1

for what set of weighting factors, Wi’ will t have the least probable
error?

While the solution to this type of problem can be found in many
statistics books,it is reasonable to go through this derivation again, here.
This problem may be stated as a problern in Legrange undetermined
multipliers: Find the minimum value of the variance of t [obtained from
Equation (76)] su:t)j;ect to the constraint of Equation (77). Letting X be the
undetermined multiplier, the solution to the problem may be found by

the simultaneous solution of the M equations

M M
ﬁ?f'f [wa <(6ti)2> - A CZWi B l)]
R i=1

"
(o]

1,2, " M. (78)

.
u

and also Equation (77). In order to obtain Equation (78) it is necessary

to assume that

((6t, 8t.)) = {(6t)3%) &_.
i3] i ij

where éij is the Kronecker §-function; that is, the oscillators errors are
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not correlated to each other and thus

M
Variance (t) = ZWf ((61:,1)2 Y.
i=1

Solving the M Equations (78) for Wj,one obtains

X 3 - e » a
WJ = W) j= 1,2, M (79)

which may be combined with Equation (77) to yield the solution

Wy~ (6t)2> [ZWJ (80)

Some trial values can quickly satisfy one that Equation (80) does indeed
represent a mihimum and not a maximum. By virtue of Equation (75)

this may be rewritten in the form

M
Wj ) (o.z(w},N [ 21(02 ('rl N) )J . (81)
1=

Equation (81) expresses the fact that the least biased estimate of
the elapsed time is a weighted average of the M(=5) clocks wheré each
clock is weighted inversely proportional to the variance of the frequency
fluctuations around a linear drift (see Chapter IV). The NBS-A system
is normally operated by accumulating data on a working-day basis for
about two weeks. On the basis of 10 to 12 fréquency measurements for
each oscillator a least square fit of a straight line frequency drift is
obtained for each oscillator and the mean square deviation from this

line is also obtained. The weighting factor for each oscillator is then
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calculated according to Equation (81), all calculations being performed
automatically on a digital computer.

Assuming a linear drift for the frequency between each pair of
calibration points for an oscillatoy it is thus possible to estimate the
increment in the time difference between indicated time and true
atomic time for each clock. The difference between center-interval
calibration (Chapter I) and linear interpolation between end-point
calibrations can easily be shown to be insignificant for exactly periodic
calibrations as the number of calibrations increases without bound.
However, linear interpolation between end-point calibrations allows
an extension of the treatment to where calibrations are not exactly
periodic and is therefore a more practical approach.

Assume that t (i)

A
Qi is the total accumulated correction for the i-th clock at some instant

is the indicated time of the i-th clock and that

according to some calibration process. Thus there exists M (in this case

’

M=5) equations

_ o, @
t. = t,

+Qi . i=1,2," M (82)
Data are also takento give the time difference between pairs of clocks.
It is a matter of convenience to check all clocks against the last or
M-th clock and thus their exists M-1 independent, measurable quantities,
®Mi given by .

O .=t -t i=1,2,'" M-1 (83)

Equation (83) is a set of M-1 linearly independent equations in the M

A(l) and the known quantities Q

unknowns t and 8 .,
Mi

M 9
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Equations (83) and (82) may be combined to form

i=1,2,"""M. (843

i Mi

= - -®
t, tM + Qi. QM
It is now possible to substitute the M Equations (84) [for i = M,
Equation (84) reduced to the trivial equation tM = tM] into
Equation (76) and obtain
M-1
Eet= ) W (Q Q-8 ), (85)

i=1

which may be combined with Equation (82) to give

M-1
M) _ -
t-th Oyt E W (Qi“QM'OMi)' , (86)
i=1

(M), differs from the least

Thus the M-th clock's indicated time, t,
biased estimate of true time, t, by the amount given in Equation (86)
and is expressed entirely in terms of known quantities. Since the
difference time between the M~th clock and all others is known

(®Mi)’ it is an easy matter to obtain the total best correction for

each clock in the system. These total best corrections are incremented

by the next calibrations of the oscillators to form the new Q.'s for the next
1

calculation.

Evaluation of the System

In the present operation of the NBS-A time system, clock No. 5
is located in a separate room from the other four oscillators with
independent ambient temperature control. If clocks within the system

are influenced by diurnal variations in ambient temperature, one would
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expect a systematic accumulation of time difference between clock No. 5
and some other clock when each clock is treated independently and not
corrected 10 the mean. Figure 8 shows the accumulation of this
difference for clocks 5 and 4. It is apparent that systematic errors are
certainly less than one part in 10'%; however, there is an indication of

a variation with about a one-year period which will require a longer
investigation to verify.

An analysis of the data for two-months periods indicated that the
data fit well into random walk behavior. The variance of the n-th
finite difference (nz1) is nearly linear with delay time and the ratio
of variances of finite differences agree well with the values given in the
Appendix for a random walk (n = 1).

Table IV shows the relative RMS time errors expected from the
five clocks of the NBS-A time system as determined from an analysis
of finite differences. The values listed are computed from Equation (47)
for a calibration, i:lterval of one day with a 15-minute comparison to the
USFS. Also indicated on the table are the weighting factors one would
expect on this basis. The weighted average should have a standard
deviation of 1.8 X 10_12 or a three-sigma value of 5.4 X 10-12. Thus
the present clock system contributes an error after one day of about

(13)

the same magnitude as the USFS which has been estimated at

5X 10-'% for a three-sigma limit also. After N days the clock error
should be reduced by a factor of N—% and thus for periods longer than
a few days the limitation of the time keeping is any systematic errors

of the USFS itself which are believed to be less than the 5 X 10~ *2 figure.
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TABLE IV

QUALITY OF THE OSCILLATORS IN THE NBS-A SYSTEM

Clock No. “(—@2—)

Weighting Factor

T

1 10 X 10712 3. 4%
2 22 X 1071% 0.7%
3 4 X 10713 21.1%
4 3X10°1? 37. 4%
5 | 3Xx 10713 37. 4%
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Conclusion

The assumptions of stationarity and ''ideal" behavior for a quartz
crystal oxcillator lead to a statistical model which agrees well with
many different experiments. One finds, however, that certain quantities.
are unbounded as averaging times are extended and it is important to
consider only those quantities which have reasonable hope of converging
toward a good value in reasonable time. Thus the concepts of cut-off
dependent and cut-off independent measures of frequency stability form
a natural classification for all possible frequency stability measures.

On the basis of '"ideal' behavior, it has been shown that the errors
of a clock run from a quartz crystal oscillator and periodically referenced
to an atomic frequency standard accumulates error at a probable rate
proportional to the square root of the number of calibrations. That is,
the errors of one calibration interval are essentially uncorrelated to
errors of non+~overlapping intervals in spite of the fact that '"ideal"
behavior is highly correlated for long periods of time.

It has also been shown that the method of finite differences can be
a useful method of determining spectral distributions of noise as well
as being a possible measure of frequency stability. By using higher
order finite differences, phase fluctuations with even a high order pole
at zero modulation frequency can similarily be treated. The need for
higher than second or third differences, however, has not yet been
demonstrated.

It should also be noted that the existence of higher frequency
modulation noise of different origin also has significant affect on
stability measures. In general, the factors which limit the system to
a finite bandpass are sufficient to insure convergence of the stability
measures as w~- «. If it is primarily the measuring system which

limits the system bandpass, however, the results may be significantly
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altered by the measuring system itself.

The techniques of the first four chapters have been applied to an
actual clock system (NBS-A) and an evaluation of its precision obtained.
The clock system should contribute an uncertainty of less than 0. 5ysec.
per day (-6 parts in 10*?) in a random uncorrelated fashion -- i.e., a
random walk process. The precision (not accuracy) of the USFS
being only a few parts in 102 for a 15 minute comparison(}?®), it is
primarily the precision of the clocks which determine the overall
precision. In accuracy, however, it is the USFS which ultimately
limits all measurements to an accuracy (not precision) of 5 parts in

1012,
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APPENDIX

Ratio of Variances

Let €(t) be a real generalized function such that <s(t)> = 0 and

define the discrete variable sm by the relation
g = & (t+mt). (A-1)
m

Also let the autocovariance function of £(t) be, as before, independent

of a simple time transition - " One may now write (see

Table I)

2
(be )7y =2 [((sn)2> -(lew+ 1) e (0)]Y] (A-2)
and assume that
. 2. n
: ((Ae )7y "= kvl (A-3)

where klis a constant for a given m. It is also possible to obtain the

variance of the second difference:

((Azsm)z) = 6 ((sm)z> -8 ([efttr) - e(t)]) + 2 ([e(t+27) € (O)]) . (A-4)

Using Equations (#-3) and (A-4),one may obtain

2 2
((8%_)%) ] 4k1T”-k1(zT)” s,
— L. .
<(A£:m) ) kl'r
=4-(2)"
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Since Equation (A-5) must be non-negative (¢ is real), the exponent

is restricted to the range n = 2.
Similarly one may obtain the variance of the third difference

<(A3em)2) = 15k - 6k (21)" +k (37)", (A-6)

and hence the ratio

32
<(A:m> 2> _15-6- @"+3" (A-7)
M
(ae )7 4- ()
Similarly,
4 2
(Be) ) s6-28- @748 (3)7-@)" (A-8)

3. 2 n n
(@7 )% 15 -6.- )"+ (3)

Equations (A-5),  (A-7), and (A-8) are plotted in figure 7 as a function

of the exponent, n.

For n= 4/3, as in figure 6, the theoretical ratios,
n+l 2
A
(& e )
n 2
. A
(ae 1))

for n =1 and 2 are 1.48 and 2. 84,respectively. The straight lines

drawn in figure 6 were made to have these ratios and slope 2/3

(the square root of the variances). '

-60-



3.6 T T I

20 — —
24
7y
o~ [1 4
1.8 |— . —
1.2 —
08 +— —
04 |— —
. I N B | T B 1
0.2 0.4 0.6 0.8 1.0 1.2 14 16 18 2.0
EXPONENT 7
<( An+l€m )2>
FIGURE 7: RATIO OF VARIANCES, ——————— | AS A FUNCTION OF THE EXPONENT n
n 2
(A" em)?)
e -61-



10.
11.

H.

REFERENCES
Lyons, ""The Atomic Clock', Am. Scholar, 19, 159-168
(Spring 1950).

J. A. Barnes and R. C. Mockler, ""The Power Spectrum and its

M.

Ww.

Importance in Precise Frequency Measurements'', IRE Trans.
on Instr., I-9, 149-155 (September 1960).

Lighthill, Introduction to Fourier Analysis and Generalised

Functions, Cambridge (1962).

. Malling, ""Phase-Stable Oscillators for Space Communications,

Including the Relationship Between the Phase Noise, the
Spectrum, the Short-Term Stability, and the Q of the
Oscillator", Proc. IRE, 50, 1656-1664 (July 1962). (See also
(6)).

R. Atkinson, R. L. Fey, and J. Newman, "Spectrum Analysis
of Extremely Low Frequency Va.riations of Quartz Oscillators'',

Proc. IEEE, 51, 379 (February 1963).

. L. Fey, W. R. Atkinson, and J. Newman, '"Obscurities of

Oscillator No';se", Proc. IEEE 52, 104-105 (January 1964).
Troitsky, '"Certain Problems of the Theory of Fluctuations in
Oscillators. The Influence of Flicker Noise'', Izvestia Vsshikh
Uchebnykh Zavedenii: Radiofizika, 1, 20-33 (1958).
Cutler, ''Some Aspects of the Theory and Measurement of
Frequency Fluctuations in Frequency Standards'', (to be

published).

R. L. Fey, private communication.

Basri, "Time Standards and Statistics' (to be published).

1
DePrins, '""Applications des Masers A N 5H a la Mesure et a la

3
Definition du Temps'', Universite de Neuchatel, (unpublished

Doctor of Sciences thesis, Universite Libre de Bruxelles (1961)).

-62-



12.

13.

14,

15.

16.

17.

R. E. Beehler, W. R. Atkinson, L. E. Heim, C. S. Snider, "A
| Comparison of Direct and Servo Methods for Utilizing Cesium
Beam Resonators as Frequency Standards'', IRE Trans. on
Instr., I-11, 231-238 (December 1962).

R. E. Beehler and D. J. Glaze, '"The Performance and Capability
of Cesium Beam Frequency Standards at the National Bureau
of Standards'' (to be published).

R. E. Beehler and D. J. Glaze, '""Evaluation of a Thallium Atomic
Beam Frequency Standard at the National Bureau of Standards"
(to be published).

P. Kartaschoff, "Influence De L'Effet De Grenaille Sur La
Frequence D'Un Oscillateur Asservi A Un Etalon A Jet Atomique',
Rapport L.S.R.H. No. 08-64-01 (Laboratoire Suisse de
Recherches Horlogeres Neuchatel, Swiizerland).

Peter Kartaschoff, ""Etude D'Un Etalon De Frequence A Jet Atomique
De p;sium", Laboratoire Suisse de Recherches Horlogeres,
Neuchatel, Switzerland (November 1963).

N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary

Time Series (The Technology Press of the Massachusetts

Institute of Technology and John Wiley & Sons, Inc., New York,
January, 1957).

-63-



Atomic Timekeeping and the Statistics of
Precision Signal Generators
by

James A, Barnes

ERRATA
Equation (6), page 209 should read:
ta2 .
At = Aty -f [aty + E(tA)]th. (6)
tal
Equation (8), page 209 should read:
tAﬂ'T
ot = [et, + €lat, - T o0 (8)
A A o/
ta . T

In Table II on page 210 under ""Quantity'', the last line should read:
H{ &%)

Equation (18), page 211 should read

o 2:0'2+0'2+ 20<Y2>

12 1 2

o ?=0%+0%+20y®) - (18)
13 1 3

23 . 2 3

On page 211 under II. Theoretical Development, the sixth line of text should

read: ty —'tA-l- €y ove



Equation (44) on page 213 should read:

m

((61:)2) = -Z anal {2 (63(tA)> _2<[€(tA) . e(tA + (bj

n< f

The equation between (48) and (49) should read:
2p
k, |7
S(w)=F.T.| R (0) -
¢ ¢ 2(4 - 2°H

The quantity in the text just after (65), page 217 should read:

., the errors are those of the standard alone, 1i.e.,

1 Bl

2w f T
s

.

Equation (68) should read:

(GINTIPy _ (2o inte) + Byr (2n £ )™
" NT ] N

Table III, the column opposite column '"N" should read:

2

O

n=1

<(f>tn)2>

The second equation after (70), page 218 should read:

([8% 5+ 8% %

. <(Aa¢n)2>

= 2. 054,

The equation between (73) and (74) on page 219 should read:

Errata Sheet Cont,

RIS (44)

(68)

V3(r,T)=-2h[28 Inp - (L +p)% In (L + p) - (o -1)% 1In (p -1)],



Page 3
Errata Shget Cont.

On page 219, second column, second paragraph, the first line of text
should read:

Again, V¥(r,T) is a function of two variables with all ....

Equation (78) on page 220 should read:

(A%,)%) = 6{(c ) - 8lle(t+ ) - «®)])+ 2 {[elt+ 2m)e(t)]). (78)



ERRATA SHEET

STATISTICS OF ATOMIC FREQUENCY STANDARDS
by

David W. Allan

Equation (12) p.223 should have summation from n =1 to N - 1 rather

(

than from n = 0

Z

-1

(N -n) { ]>
=1

o}

Equation (22), page 225 should read

lim

F oot <[<p<t + TT) - «a(t>]>= (€ (1)

Equation (24), page 225 should read

N-1
(¢®(N, T, 7)) = —ﬁ(—ﬁk__]—)_ Z (N-n) [—Z(nr)zln(nr)
n=1

+ (nor + )2 In (nr + 1) + (or -1)2 1n (or - 1)]

The next to last line in paragraph 1 of the Appendix should read:

1
“zero; and if |'rwBl IOH ! > > 1, then the equation for U(r)..."

UsComM4-BL



PAPER 1I1I

STATISTICS OF ATOMIC FREQUENCY STANDARDS

by

David W. Allan



TABLE OF CONTENTS: PAPER II

INDEX OF FIGURES......
INDEX OF TABLES. . tivttseectvoscesnnsannnses 1V
ABSTRACT. .. iietierntoncnnanensaennsanansnes 1
INTRODUCTION..... e

A. Power Spectrum and Variance Relationship... 4

B. Adjacent Sampling of Data............ ceeess b
C. Non-Adjacent Samplingof Data......cc.... . 10
D. The ""Flicker Noise'' Problem....v.0cv00.0.. 13
ATOMIC FREQUENCY STANDARDS, .......v ... 16
A. Pdssive Atomic Standards........... vesae. 16

B, MaSerS,...veesraoseraosocenssnscecsneess 18

EXPERIMENTS PERFORMED. ....... ceienn e.os 20
A. NISH3 Maser Comparison, iv.veeveeeeess . 20
B. Cesium Beam, Maser, Quartz Oscillator,... 21
Intercomparisons
CONCLUSIONS. eeeecsesarannas Ceiesiesianns e 23
ACKNOWLEDGMENTS. .. v ettt iereeenencennnn 24
AFPENDIX A...... cecae s ereseacaaaas . 25
APPENDIX B....vivevernrens the et anees eeee. 26
REFERENCES., . 0.t iteretecosnacanns cecreeans 39

—ii-



INDEX OF FIGURES AND PLATES

Page
Fig, 1 A Plot Showing the Dependence of the 29
Standard Deviation of the Frequency
Fluctuation on the Number of Samples
and the Type of Noise Present
Fig. 2 A Plot Enabling One to Experimentally 30

Extract the Statistics of an Oscillator by
knowing the Standard Deviation for N Samples
and for 2 Samples using S&J (w) = h|w| ~™7

at p=-2, -3

Fig. 3 Block Diagram of Maser Cavity Servo System 31

15
Fig, 4 Comparison of Two N "H, Masers; Standard 32
Deviation of the Frequency Fluctuations as a
Function of Sampling Time

Fig. 5 Cesium Beam (NBS III), N15H3 Maser (2) 33
Comparison; Standard Deviation of the
Frequency Fluctuations as a Function of
Sampling Time

Fig. 6 Cesium Beam (NBS III), Quartz Crystal 34
' Oscillator Comparison; Standard Deviation
of the Frequency Fluctuations as a Function
of Sampling Time

Fig. 7 Cesium Beam (NBS III), Hydrogen Maser 35
Comparison; Standard Deviation of the
Frequency Fluctuations as a Function of
Sampling Time

Plate 1 Resonant Cavity (in oven), Focusers, Nozzle, 36
and Plumbing of an NlSH3 Maser
1
Plate 2 The Assembled N 5H3 Maser with the 37

Resonant Cavity in the Vacuum Chamber

-iii-



Table 1

INDEX OF TABLES

Page

For a Fixed Sample Time T, one can 38
Observe the Dependence of '<0'2(N, )

on the Number of Samples and thus

Determine a Value of p and hence the

Statistics., The Values Listed are of

(o 2 (N, )
X (N, p) = —
(o7 (2,

-iVe



STATISTICS OF ATOMIC FREQUENCY STANDARDS
David W, Allan

ABSTRACT

A study has been made of the types of noise on the signals
of various atomic and molecular frequency standards made available in
the Atomic Frequency and Time Standards Section of the National Bureau
of Standards, Boulder Laboratories, These include masers (both H and
N15H3), the cesium beam frequency standard employed as the United
States Frequency Standard, and rubidium gas cell frequency standards,

The theoretical development results in a practical and straight-
forward method for determining the power spectral density of the fre-
quency fluctuations from the variance of the freauency fluctuations, the
sampling time, and the number of samples taken. Additional insight is
also given into some of the problems that arise from the presence of
"flicker noise" (power spectrum proportional to ]w]—l) modulation of
the signal of an oscillator,

Due to the inherent dimensional instabilities in maser cavities
one might have expected ''flicker noise' frequency modulation to be
present on the signal of a maser; however, in a comparison between the
NBS hydrogen maser and the NBS IIl cesium beam, uncorrelated random
noise was observed on the frequency fluctuations for sampling times ex-
tending to 4 hours; the fractional standard deviations of the frequency
fluctuations were as low as 5 parts in 1014, The absence of 'flicker
noise' frequency modulation was observed in a comparison between two
ammonia masers with sampling times ranging from 0,1 sec, to 1000
sec, and with fractional standard deviations of the frequency fluctuations
as low as 1 part in 1012, "Flicker noise'" frequency modulation was ob-
served in rubidium gas cells and in quartz crystal oscillators used in the

comparisons, An unusual power spectral density (proportional to ]wl -1/3)



of the frequency fluctuations was observed in a comparison between
NBS II and NBS III cesium beams. This has been observed by others

and its source is, at present, unexplained,

Key Words: Atomic Frequency Standards, Power Spectral Density,
Short and Long Term Frequency Stability,

1. INTRODUCTION

As atomic timekeeping has come of age, it has become
increasingly important to identify quality in an atomic frequency
standard. Some of the most important quality factors are directly

related to the inherent noise of a quantum device and its associated

electronics. For example, a proper measurement and statistical classi-
fication1 of this inherent noise makes it possible to determine the

probable rate of tirhe divergence of two independent atomic time systems,
as well as giving insight concerning the precision and accuracy obtainable

]

from an atomic frequency standard.

In the realm of precise frequency measurements, the prop-
erties of noise again play an important role. The relative precision
obtainable with atomic frequency standards is unsurpassed in any field,
and the precision limitations in this field are largely due to inherent
noise in the atomic device and the associated electronic eqﬁipment. The
standard deviation of the frequency fluctuations can be shown to be
directly dependent on the type of noise in the system, the number of
samples taken, and the dead time between samples. An understanding
of this dependence becomes very interesting in light of an unusual type
of noise that has been observed1 on the output frequency of cesium
beam atomic frequency standards-- namely, a power spectral density

/3

-1
proportional to ]w’ , where w is 27 times the spectral frequency.



A very common and convenient way of making measurements of
the noise components on a signal from a frequency standard is to compare
two such standards by measuring the period of the beat frequency between
the two standards. It is again the intent of the author to show a practical
and easy way of classifying the statistics, i.e., of determining the power '
spectral deﬁsity of the frequency fluctuations using this type of measuring
system.

An analysis has already been made of the noise present in
passive atomic frequency standards, ! such as cesium beams, but a
classification of the types of noise exhibited by the maser type of
quantum-mechanical oscillator has not been made in the long term area,
i.e., for low frequency fluctuations. Though this paper is far from
exhaustive, the intent is to give additional information on the noise
characteristics of masers. Because a maser's output frequency is more
critically parameter dependent than a passive atomic device, it has been
su.ggested2 th'aiE the output frequency rﬁight appear to be "flicker noise" modulated,
where '"flicker noise' is defined as a type of power spectral density which
is inversely proportional to the spectral frequency, w/2w. It has been
shown that if '""flicker noise' frequency modulation is present on a signal
from a standard some significant problems arise, such as the logarithmic
divergence of the standard deviation of the frequency fluctuations as the
number of samples taken increases, and also the inability to define precisely
the time average frequency. It thus becomes of special interest to determine
whether "flicker noise'' is or is not present on the signal from a maser
so that one might better evaluate its quality as a frequency standard.

Throughout the paper the paramount mathematical concern is
the functional form of the equations with the hope of maintaining simplicity

and of providing better understanding of the material to be covered.



2. METHODS EMPLOYED TO MEASURE NOISE

A. Power Spectrum and Variance Relationship

The average angular frequency, QT (t), of an oscillator (to
distinguish it from spectral frequency w) over a time interval, v, can

be written

-1
o 0= 1 o) -ew], )

where ¢ is the phase angle in radians, Now the variance of the frequency
deviations is the square of the standard deviation, ¢. Define the time
average of a function as

lim 1 S‘T/Z

() = oo % £(t) dt . (2)

-T/2

One may, therefore, write the square of the standard deviation as follows:

2
¢ =@ 0% - @ . 3)

One may assume with no loss of generality that the second term in
Eqg. (3) can be set equal to zero by a proper translation since it is the
square of the time average frequency. QT (t) is, therefore, now the
frequency deviation from the average value, and ¢(t) the integrally
related phase deviation.

Substituting Eq. (1) into Eq. (3) gives

ol [<¢(t+7)2> - 2 (plthT) " () + <¢2(t)>} : (4)

T
The time average of ¢(t+T )+ $(t) is the auto-covariance function of
the phase--denoted R¢(-r ). One is justified in assuming that a time

1
translation has no affect on the auto-covariance function, therefore,



o == [Rq}(o) - R¢(T )] . (5)
It is now possible to relate the variance of the squared frequency
deviations to the power spectral density by use of the Wiener-Khinchin
Theorem, which states that the auto-covariance function of the phase
is equal to the Fourier transform, (F.T.),of the power spectral density
of the phase, S ¢(w) . The power spectral density of the frequency is
related to this by the useful equation

2
SCI) W) = w Sq)(w) .

Most of the discussion that follows is based on the restriction

o
S (w) =hlw| . (6)
_ 2
That a singular type of power spectrum predominates over a reasonable
range of w has been verified experimentally. The region of interest

for « is -3<a<-1, and = 0. This covers white noise phase modulation

(S . (w) = h), "flicker noise' frequency modulation (S: (w) = h'wl-l), and

b ¢

includes, of course, white noise frequency modulation (S:(w) = h).

¢

Fortunately there have been tabulated the Fourier transforms of

functions of the above form, 3 and the following transforms can be

established:
F.T.|w|®=a'(a)*|7] %! for « #0 or not an integer
F.T. lml'O = ()
F.T.|w| ' =a'(-1) tn|T | +C) (7)
F.T.|w]| % =a'(-2)- |7]
F.T.|o| > =a'-3)- |7} (al<] + ),
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where C is an arbitrary constant and a is an o dependent coefficient,

' 1
A useful substitution is the following:

U(r) =2 (R¢(0) - R¢(1-)) . (8)
Now R, (o), though finite and non-zero in general, has no importance to
the pro(bblem at hand, and is physically non-observable because of its
dependence on zero frequency components. (See Appendix A.) It,
therefore, can be neglected for cases of physical interest, and thus
U(T) has the same functional form as R, (1), and may be written as

¢

follows:

U(r) = a(a)|'rra-1; -3<g< -1

and . | (9)
» U(t) =af(0); « =0, T =0,

The standard deviation squared may, therefore, be written:

o =afw -+ |7|*

where

M= -a-31if -3<a< -1 (10)
and

p=-2if @ =0,

The cases with ¢=-1 or -3 will be discussed in Section D of Chapter 2.

Using Eqs. (6) and (10) one may, therefore, deduce the power
spectral density from the dependence of the standard deviation of the
frequency fluctuations on the sampling time.

B. Adjacent Sampling of Data

In actual practice, of course, the number of frequency or phase

samples must be finite. The case to be considered now is one for which
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the phase or the frequency is monitored on a continuous basis. Two of
the techniques used by the author to accomplish this were as follows:
A device, described elsewhere, ! was used to monitor the phase of the
beat frequency between two oscillators at prescribed time intervals;
the second technique was to measure the period of the beat frequency
between two oscillators with two counters so that the dead-time of one
counter corresponded to the counting time of the other.

A very powerful and meaningful method of analysis of data
taken by a phase monitoring technique has been developed by James A,
Barnes1 at the National Bureau of Standards, Boulder, Colorado. The
method employs the use of finite differences and is especially useful in
analyzing ''flicker noise'' and long term frequency fluctuations in
general. On the other hand, if one uses the period counting technique
for data acquisition, the following form of analysis is useful. It also
may be cast in a form where one can use the finite difference technique,

Data;are often obtained with one counter measuring the frequency
or the period of the beat note between two oscillators with a dead-time
between counts. The concern of this section is with the dead-time being
zero, but it is convenient to develop the general case for which the dead-
time is non-zero for use in the next section, and specialize this to the
continuous sampling case for which the dead-time is zero, which is the
case of interest in this section.

Let T be the period of sampling, T the sample time, and N
the number of samples. The standard deviation, o (N, T,t), of the

frequency fluctuations may, therefore, be written as:

*Note that this ¢ (N, T,7) is not the same as the o in Egs. (3), (4), (5)
and (10). ¢ (N, T,7) is over a finite number of data samples, N, and to
avoid confusion the variable N will always be used with ¢ in the finite

sampling case as in Eq. (11).



N-1 5
‘o-Z(N, T,7) = 1 Z [¢(nT+¢) - ¢$(nT) ]
T

N-1
n=0

N-1 >
1 [Z (nT+q) - ¢(nT)] . (11)
L .

T

n=0

2
Taking the time average of ¢ (N, T, 1) and making the substitution given

in Eq. (8) yields

(e 4N, T, 7)) =

L[
— 4 U(1)
2\
N-1
+ N(l\ll-l) zo (N-n) [ZU(nT) -UnT+71)- U(nT-T)]} . (12)
n=

If the dead-time were zero, then T = 1, and Eq. (12) becomes'1

1
(N-1)r

(o 2(N, )Y = [N U(r) - % U (N7)] . (13)

2

Remembering that p = -«-3 and substituting Eq. (9) into (13) gives

o}
o P,y = 2N iy e cor (14)

which establishes the interesting result of the dependence of the
expectation value of the standard deviation of the frequency fluctuations
on the numbers of samples, the sample time,and the power spectral

density. It will be noted that

(0 %00, 7)Y = alw ] 7| %5 -3 <u<o (15)

in agreement with Eq. (10).

* See Appendix A



By keeping N constant and assuming pto be constant over
several different values of T, it may be seen that the value of pis the
slope on a log-log plot of (o—Z(N,-r )y versus 1. This provides a means
of determining the power spectral density simply by varying the sample
time over the region of interest.

It is informative to look at the family of curves obtained from
a plot of the dependence of <o-2(N, T)) as a function of N for various
pertinent values of uto see how it approaches <(rz(m,-r' )}. The family
of curves is shown in Fig. 1. One may notice that the convergence is
much faster in the region between white noise frequency modulation and
white noise phase modulation than between white noise frequency modu-
lation and ''flicker noise" frequency modulation. ¥ In fact as p— o, the

ratio approaches zero, and one would conjecture that the

lim 2
i N— 00 <0- (N: T))
is infinite in the presence of ''"flicker noise'' frequency modulation -- a

result proven by J. A, Barnes.

The data points plotted in Fig. 1 were extracted from a cesium
beam-cesium beam comparison analyzed elsewhere, ! and exhibit in this
new formulation a type of frequency modulation proportional to le—l/?’,
giving confirmation to this strange type of power spectral density.

It is possible to utilize the dependence of the standard deviation
on the number of samples to determine a value of pby considering a

function which takes into account the extreme values of N obtainable from

a finite set of data, namely,

*To see that p= 0 corresponds to ""flicker noise'' see Chapter 2,

Section D.



(o, Ty

N =
XMW= 670,y

(16)

Tabulated values of this function are given in Table I and a plot of
X (N, ) as a function of pfor various values of N is given in Fig. 2.
It may be noted that the function is most sensitive in the region between
""flicker noise'' frequency modulation, p= 0, and white noise frequency
modulation, p= -1 -- one of basic interest. In practice the table and
graph have proven very useful. x(c0, J is plotted for comparison and
computational purposes.

Note that x (oo, 0) = 0o, In the development thus far no considera-
tion has been given to the experimental fact that there must exist a
lower cutoff frequency which keeps the functions considered from going
to infinity, corresponding to certain types of noise, such as ''flicker
noise''. The value of the cutoff frequency is not important other than to
say that the functions considered are valid for times up to the order of
1/ (w cutoff). This time is apparently mo re than a year for quartz crystal
oscillators. > If "flicker noise'' is present in some atomic frequency
standards, the value of 1/({w cutoff) is probably shorter than for quartz
crystal oscillators for reasons discussed later, and if '"flicker noise"
is not present,infinities do not occur in the functions considered for most

other types of pertinent noise and hence there is no concern,

C. Non-Adjacent Sampling of Data

The next consideration is to determine the effect of counter

dead-time on one's ability to deduce the statistics of an oscillator using

* It will be noted that the T dependence cancels in the expression for x
and hence it is N and pdependent only. In the table and graphs, the T
dependence is not shown and is, therefore, suppressed since the p

dependence is the thing emphasized.

-10-
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N

N

the techniques developed in the previous section. This form of data

acquisition is one of the most common, and hence merits attention.
It was shown earlier that Eq. (12) is applicable to the present

case, and if Eq. (9) is substituted into Eq. (12), with the assignment

that r = T/r (the ratio of the period of sampling to the sample time), then

N-1 e 4
N -
(N, T, 7 = a(w)|7|® 1+Z : 13)(»;?3 {2
n=1]
- (1+$) mEe (1?};> MZ] ; (17)
-3< <0,

An important result from Eq, (17) is that if N and r are held constant
it is still possible to determine the value of y by varying r. Therefore,
the relationship between the power spectral density and the standard
deviation has the same form as for the continuous sampling case.
Additional insight may be obtained by considering some special cases,
If p=-1, (S&D(w) = h),6 the series in Eq., (17) goes to zero for all

possible values of r and hence

2 — -
(U (NsTaT)>" I'T| (18)

for white noise frequency modulation; this is the same result obtained
in the continuous data sampling case. One notices that Eq. (18) is
independent of N as would be expected since the frequency fluctuations
are uncorrelated. If y = -2, (S¢(w) = h),6 the series in Eq. (18) again
goes to zero for all values of r>1, and the frequency fluctuations appear
to be uncorrelated in the presence of white noise phase modulation as

long as the measurement dead-time is non-zero. Using Eq. (14) for the

case where r = 1,gives <0‘2(N,T, 7)) being equal to [a(—Z)o(N+1)/N'r 2].

11-



One therefore has the unusual result that

N +6(r-1)  alu)

2 -
¢"(N, T, n) = N > (19)
T
where
_ 1, r=1
8(r-1) = 0, r#l.

A slight N dependence then appears only in the continuous sampling case.
Experimentally, one can show that the Kronecker 6-function is
replaced by ch(r-l)/Rcl)(o) because of the finite band widths involved.

It will be recalled that the curves in Figs. |l and 2 are for r=1
(the dead-time equal zero). The results of Eq. (19) show a character
change in the curves for r>1 and -3<u<-1. For now the curve for
I = -2 is coincident with the curve for gy = -1 in Fig. 1 and x(N, -2) =
X(N, -1) = 1,0 in Fig. 2. No profound character change occurs for
-laqu<0.

It is possible to show that the series in Eq. (17) approaches zero as
N approaches inf'inity for all values of r>1 and <0, hence (o 2(N, T, 7))
has the same asymptotic value as for the continuous sampling technique,

independent of the counter dead-time.

If a binomial expansion is made of the second two terms in the
series expression of Eq. (17), and 4th order terms and higher in 1/nr

are neglected,the following simplification occurs:

N
2) (ut1
(P (N, T, 7Y = a(u)l'rl“[l - -(ﬁ;;—-()l—\%l—)-l 3 z (N - n) n”} . (20)
n=1

On the first observation of Eq. (20) one may notice that as r
becomes large, the standard deviation approaches its asymptotic value.
This occurs when one is taking samples much shorter than the capable

reset-time of the counter. The dependence on N is, therefore, reduced

O
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as r'. In fact, it has been determined by a computer analysis of Eq. (17)

that the net effect of increasing the dead-time is to collapse the curves

in Figs. 1 and 2 towards the unit axis.

D. The "Flicker Noise'' Problem

The existence of '"flicker noise'' frequency modulation on the
signal of quartz crystal oxcillators has caused difficulty in handling such
quantities as the auto-covariance function of the phase and the standard
deviation of the frequency fluctuations. As mentioned previously the
development by J. A. Barnes ! makes it possible to classify 'flicker
noise'' frequency modulation without any divergence difficulties or
dependence on the value of the low frequency cutoff.

Some of the other difficulties associated with the presence of
"flicker noise' frequency modulation, as Barnes has shown, are

illustrated in the following equations:

2h Nln N

2
> (o (N,7)) = —(x-7  ° (21)

and

(22)

iy s (AR ] - e
The fact that the standard deviation diverges with N, as shown in
Eq. (21), is an annoyance, aside from the fact that it becomes more
difficult to write specifications on the frequency fluctuations of an
oscillator. The limit expressed in Eq. (22) does not exist or is dependant
on the low frequency cutoff; this, of course, affords difficulty in defining
a frequency, and would be an unfortunate property to be present in a
frequency standard. As has been stated previously for all values of p
considered thus far, -3 < u< o, the limit as N approaches infinity of

(o (N, 1)) exists; and as the sampling time increases, <o-2(N,-r)> converges

toward zero or perfect precision.
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Data have been analyzed that indicate the presence of "flicker
noise' frequency modulation on the signals from rubidium gas cell fre-
quency standards. It is of concern to determine if this type of noise is
present on the signals of other atomic frequency standards, and
specifically masers. It is not the intent to determine the source or
sources of '"flicker noise'' as this is a ponderous problem in and of
itself, but perhaps only infer where such noise might arise.

Consider, now, ways to establish the presence of ''flicker noise.,"
If the data were on a continuous basis, the method of finite differences
developed by Barnes would be very useful. One may also notice from
Eq. (21) that if N is held constant, the value of pis zero for values of
T in the ''flicker noise'' frequency modulation region. If data were
taken by the common technique of non-adjacent samples, the following
considerations are of value:

For '"flicker noise' frequency modulation U(r) takes on a
different form as g;result of the divergenc.e of the auto-covariance

function of the phase,

pt2
U(t) = k_"r_‘_? . (23)
42"

The constant k is dependent on the quality of the oscillator. If Eq. (23)
is substituted into Eq. (12) letting p—~o (= o corresponds to ''flicker
noise'),an indeterminate form results for <0’2(N, T,7)). Applying

L'Hospital's rule and then passing to the limit gives the following equation:

N(N-1)
n=1

2 N-l
<0'2(N,T,'r)> = _kr Z (N-n) [—an ln (nr1)

+(n +—:—:)2 In (nr + 1) + (n--:j )2 In (nr - l):l . (24)

o
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Hence for a fixed ratio r = T/1, and a determined number of samples,

N, the standard deviation is constant, independent of T. So for both

adjacent and non-adjacent data sampling, the value of pis zero. One may

therefore determine if ''flicker noise'' frequency modulation is present

on a signal sampled in a non-adjacent fashion, subject to the above constraints.
A consideration of interest at this point is ''flicker noise"

phase modulation (S, (w) = h 'wl—l). Substituting F'. T. lwl-l from

¢
Eq. (7) into Eq. (13) gives

2 N+1 alnN
(¢"(N,T,7)y = —, (aln|1+C) - ——— (25)

Nt N(N-1)r

where C is an arbitrary constant and a is determined from the Fourier
transform. One thus obtains the somewhat unfortunate result that
experimentally it would be unlikely that one could distinguish between
""flicker noise'' phase modulation and .white noise frequency modulation,
since p~ -2 in. both cases. The only difference is an additional
logarithmic dependence on v for the ''flicker noise'' case. However, one
might be able to infer from the experimental setup which of the two types
of noise was being observed. If this were not possible, one would be forced
to determine the type of noise present by some other technique,

If the number of samples, N, and the ratio of the period of
sampling to the sample time, r, be held constant the following general
equation can be written for both adjacent and non-adjacent sampling of

data:

(UZ(N,T,T)> = K(N,r) | 7" . (26)

Using Eq. (26) and Eq. (6) (Scp(“) = hlwlz) coupled with the results

established thus far, one is now able to extract the power spectral density

-15~



from the dependence of the standard deviation on sample time for values
of pranging from -3 < p< 0 with some limitation in the region of p = -2

as discussed above. The following mapping of pinto ¢is an informative

summary,
White noise phase modulation 0 .
"Flicker noise'' phase modulation -1 b
o
White noise frequency modulation -2
"Flicker noise'' frequency modulation -3 b
1 1 1

3. ATOMIC FREQUENCY STANDARDS

A, Passive Atomic Standards

Devices such as atomic beam machines, and rubidium gas
cells have been made to generate impressively stable frequencies, 78
In October 1964, the appropriately authorized International Commitfee of
Weights and Measures adopted as a provisional definition for the meas-
urement of time the transition between the F = 4, mp = 0 and F = 3,
mg, = 0 hyperfine levels of the ground state 281/2 of the atom of cesium
133, unperturbed by external fields, with the assigned frequency for the

-16-



transition of 9,192,631,770 Hz. The cesium beam at NBS, Boulder, has
also been established as the United States Frequency Standard. The
analysis of the theory of operation of these quantum devices has been
covered in many publications, 8 along with the methods of slave-locking
an oscillator to a given transition. 8 An analysis of the noise that should
be present in an oscillator servoed to an atomic transition has been

made by Kartaschoff, 9 Cutler, 6 and others. The author desires to
reiterate at this point some of the results of these analyses: the frequency
should appear white noise modulated, therefore, the phase fluctuations
will go as the random walk phenomena, and hence the mean square

time error in a clock running from one of these frequency standards
would be proportional to the running time. Barnes has also shown

1
that

(&20% ~ 6y, (27)

where A3 denotes the 3rd finite difference and 6t the clock error time

for a running time t, and also that

(28)

The results from combining Eq. (27) and Eq. (28) are obvious, but
still very important, i.e., if either the power spectrum is known or
the dependence of (0-2> on the sample time, one may then determine the

rate of time divergence and conversely, [ see Eqs. (7) and (10)],

(6% ~ |13 —2suso. 29)
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An example of the above is illustrated by the following: if in
fact ""flicker noisé" frequency modulation is present on the signal of
rubidium gas cells, and if one assumes the r.m. s. time errors were equal
on clocks driven by a rubidium gas cell and a cesium beam of theoretical
form at 1/3 of a day -- say for example 0.1 microseconds, then the
accumulated r. m. s. time error after 1 year would be of the order of
100 microseconds for the rubidium cell and 10 microseconds for the
cesium beam. If, however, the Iw,-1/3 type of frequency modulation
that has been observed on cesium beams persisted for frequencies down
to one cycle per year,then the r.m. s. time error would be about
1002/3 or about 20 microseconds instead of its theoretical value of

10 microseconds.

B. Masers

Masers, in contrast to the passive atomic devices discussed in
the previous section, may be used as quantum mechanical oscillators.
Since the sources yoéf ""flicker noise" frequéncy modulation could arise
from many different mechanisms, the suggestion exists that perhaps
the active character of masers could be influenced by one of these
mechanisms. Most of the basic experimental research associated with
this paper and performed by the author has been to determine if the
above suggestion is valid or not, and specifically to determine the type or
types of noise present on the signal from masers.

One N15H3 maser has been in operation at NBS, Boulder, for
several years. It is desirable to compare similar atomic devices in
looking at noise; so another N15H3 maser was put into operation for
direct comparison purposes, Worth considering at this time is the basic
operation of a maser so that arguments made later on will be understandable,

Three basic elements of a maser are the source, the energy
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state selector, and the resonant cavity. A picture of these three elements
in an NISH3 maser is shown in Plate 1. A needle valve and a
collimating nozzle are coupled to the source to provide a highly directed
beam of N15H3 down the axis of the four-pole focusers. The four-
pole focusers are the energy state selectors and consist of four electrodes
with alternate high voltages so that on axis (in line with the resonant
cavity) the electric field is zero, but slightly off axis the field is large
and increases as the distance off axis, Because ammonia has induced
electric dipole moment, an interaction occurs as it enters this electric
field region, and as it has been shown10 the low energy states of the
inversion levels of ammonia are defocused while the high energy states
are focused on axis and into the resonant cavity. Therefore, if a noise
component of the proper frequency is present and the ammonia beam
flux is sufficient, a regenerative process will take place in which a high
energy state molecule will decéy and radiate a quantum of energy , "hy"
causing the field to increase in the cavity and hence inducing other
molecules to undergo the transition, etc. The radiation may be
coupled off with a wave guide as seen on the right of Plate 1, and then
with an appropriate detection scheme, as seen in Plate 2, one may
observe the maser oscillations at a frequency v where, neglecting any
frequency pulling effects, v is approximately 22, 789, 421, 700 Hz for
15

N H3.

There are many parameters that affect the output frequency of
an a.rnx:nonia maser. It is from these parameters that one may expect
correlation of frequency fluctuations over long times such as exist for

""flicker noise'' frequency modulation, To see the mechanism,consider

the fundamental pulling equation

v -y = ——(vo-vc)+B, (30)
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where v, is the unperturbed transition frequency, v the maser output

frequency, Ay, the transition line width, Avc the cavity band width,

1
v, the cavity's frequency, and B is a term involving the basic parameters
such as ammonia beam flux, the voltage on the state selectors, and the
magnetic and electric field intensities inside the cavity. Most of the
quantities in Eq. (30) are dependent on temperature either directly or
through the coupling electronics. Some of the quantities in Eq. (30) are
dependent on the maser's alignment affording another mechanism for
correlation of the long term frequency fluctuations.

As described in detail elsewhere, 1 it is possible to
construct an electronic servo that will tune the resonant frequency of
the cavity to that of the ammonia transition frequency (vo = vc). The
tuning is not prefect because of the noise present. The effect this has,
as can be seen from Eq. (30), is profound, greatly reducing the effect
of the basic parameters and almost entirely eliminating cavity
dimensional instabiiity. The correlation now existing in the long term
frequency ﬂuctuations may well be expected to be masked out by
other noise in the system.

Since the servo mechanism is of the frequency lock type, and
if the noise in the servo is white over some finite band width, then the
fluctuations on the output frequency would be white inasmuch as they
were caused by the servo, This is the same as for passive atomic
devices -- a result not altogether unexpected.

4. EXPERIMENTS PERFORMED

A, NISH3 Maser Comparison
15 -
Two N H3 masers were compared by the following technique.

Each maser has coupled onto its output wave guide a balanced crystal

detector and onto each detector a 30 MHz 1. F. amplifier. Since the
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frequency of the inversion transition in NISH is about 22, 790 MHz,

a local oscillator signal at 22, 760 MHz is insz:rted into each remaining
leg of the balanced crystal detectors. The 30 MHz beat frequencies
resulting from the output of the I. F. amplifiers are then compared in a
balanced mixer and its audio output is analyzed. The frequency of the
audio signal can be adjusted to a reasonable value by offset tuning the
cavity of one of the masers. The period of this audio signal is determined
with a counter; the data are punched on paper tape for computer analysis.
The computer determines the average value of the fractional standard
deviation "¢ 2, along with its confidence limit for pertinent discrete
values of the sampling time "7."

In all of the maser data taken it was necessary to subtract
out a systematic but well understood linear drift -- due to a change of
the ammonia beam flux in the N 5I—-I3 maser and due to cavity dimensional
drift from changing temperature in the case of the H maser. This was
accomplished by the method of least squares. 1e The ability to change
the number of samples '""N'"" was also built into the computer program.

A typical computer fortran program is given in Appendix B.

A plot of the computer output for some of the data analyzed in
the N15H3 maser comparison is shown in Fig. 4. The output frequencies
of the masers were not servo-controlled for these data. The slope is very
nearly that of white noise frequency modulation. It will be noted that for
a time of one second, the fractional standard deviation of the frequency

-12
fluctuations is less than 2 x 10 .

B. Cesium Beam, Maser, Quartz Oscillator Intercomparisons
Many comparisons were made between all the different types
of atomic devices made available in the Atomic Frequency and Time

Standards Section of the National Bureau of Standards. Most of the
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comparisons were made at 5 MHz by measuring the period of the beat
frequency with a counter, and the resulting data were processed by a
computer (see Appendix B).

A comparison was made between the double beam NISH3 maser
with the cavity servo in operation as illustrated in Fig. 3, and the
NBS III cesium beam. A 5 MHz quartz crystal oscillator of good
spectral purity was phase locked by a double heterodyne technique to
the output frequency of the maser, and this oscillator was compared
with a high quality quartz crystal oscillator that was frequency locked
to NBS III. A plot of the data is shown in Fig. 5. The noise is undoubtedly
that of the maser cavity servo system, and though it exhibits very nearly
its theoretical value of p= -1 for white noise frequency modulation the
noise level will be seen to be well over an order of magnitude higher than
for the free-running maser.

The free-.running, single beam, NISH3 maser was compared
with NBS III on a lyonger time basis and indicated the presence of
""flicker noise'' frequency modulation. There was indicated a fair amount
of uncertainty to the data, however.

In Fig. 6 one sees a very interesting plot in the comparison of
the NBS IIl cesium beam with a very high quality quartz crystal
oscillator. The comparison was again made at 5 MHz as indicated above.
The first part of the curve shows the white noise frequency modulation in
the cesium beam servo system, and then the curve changes slope indicating
the presence of '"flicker noise'' frequency modulation as is typically exhibited
by quartz crystal oscillators. This shows experimentally the theoretical
result discussed previously, that one may have quite a high level of white
noise in a system and eventually the system will be better than one with

'""flicker noise' frequency modulation.
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As extended comparison was made (58 hours) between the H
maser, NBS IIl cesium beam, a rubidium gas cell, and a quartz
crystal oscillator. Some of the data are still to be analyzed, but some
interesting and impressive results have been obtained thus far. Fig. 7
shows the analysis of some of the data obtained from the H maser,
cesium beam (NBS III) comparison. White noise frequency modulation
is exhibited for sampling times extending to 4 hours with the very
impressive standard deviation of ~6 x 10_14 for T = 4 hours. '"Flicker
noise'' frequency modulation was observed on both the rubidium gas cell

and on the quartz crystal oscillator in this comparison.

5. CONCLUSIONS

""Flicker noise' frequency modulation was not observed on the
frequency fluctuation of the maser type of atomic frequency standard for
any of the reliable data obtained -- the time coverage here being from about
0.1 seconds ';o%4 hours. The presenc'e of "flicker noise' was indicated

15
for free running masers (both H and N H,) in the long term range,

3
though the data were somewhat unreliable. This type of noise was eliminated
in the case of the N 5H maser by use of a cavity servo mechanism, and
one might infer from th3e similarities in the masers that the same would
hold true for the H maser.

It is acknowledged that if "'flicker noise'' is present on the
frequency fluctuations of a free-running maser for longer times, the
lower cut-off frequency must be much shorter than for quartz crystal
oscillators -- for indeed the maser operator is himself a part of a cavity
servo when he retunes the cavity or perhaps recoats the quartz bulb.

The existence of ''flicker noise'" frequency modulation on the

frequency fluctuation of rubidium gas cells is just another indication that
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they would not at present make a reliable primary frequency standard.
There are many areas where additional data analysis would
be informative. It would be very interesting to look at the behavior of
the cesium beam, hydrogen maser comparison, shown in Fig. 7, for
extended times. Another anlysis of interest would be that of a cavity
servoed H maser, Such a servo system is under development for the
NBS H maser. To then compare the cavity servoed H maser with a
cesium beam and its associated servo system would afford great
insight into determining which of these competitive atomic standards

should be priinary.
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APPENDIX A

To avoid certain divergence difficulties the following approach

is useful in the region from -3< p< -2. Assume that

U(r) = <’=1(pt)'r}l+2 ) (A1)

and rewrite Eq. (8) as
R (t) =R (0)——;‘U(T). (A2)

¢ $

By taking the inverse of the Wiener - Khinchin Theorern:

S¢(w) _p.7. 7! R¢(T) , (A3)
and applying to Eq. (A2) yields
\_ B R (o) 1 i
S (W= —2— 8§()-=F.T. U(r). (A4)
¢ 2w 2

Since experimentally one cannot look at w=o,the delta function contributes

nothing, and therefore:

5, = hlw|™H 73 (A5)

for -3 <u<-2,

and S¢(w) = h

for p= -2,

where

(02 = a(w "
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APPENDIX B
Fortran Computer Program for Determining the Dependence of
the Standard Deviation of the Frequency Fluctuations as a Function
of the Sampling Time with the Ability of Varying N
(The Number of Samples Taken) |
1 format (£7.0,12)
2 format (£9. 2, 2x, e8. 3, 5x,13)

4 format (8hsigma;sq, 6x, 4h, or-, 5x, 4htime)
dimension f(256)
5 pause 0011, ii
26 read 3
punch 3
punch 4
do 27 n=1,256
read 1 f(n),k
f(n)=.2ell/f(n)
if (k-1) 27,28,17
27 continue
28 a=0.
aa=0.
ab=0.
b=0.
do 29 k=1,n
a=atk
aa=aatk'k
ab=ab+k'f (k)
29 b=b+f(k)
ab+(ab'a-aa'b)/ (ata-n'aa)

b=(b~n'ab)/a
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30

10

13

14

do 30 k=1,n
f(k)=f(k)‘-ab-k'b

k=1

m=n/ii

n=n-ii+l

ab=0.

aa=0,

do 13 j=1,n,ii

a=0.

b=0.

jj=iitj-1

do 10 i=j, jj
a=f(i)+a
b=£f(i)'f(i)+b
a=(b-{a'a)/ii)/ (ii-1)
aazaata °
ab=ab+al'a

aa=aa/m
ab=(ab-m'aa'aa)/ (m'm-m)
ab=sqrtf(ab)

punch 2,aa,ab, k

k=2"'k

n=nt+ii-1

n=n/2

nn=ii-1

if (n-nn) 16,16, 14

do 15 i=1,n

nn=2'i-1

27~



15 £(i)=(f(nn)+f(nn+1))/ 2.
go to 7

16 pause 0001,i
if (i-1) 17,5,26

17 stop 7777
end

end

-28-



| by

{S3TdWYS 30 H3BAWNN 3HL) N

0 H 4 P S 4 o S

EREEE ! rr T | FET T

‘(SWV38 WNIS3D) II SAN ONV IO SN
= NIIML38 NOSIMVAWOD ¥ WON4 TIVINIWINIJX3
34V Q31107d SINIOd VIivQ 3H1 'SNOSIHVJIWOD
Wv3g WNIS3D 3W0S NI G3AY3SE0 SV NOLLYINQOW

ADN3NO3Y4 3dAl ¥03 3AY¥ND WIL3YO3HL
5} ~

.t
— NOILVINQOW 3SvHd 3SION u:z;\\

0 I O | 0 O ___ .

S0

(tr1'Ny ,0)

(i @) ,0)

0!

IN3S34¥d 3ISION 30 3dAL 3HL OGNV S3dWVYS 30 H3BANN 3HL NO  NOLLYALONTS
AON3NO34¥4 3HL 30 NOILVIA3QO QYVANVLIS 3HL 40 3ION3AN3d30 3HL ONIMOHS 107d V

O

Sl

-29-



. 'CAIL T

(o212, p)

(=]

S[ITTTTTTTT

A PLOT ENABLING ONE TO EXPERIMENTALLY EXTRACT
THE STATISTICS OF AN OSCILLATOR BY KNOWING THE STANDARD
DEVIATION FOR N SAMPLES AND FOR 2 .SAMPLES USING
Gy (wi=hlw[™™ ExcepT AT p=-2,-3.

—d

LR Illllllllllllllllll’llllllllllllllllll

|

IIIJIIII|ILL1|IIIIIlI_II|ll

7

Figure 2
-30-



L ssves tg

anl
JONVEIY3IY

50 IAVIS ZHW S
Ny
Y37d1NK AIN3RDIY S

€ ounbigy
4310 - 50
SSvd MO - - 010Ny
1 1 gile))
NvW33Z OL
40133130 40103130 AN3IWITI3 ONINNL LENY
24N OF ISYHd SNONOYHINAS ALIAYD 3AILIVIY OL £y N
ZHW O
dRY

ZH9 097°'22

ZH9 06.'22

W3LSAS OAY3IS ALIAVO H3SVW 40 WVHOVIQ X2074

O

-31-



o2 IN PARTS IN (10'9?

COMPARISON OF TWO N'5H3 MASERS; STANDARD DEVIATION OF
THE FREQUENCY FLUCTUATIONS AS A FUNCTION OF SAMPLING TIME
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CESIUM BEAM (NBS II),
N'SHy MASER (2) COMPARISON; STANDARD DEVIATION OF
THE FREQUENCY FLUCTUATIONS 'AS A FUNCTION OF SAMPLING TIME.
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CESIUM BEAM (NBS 1I),

HYDROGEN MASER COMPARISON; STANDARD DEVIATION OF
THE FREQUENCY FLUCTUATIONS AS A FUNCTION OF SAMPLING TIME
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PLATE |

RESONANT CAVITY (IN OVEN],
FOCUSERS, NOZZLE, AND PLUMBING OF AN

~36-
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PLATE "~ 2

THE ASSEMBLED N'® H, MASER
TY IN THE VACUUM CHAMBER

WITH THE RESONANT CAVI

BALANCED DETECTOR AND
30 MHz IF AMPLIFIER
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TABLE I

FOR A FIXED SAMPLE TIME T, ONE CAN OBSERVE THE
DEPENDENCE OF {o2(N, 7)) ON THE NUMBER OF SAMPLES
AND THUS DETERMINE A VALUE OF x AND HENCE THE
STATISTICS. THE VALUES LISTED ARE OF

{c2(N, T »
x N, p)z ——————
(a2(2,7))
M N (NUMBER OF SAMPLES)
4 16 64 256 1024 o
0.0 1.337 2.133 3.048 | 4.0l6 5.004 ©
-0.l 1.288 1.928 2.580 3.190 3.736 7.464
-0.2 1.247 1.753 | 2.215 2.598 | 2.899 3.855
-0.3 1.208 1.604 1.928 | 2.167 2.332 2.660
-0.4 1171 1.475 1.700 1.847 1.937 | 2.062
-0.5 1138 1.365 1.517 1.606 1.655 1.705
-0.6 1106 1.270 1.369 1422 1.447 1.467
-0.7 1.077 1188 1.249 1.278 1.291 1.299
-0.8 1.049 1116 1150 1165 171 i.174
-0.9 1.023 1.054 1.068 1.074 1.076 1.076
-1.0 1.000 1.000 1.000 1.000 1.000 1.000
- I 0977 | 0.952 | 0942 | 0938 | 0.937 | 0.937
-1.2 0.956 | 0.910 0.893 | 0.887 | 0.886 | 0.886
-3 0.937 | 0.873 | 0.851 0.844 | 0.842 | 0.842
-1.4 0.919 0.841 0.815 0.807 | 0.805 | 0.805
- 1.5 0.902 | o0.8I12 0.784 | 0.776 | 0.774 | 0.773
- 1.6 0.886 | 0.786 | 0.756 | 0.748 | 0.746 | 0.745
- 1.7 0.87I 0.763 | 0.733 | 0.725 | 0.723 | 0.722
- 1.8 0.858 | 0.743 | 0.712 0.704 | 0.702 | 0.70l
- 1.9 0.845 | 0.724 | 0693 | 0685 | 0.683 | 0.682
-2.0 0.833 | 0.708 | 0.677 | 0.669 | 0.667 | 0.667
-2.1 0822 | 0693 | 0.662 | 0.654 | 0.652 | 0.652
-2.2 0.8l 0.680 | 0.649 | 0.641 0.639 | 0.638
-2.3 0802 | 0668 | 0.637 | 0629 | 0.628 | 0.627
-2.4 0.792 | 0657 | 0.626 | 0.6i9 0.617 0.616
-25 0.784 | 0647 | 0.6l6 0.609 | 0.607 | 0.607
-2.6 0.776 | 0.638 | 0.608 | 0.60I 0.599 | 0.598
-2.7 0.769 | 0629 | 0.600 | 0593 | 0.59I 0.59I
-2.8 0.762 | 0622 | 0593 | 0.586 | 0584 | 0.583
-2.9 0.755 | 0.615 0.586 | 0.579 | 0.577 | 0.577
-3.0 0.750 | 0.609 | 0.580 | 0.573 | 0.57I 0.571
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