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Abstract— Results from a preliminary study of two GPS 
clocks tested on the ground show that the distribution of peak 
deviations from prediction cannot be assumed to be 
Gaussian.  The standards are identical to models on board 
GPS block IIR satellites.  The data were taken at the Naval 
Research Laboratory in the U.S. during life tests.  We 
propose here two statistics that could be used to characterize 
peak deviation from prediction, preliminarily named PDIS 
and PTIE. 

I. INTRODUCTION  
Atomic clocks are most often characterized in terms of 

a deviation, a root-mean-squared (RMS) second moment 
measure.  Some applications require statistics of peak error 
performance, a first moment measure.  For example 
telecommunications systems specify maximum time 
interval error (MTIE) limits for clocks.  MTIE specifies the 
performance of a slave clock that is locked to a master.  
Free-running clocks with a prediction of their expected 
performance represent a different problem.  This is the case 
with clocks on Global Positioning System (GPS) satellites, 
where the clocks are generally free-running, but the system 
depends on their performance matching the uploaded 
prediction.  We propose here a method for specifying the 
deviation from prediction.  In applying this to two Rb bulb 
atomic standards, we find that one cannot assume that 
distributions of the deviations from prediction are 
Gaussian. 

We first need a method to predict the time offset of a 
clock from a reference, given measurements x(t), 0< t < T.  
Suppose we want a prediction, xf(T+τ),  of what the value 
will be at time T+τ, an amount τ  after the last 
measurement.  We then measure the actual value x(T+τ), 
and compute the residual difference.  We may repeat this to 
obtain a set of residuals for a given prediction interval τ.  If 
this set significantly differs from a Gaussian distribution, 
then we cannot use Gaussian statistics to characterize the 
performance of clocks over a prediction interval.  In 

particular, one cannot use the familiar Gaussian Normal 
distribution to determine the probability of exceeding a 
threshold offset from the number of standard deviations.  
The relationship between the variance or deviation of a 
clock and the probability of missing a prediction by a 
certain amount depends strongly on the distribution of the 
residuals. 

 

II. STATISTICAL METHOD 

A. Optimal and Near-Optimal Prediction 
We consider a clock model with a combination of 

deterministic linear frequency drift and a sum of the 
stochastic noise types of white frequency modulation (FM), 
flicker FM, and random walk FM.  Thus the normalized 
frequency of the clock behaves as 
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where y0 is the initial normalized frequency at time t=0, D 
is the drift rate, and ε is the stochastic term.  The drift is 
first estimated and removed from the data.  A near-optimal 
drift estimator in the presence of these noise types is due to 
Greenhall [1].  If x(t) is the time departure of the clock, so 
y(t) = dx(t)/dt, define w(t) as 
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Then, from Greenhall, if the data length is T, the estimate 
of drift is the following linear combination of four points 
from w, 
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Once the drift is removed, the spectrum Sy(f) of y(t) 
satisfies [2] 
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where hi is the coefficient of the power-law noise process 
with exponent i.  An optimal or near-optimal filter for 
predicting x(T+τ), given x(t), 0<t<T, employs an 
exponential filter on y(t) [3].  In practice we have discrete-
time phase data xn = x(nτ0), for n = 1, … , N.  Then the 
discrete version of y(t) is yn = (xn – xn-1)/τ0, for n = 2, … , N.   

We need a normalized frequency at N, optimal or near-
optimal for prediction.  The optimal predictor for white FM 
is the mean frequency;  for random-walk FM, the last 
frequency; for flicker FM, a filter with some a fading 
memory of the last few frequencies.  An exponential filter 
producing an estimate yfn of yn, in which the white FM has 
been averaged down to the low-frequency dominated noise 
types is 
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where D is the drift in appropriate units, and K is the half-
life time of the exponential filter.  In the case of pure 
random-walk FM, Sy(f) = h-2 /f 2, the optimal predictor is the 
last normalized frequency, yfn =  yn.  In this case we have K 
= 0.  In the case of pure white FM, Sy(f) = h0, the optimal 
predictor is the mean.  yfn approaches the mean as K → ∞.  
In the general case white FM dominates in the short term, 
and flicker or random-walk FM dominate as we increase 
integration time.  We choose K as the integration time 
where this transition happens.  This can be determined by 
computing the Allan deviation of the drift removed data, or 
the Hadamard deviation of the data, even with linear 
frequency drift.  K is chosen as the integration time τ where 
the deviation no longer drops with increasing τ, sometimes 
called the “knee” of the deviation. 

We wanted a prediction of  x(T+τ).  Let us view this in 
terms of discrete measurements.  Then we want a 
prediction of xN+k,  where τ= kτ0.  We use 
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B. Toward a Peak Deviation Standard 

If atomic clocks are to be required to stay within a 
specified range of prediction with a specified probability, it 
is necessary to define a statistic that will measure this.  We 
discuss two candidates for such statistics.  The method 
described above involves using data taken at points 
numbered 1, … , N to predict a value later at N+k.  In 
practice, rather than predicting a future measurement and 
waiting for that, we may use the same formalism with a 
large data set xn, n= 1, …, M, and compute residuals 
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for all N+k < M of interest.  For a given prediction interval 
k, we may plot a histogram of actual residuals and compare 
it to a best fit of a Gaussian distribution.  Thus, for a range 
of prediction intervals, we obtain a set of distribution plots 
giving the frequency at which this clock deviates from 
prediction by what values.  We call this set of plots PDIS, a 
set of peak distribution functions.  This would be most 
useful in designing a system requiring limits on peak 
deviation from prediction.  Let us call a plot of the 
maximum absolute value of deviation as a function of 
prediction interval PTIE, the peak time-interval error, 
analogous to MTIE.  This could be used as a specification 
that a clock should not exceed during a qualification test. 

III. A PRELIMINARY STUDY OF TWO CLOCKS 
We studied two GPS Rb cell atomic clocks, R28 and 

R30, using some data from life-tests on the ground at the 
Naval Research Lab (NRL).  We computed the peak 
deviation from a near-optimal prediction of the time offset 
of the clocks from the reference as discussed in Section II.  
Clock signals from GPS are corrected by predictions that 
are uploaded.  Between uploads, the peak deviation from 
the prediction gives the worst-case range error due to the 
clock. 

We estimated the linear frequency drift for each clock 
as a constant over the data interval.  This was done by use 
of a four-point estimator, as in [1].  Figure 1 plots the data 
for the two clocks with the drift removed.  Rb clock R28 
appears to have had two visible shifts in drift during the 
period of the data set.  With post-processing, this can be 
detected and adjusted for.  However, in a real-time system 
it is very difficult to detect a change in drift until some 
period after the change.  Hence we continued the analysis 
with one constant drift value. 

 
Figure 1  Clock phase with drift removed, for Rb clocks 
R28 and R30, showing the consistency of the linear 
frequency drift over the data sets. 
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Figure 2  Hadamard deviation from life-test Rb clocks 
R28 and R30. 

 

Figure 2 shows the Hadamard deviation of the two 
data sets.  The “knee” of the deviation is significantly 
different between the two clocks.  104 s and 4x105 s were 
used as the half-life averaging times in the exponential 
filters. 

We computed the peak deviation over the following 
prediction intervals:  15 minutes, 1 hour, 2 hours, 4 hours, 8 
hours, and 1 day.  The two clocks were Block IIR Rb. 
clocks, serial numbers R28 and R30.  They were chosen as 
one of the worst, R28, and the best, R30, clocks from the 
qualification tests.  The data sets were 20 s time offsets 
from the reference H-Maser over Modified Julian Days 
(MJDs) 51666- 51816.  In Figures 3 and 4 we show the 
filtered normalized frequency on top of the normalized 
frequency estimates from first differences over 20 s. 

 
 

 
Figure 3  Rb clock R28 normalized frequency offset from 
first differences of 20 s measurements and from the filter. 
 
 

 
Figure 4  Clock R30 normalized frequency offset from 1st 
differences of 20 s measurements and from the filter. 

 
For R28, in Figure 3, we see a number of frequency 

steps.  For R30 in Figure 4 we note that the filtered 
estimate does not go through the mean or center of the first 
difference normalized frequency offset data.  These two 
effects result in non-Gaussian peak deviation errors, for 
different reasons.  Frequency steps cause peak prediction 
error in time data, because the predictor cannot incorporate 
knowledge of an unexpected step change in frequency.  
Hence we find that the longer the prediction interval the 
worse the error.   

 
As discussed in Section II, we computed the 

distribution of peak prediction errors as follows:   

1. Estimate drift from the entire data set. 

2. Pick a prediction interval, τ, among: 15 minutes, 1 
hour, 2 hours, 4 hours, 8 hours, 1 day. 

3. For each 20 s measurement at time t, take the phase 
offset, x(t), from the reference at that time and use 
the filtered normalized frequency at that time, yf(t), 
and estimated linear frequency drift, d, from 1. to 
predict time forward as a quadratic over the given 
prediction interval.  This is the predicted time. 

4. The peak deviation error at t+τ, over the prediction 
interval τ, is the residual, the difference between 
the predicted and the measured time offset. 

5. We collect the residuals for a given prediction 
interval τ over all of the possible values of t in the 
data set.  Plotting these as a histogram gives the 
distribution function.  The set of distribution 
functions is PDIS. 

 

The plots in Figure 5 show prediction error as a 
function of date for different prediction intervals for R28.  
These plots lead to the PDIS distribution functions for R28 
in Figure 6.  The dashed lines are a best-fit Gaussian 
distribution to the data.  This set of plots is PDIS for R28. 
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Figure 5   Prediction error for various prediction intervals, showing when the errors occur. 

 
 
 

 
Figure 6   PDIS for clock R28, the distribution of prediction errors for various prediction intervals.  The 
dashed lines show best fits for Gaussian distributions. 
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For R30 we found an effect, different from that for R28.  
R30 had no significant frequency steps over the study 
interval.  However, as we noted above, the filtered 
normalized frequency estimate did not go through what 
appeared to be the center of the normalized frequency from 
first differences of measurements.  To understand this, 
consider Figure 7, the distribution of all of the 20 s 
residuals of first differences of measurements minus the 
filtered estimates of normalized frequency.   

The high peak at around prediction error 0 occurs 
because of data gaps.  Since we interpolated across them, 
the filter and measurement were aligned.  However, note 
the bimodal nature of the distribution.  The clock appears to 
have two modes separated by almost 3 x 10-12 in 
normalized frequency.  This results in the distributions of 
time deviations having a non-zero mean.  Figure 8 presents 
PDIS for R30.  The plots appear approximately Gaussian, 
but for larger prediction times have increasingly non-zero 
means. 

Figure 9 gives the PTIE values for R28 and R30 based 
on the PDIS values of Figures 6 and 8.  PTIE is the plot of 
the maximum absolute value of deviation as a function of 
prediction time. 

IV. CONCLUSIONS 
We conclude that one cannot assume that Gaussian 

statistics are valid for peak deviation of atomic clocks from 

prediction.  Hence we cannot look at a root-mean-squared 
measure of clock performance, such as the Allan variance, 
and use that to predict probabilities of peak time deviations.  
To determine failure probabilities for integrity it will be 
necessary to characterize the distribution of peak deviation 
from prediction errors for the design clocks.  It will also be 
necessary to incorporate peak testing into acceptance tests. 

 

 
Figure 7  Normalized frequency residuals for clock R30 
showing the bimodal behavior of the clock.  The dashed 
line is a best fit for a Gaussian distribution.

 
 
 

 
Figure 8   PDIS for clock R30, the distribution of prediction errors for various prediction intervals.  
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Figure 9  PTIE for clocks R28 and R30 from this study. 
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