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Abstract—A version of Thêo1 variance, called ThêoBR
variance (BR for “bias-removed” relative to the Allan
variance), is constructed. This relative bias correction is
applied over a range of the longest recommended Allan
τ values for a given data run. ThêoH deviation (‘H’ to
indicate a hybrid combination of ThêoBR and Allan devi-
ations) is the Allan deviation in short term and switches
to the ThêoBR deviation in long term. In the presence
of non-integer-power-law and mixed noise types, the ap-
proach is as effective and less cumbersome than past ap-
proaches, and requires little, if any, a priori knowledge
or human judgment of data being analyzed. The sub-
stantially gained properties of Thêo1 at large τ , to 50 %
beyond the longest possible τ using the Allan deviation
alone, can be obtained without Allan bias. Long-term
frequency stability can be obtained in essentially one-
third less time. For example, a two-month stability can
be obtained with three months of data, rather than the
four months of data that are usually required for such a
point.

1. Introduction

Frequency stability is characterized by the square-root
of the Allan variance. Throughout this paper, ‘Avar’
is the overlapping Allan variance estimator and ‘Adev’
is its square root [1]. The maximum-overlap estima-
tor of Theo1 variance is designated Thêo1 variance, and
its square root is Thêo1 deviation or just Thêo1-dev.
Thêo1(τ, T ), shown with the circumflex hat (̂·), desig-
nates the estimator, for a data-run length T . This desig-
nation is consistent with historic nomenclature ‘σ̂2

y(τ,T )’
or what is now called Avar, as mentioned, which is the
maximum-overlap, unbiased estimator of the Allan vari-
ance [1], [2], [3].

Statistical measures such as Adev and Thêo1-dev pro-
vide primarily a spectral interpretation of levels and
types of relative random clock-frequency instabilities.
Theo1(τ ) variance, where τ is a sampling time-interval,
characterizes an oscillator’s frequency domain power-
law noises of form Sy(f) = fα for −3 < α < 2 to excep-
tionally low f . Measures of Sy(f) are useful for separat-
ing underlying clock noise from other sources of noise in
the data run, as well as for providing convenient, prac-
tical metrics of frequency instability [4]. The transform
to Sy(f) from Theo1 variance follows log-log straight
lines, similar to the Allan variance [5]. The levels of
the Theo1 autocovariance (ACV) functions are close to
those of the Allan ACV functions, and for white FM
(WHFM) ACV’s are identical by definition [6], [7], [8].
The ratio of the translations to hα’s using Theo1 vs.
Allan differ as the ratio 1.5α for τ0 � τ . Thus, Thêo1’s
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Allan-bias can be readily removed for common, integer
power-law noise, if known, where α=-2, -1, and +1, and
α=+2, if known to be white phase modulation (WHPM)
noise. Two difficulties addressed in this paper are that
we often do not confidently know α and it is not neces-
sarily integer over a range of interest of τ -values.

In Section 2, we introduce the concept of a hybrid
statistic and its advantages. In Section 3, we define nor-
malized bias as a function of m and τ0 and discuss past
ad hoc ways of creating an Allan-unbiased version of
Thêo1. In Section 4, we give a direct formula for esti-
mating and removing normalized bias, which acts over a
range of m starting with its maximum and obtain what
is called ThêoBR variance. ThêoBR variance adjusts
Thêo1 variance by a factor computed at the longest τ -
values of Avar that have good confidence, namely, up
to 20 % of the total data-run time [2]. To obtain the
shortest to longest term frequency instability for a given
data run, we plot a hybrid statistic, ThêoH deviation as
described in Section 5. ThêoH is Adev for small τ , and
ThêoBR for large τ . We find that ThêoH reports very
long-term frequency stability with excellent confidence
at τ -values that are 50 % beyond the longest possible
using the Allan deviation alone, even in the presence
of mixed noise types. An example is given in Section
6 of an unusual case involving frequency data from a
free-running optical oscillator having random changes
in what appears as frequency drift at long term.

2. Hybrid Statistics

If improved confidence at long-term measurements
of frequency stability are important, a ‘Total’ Allan
variance estimator, called Total Avar, has been recom-
mended [2]. Total Avar is Avar that is applied to a
simple τ -length extension of the original data [3], [9]. It
is an example of a “hybrid” statistic in the sense of im-
proved estimation of frequency stability at long-term τ -
values, where the extension is greatest, while essentially
computing plain Avar at mid- and short-term τ -values,
where the extension becomes progressively smaller [10],
[11], [12], [13], [14]. TotalAvar(τ,T ) has dependence
on τ and data-run length T as with Avar and can be
regarded as a better estimator of the Allan variance,
especially in the presence of frequency drift [15].

In terms of gaining high equivalent degrees of free-
dom (edf), Thêo1 variance outperforms max-overlap es-
timators Avar as well as Total Avar, having respec-
tive edf’s at long τ = T

2 of 2.1, 4.3, and 6 for random-
walk FM (RWFM), flicker FM (FLFM), and white FM
(WHFM). With bias relative to the Allan variance re-
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moved, we can thus achieve a time-domain statistical
measure that has a six-times increase in edf’s, hence,
subsantially improved confidence, on the reported level
of frequency stability at the longest-term τ -value of Avar
for a primary frequency standard properly exhibiting
WHFM [16], [17], [18]. Considering this significant gain,
we discuss strategies for such bias removal that ulti-
mately lead to ThêoH variance, ‘H’ for a hybrid vari-
ance, that can essentially replace Avar and Total Avar.

Fig. 1. The upper plot shows Thêo1 and Adev operating on
WHPM noise type and the lower plot shows Thêo1 with bias re-
moved relative to Adev using (2) and Allan dead-time bias, or B1,
function [19], [20].

3. Methods of Removing Bias Relative to Avar

The unique data sampling of Theo1 [6], [7], [8] causes
bias with respect to zero-dead-time sampling of σ2

y(τ ).
Theo1(m, τ0) relative to the Allan variance can be ex-
pressed as a ratio of σ2

y(τ ) to Theo1(m,τ0) given by a
normalized bias as:

nbias(m, τ0)

=
σ2

y(τ )
Theo1(m, τ0)

− 1. (1)

Thêo1 is defined to be an unbiased estimator of σ2
y(τ )

in the case of the WHFM noise type. In statistics, for
an estimator of a parameter, its bias is defined as the
difference between the expectation of the estimator and
the true value of the parameter. Bias in the context of
this writing means the ratio as given above in (1). An
ad hoc method of determining noise type and removing
bias previously reported in ref. [6] has since been found
to have its bias slightly dependent on m [7]. The most
accurate dependence is given by the function

nbias(m) = a +
b

mc
− 1, (2)

where a, b, and c are empirically derived constants.
These constants are summarized for each of the five
integer-slope noise types in Table I.

TABLE I

Constant values for the bias functions of Thêo1 defined

in Equation (2).

Noise a b c
WHPM 0.09 0.74 0.40
FLPM 0.14 0.82 0.30
WHFM 1 0 0
FLFM 1.87 -1.05 0.79
RWFM 2.70 -1.53 0.85

A method for determining other noise types is to es-
timate Avar’s own bias, or B1, function relative to the
standard variance [19], [20]. Unfortunately, Avar bias
cannot be defined beyond T

2
, or half the data run, since

Avar is undefined, which leads us to a difficulty in us-
ing this method for τ > T

2 . Since B1 does not exist for
the longest τ values of Thêo1, we cannot determine the
noise type and hence correct for Thêo1 bias. Other es-
timates of noise type are obtainable [21], [22], although
use of these methods is limited at this time.

Taken together, the above mentioned methods assume
(1) negligible uncertainty of the noise type at a partic-
ular value of m, (2) only one noise type occurs, and (3)
the noise type fits neatly into one of the five integer-slope
noise models.

For these reasons, an estimate of (1) was investigated
in regions where essentially all τ -values of Thêo1 and
Avar overlap. For a given τ0, uncertainty reduces as
the data run increases and the mean-ratio is proportion-
ately weighted toward the longest overlapping τ -values
because the number of point estimates in (1) increases
with τ . Both of these effects are generally desirable.

4. Bias-removal Method of ThêoBR

By use of (1) and starting at the longest Avar τ -
values, an unbiased version of Thêo1 variance, called
ThêoBR variance (for “Theo bias-removed”), is esti-
mated by

ThêoBR(m, τ0, Nx)
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Fig. 2. Shown in (a) is Adev and Theo1-dev for RWFM, while
(b) and (c) shows the agreement between using nbias of (1) with
Table I vs. TheoBR-dev.

=

[
1

n + 1

n∑
i=0

Avar(m = 9 + 3i, τ0, Nx)̂Theo1(m = 12 + 4i, τ0, Nx)

]
× ̂Theo1(m, τ0, Nx), (3)

where n = �0.1Nx

3 −3� (where �·� denotes the floor func-
tion). Thêo1 is defined in Ref’s [6], [7], [8], [23], and
Avar has its usual definition [1], [2]. The range in the
formula above is based on extensive empirical tests that
looked at minimizing bias and uncertainty under the
widest range of conditions. Avar is limited to τ no longer
than 20 % of the data-run length as recommended [2]
due to nulls in Avar’s frequency response that poten-
tially cause excessive variability and downshoots in long
term [11], [13]. For n ≥ 0, Nx ≥ 90 insures at least
one term in the summand for computing a bias of suffi-
cient confidence. The method of determining ThêoBR-
variance in (3) does not require a priori assumption of
long-term noise type and works with non-integer slope
types. Figure 2 shows the agreement between using
(1) and Table I vs. TheoBR-dev to obtain an Allan-
unbiased Thêo1-dev if we in fact know the noise type,

which in this case is RWFM. For oscillator noise with
multiple types, different biases must be removed that
depend on τ . This is unnecessary for short- and mid-
term τ -values, given that Avar usually has more than
adequate confidence for most applications. The advan-
tage of ThêoBR variance is improved confidence at long-
term τ with estimates of frequency stability 50 % beyond
that possible with Avar. Rather than compute an every-
where Allan-compatible, bias-removed version of Thêo1,
it is more practical to construct a hybrid of Avar and
ThêoBR variance.
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Fig. 4. ThêoH-dev combines Adev and ThêoBR-dev to provide
one “Allan-compatible” plot from shortest to longest τ -values.

Figure 3 plots Adev, Thêo1-dev, and ThêoBR-dev
for a data run of a mix of WHFM and RWFM noise
types whose length Nx = 4097, thus, a data-run time of
T = 4096τ0. Note that the effect of bias removal from
Thêo1-variance using (3) results in ThêoBR-dev prop-
erly resuming where Adev leaves off. ThêoBR-dev, like
Thêo1-dev, can extend to 3

4
data-run length and is not
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subject to downshoots [23].

5. Definition of ThêoH

Define a hybrid frequency stability estimator called
ThêoH as a composite of Avar (m,τ0,Nx) and̂TheoBR(m,τ0,Nx), namely,

ThêoH(m, τ0, Nx)

=

⎧⎨⎩ Avar(m,τ0,Nx), for 1 ≤ m < k
τ0

TheoBR(m,τ0,Nx), for k
0.75τ0

≤ m ≤ Nx − 1
m even

,

(4)

where k is the largest τ ≤ 10%T where Avar(m,τ0,Nx)
has sufficient confidence. ThêoH is Avar(m,k,Nx) up to
10 % of the length of the data run and ̂TheoBR(m,k,Nx)
thereafter. As Avar’s statistical properties become
poorer and poorer in long term, we switch to ThêoBR
variance, which has twice the range of m-values than
Avar and different dependence on m of τ = 0.75mτ0 and
τ = mτ0, respectively. Figure 4 shows an example of us-
age of the hybrid statistic by applying the recipe in (4)
to obtain ThêoH deviation for the same data used in
Figure 3. Slight variations in where the switch occurs
from Avar to ThêoBR variance have essentially negligi-
ble effect since overlapping τ -values are closely matched
anyway.
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Fig. 5. Allan-compatible plot from shortest to longest-possible τ -
values of a laser frequency that is locked to a stable optical cavity.
Data are courtesy of J. Bergquist and S. Diddams, June, 2006.

6. Beyond Avar

ThêoBR variance can be viewed as calculating the ex-
pectation value of Avar at sample times longer than the
last possible τ -value of Avar, although this is not the
way that “expectation value” is usually meant. This
is useful for determining ways of removing frequency
drift, given that it is unreliable to extrapolate any time-
domain statistic into its unobservable long-τ region [24]
for such purposes. It is important to emphasize that
the points computed using ThêoBR(m,k,Nx) in (3) are
based on a new class of long-stride statistics and are
not an extrapolation of Avar. To show that this is
true, studies using a wide range of simulated and actual
clock data [6] show that, consistent with confidence in-
tervals, ThêoBR variance calculates the same long-term
frequency stability that Avar would otherwise calculate,
given more data. Tests of short segments of very long
data runs are a way to assess how well ThêoBR variance
anticipates the value that Avar would report as increas-
ingly longer segments of a very long data run are used.
These studies included steep, mixed integer, and non-
integer noise types that change beyond the longest τ of
Avar [8].

Tested software [25] executes ThêoH and other data-
analysis tools. Online MatLab code is available also [26].
Figure 5 shows recent frequency stability results of a
free-running 563 nm laser that is ultimately locked to a
mechanically stable optical cavity at approximately 2.80
x 1014 Hz with methodology and measurement described
in [27]. This is an interesting illustration of exceptional
short-term frequency stability in the presence of steep
τ+1 slope that might be interpreted as frequency drift.
However, systematic drift is not indicated in the raw
frequency data shown at the top of Figure 5. Indeed,
ThêoBR deviation is computed at the longest two τ val-
ues at ∼7,000s and ∼14,000s and indicates a long-term
slope change toward apparent RWFM whose level can
be estimated, even for this limited data run.

Noteworthy is that frequency-domain Sy(f) can be
estimated to extremely low f using ThêoH variance.
Time-to-frequency domain coefficients that have tradi-
tionally been used with Avar [1], [2] can continue to
be used with ThêoH variance. An important benefit is
that, at long term, ThêoH deviation has enough nar-
rowness in its range of noise-slope types as compared
to Adev that it enables faster detection of the onset of
nonstationary noise types of FLFM or RWFM [28], [29].

7. Conclusion

We have formulated ThêoH deviation that consists of
Adev for short and mid τ -values in combination with
points at very long τ -values of Thêo1 with bias removed
(BR) in such a way that mixed, non-integer noise types
can be accurately characterized for evaluations that ex-
tend to 50 % longer than possible using Adev alone. ‘H’
of ThêoH is used to indicate that it is a hybrid statistic
of Adev in short term and ThêoBR (bias removed) de-
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viation in long term. Thêo1 variance is the estimator of
a new class of theoretical variance that averages every
permissible squared second-difference of time-error sam-
pling intervals in a data run.

ThêoBR deviation provides (1) automatic correction
for bias relative to Adev, even for non-integer power-law
noises, (2) improved power-law noise determination at
very long τ -values when used in combination with Adev,
namely, using ThêoH-vs.-τ slopes, (3) characterization
to longer τ -values than with Adev, and (4) Sy(f) to
extremely low f using existing Allan time-to-frequency
domain translation coefficients.
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