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Abstract
‘Theo1’ (short terminology for ‘theoretical variance #1’) is derived based on
ψ2

y (τs, τ ), a variance that separates the Allan variance’s averaging time (τ )
from its sampling interval (τs), also called ‘stride’, as applied to normalized
fractional-frequency y(t). The τ -length average of y(t) is denoted τ y(t),
and every permissible squared difference of τ y(t)-values in ψ2

y (τs, τ ) is
averaged in mτ0 segments of y(t) to compute Theo1(m, τ0). Although
biased relative to the Allan variance, Theo1(m, τ0) mimics all statistical
properties of the Allan variance and works to very long stride. Its estimator
T̂heo1(τs) has substantially better confidence compared with the best Allan
estimator σ̂ 2

y (τs), called ‘Avar’. To make an Allan-compatible statistic, a

novel ‘bias-removed’ version of T̂heo1 variance, called ‘ ̂TheoBR’ variance,
yields ThêoH variance (‘H’ to indicate high confidence and/or hybrid Allan
and ̂TheoBR functions). ThêoH deviation combines the Allan deviation in
short term and ̂TheoBR deviation in long term, reporting very long-term
frequency stability 50% beyond that possible using the Allan deviation alone
and with excellent confidence.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For a given data run, it is often vital to reliably determine
the level and type of noise associated with the longest-term
frequency stability. Three examples of such a need are: (1) in
an ensemble of clocks, steering each clock for combined best
overall frequency stability relies on a weighting algorithm that
depends on accurate values of long-term frequency stability
and correct FM-noise identification; (2) in a primary frequency
standard, an important test of claimed accuracy (the threshold)
is that the flicker frequency modulation (FLFM) floor must
be the same as or lower than any stated accuracy; and
(3) oscillators that are mass-produced require standardized
stability measurements out to the longest possible averaging
time τ , given that they are tested for a relatively short time.

Frequency stability is characterized by the square root of
the Allan variance [1]. Throughout this paper, ‘Avar’ is the
overlapping Allan variance estimator and ‘Adev’ is its square
root [2]. If long-term measurements of frequency stability are
important, a ‘total’ Allan variance estimator, called Total Avar,
is recommended [3]. Total Avar is simply Avar that is applied to

a τ -length extension of the original data [4–6]. It is an example
of a ‘hybrid’ statistic in the sense of improved estimation
of frequency stability at long-term τ -values, where the
extension is greatest, while essentially computing plain Avar
at mid- and short-term τ -values, where the extension becomes
progressively smaller and smaller [7–10]. Total Avar(τ, T )

has dependence on τ and data-run length T . The spectral
filter response associated with Total Avar’s sampling for large
τ -values is smoother than Avar for determining FM noise
and is the main reason for using Total Avar in the first
place [11]. Confidence, expressed as the equivalent degrees
of freedom (edf), increases from Avar’s 1 to Total Avar’s
1.5, 2.1 and 3 in the presence of random-walk frequency
modulation (RWFM), FLFM and white frequency modulation
(WHFM), respectively, for computations of frequency stability
at τ = T/2. There is an easily-removed slight negative bias
associated with RWFM and FLFM noises [7, 11].

Analysts of frequency stability are confident of Total
Avar’s properties [9] and take advantage of its benefits [12].
Easy-to-use 32-bit Windows software is commercially
distributed which implements Total Avar on large data sets,

0026-1394/06/040322+10$30.00 © 2006 BIPM and IOP Publishing Ltd Printed in the UK S322

http://dx.doi.org/10.1088/0026-1394/43/4/S20
http://stacks.iop.org/me/43/S322
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computes its confidence intervals and automatically adjusts
for bias1. Interestingly, Total Avar can be computed for
intervals beyond half the data run, but these values, not reported
since Avar itself is undefined in this region [8], contain useful
information [11].

ThêoH variance to be described here outperforms max-
overlap estimators Avar and Total Avar, having respective edfs
at τ = T/2 of 2.1 for RWFM, 4.3 for FLFM, and 6 for
WHFM. For a primary frequency standard properly exhibiting
WHFM, ThêoH variance has a six-fold increase in edfs, hence,
subsantially improved confidence, on the reported level of
frequency stability at the maximum-τ value of Avar [13].
ThêoH variance also gives levels of frequency stability with
good confidence beyond the maximum-τ of Avar [14, 15].

Section 2 defines a generic first-difference variance called
‘psi-variance’ (ψ2

y (τs, τ )) in which measurement dead time
is a free parameter given by sampling interval τs called
‘stride,’ minus averaging time or τs − τ . Nonzero dead
time expressed as τs �= τ , causes bias relative to Avar that
depends on the ratio of dead-to-live time and so is generally
thought to be detrimental compared to Allan’s zero-dead-time
approach [16–18]. However, simulation studies show that
confidence is not substantially lower with dead time [19]. An
average of psi-variance confined to a span of mτ0, where m

is an integer, is defined representing a new class of statistics
called ‘Theo1 variance’ with recognized benefits [12–15, 20].
Throughout this paper, the maximum-overlap estimator of
Theo1 is designated ‘T̂heo1.’ The properties of T̂heo1 variance
are compared with Avar in section 3. Section 4 gives a
technique for substantially reducing long-term bias relative to
Avar, which leads to the ThêoH variance defined in section 5.
Section 6 gives T̂heo1 edf formulae. Section 7 shows that
by using ThêoH variance, the primary goal of distinguishing
power-law noise types and levels is attained substantially better
than by using Avar.

2. Processing fractional-frequency data

2.1. A generic two-sample frequency variance with dead
time: ψ2

y (τs, τ )

For comparison to the Allan variance, define a continuous-
analogue two-sample frequency variance based on average
frequency differences spaced by stride τs as follows:

ψ2
y (τs, τ ) ≡ τ

τs

〈[τ y(t) − τ y(t − τs)]
2〉, (1)

where τ y(t) is an average frequency over duration τ = mτ0 and
〈·〉 denotes an ensemble average of realizations of sequential
τ y(t) [21]. In terms of the time-error function x(t) between
two oscillators, τ y(t) = x(t)−x(t−τ)

τ
. Definition (1) is based

on taking sequential mean frequency measurements spaced τs

apart, differencing them, and computing the mean square [22].
The τ/τs makes the expected value the same for WHFM irre-
spective of τ and τs for a constant interval. Figure 1 shows the
sampling-sequence function associated with ψ2

y (τs, τ ) acting

1 Stable 32, Frequency Stability Analysis for Windows and NT, Hamilton
Technical Services, 650 Distant Island Drive, Beaufort, SC 29907, USA,
Phone: 843-525-6495, http://www.wriley.com. No endorsement is implied.

Figure 1. Theo1 variance averages ψ2
y (τs, τ ) over all τ s constrained

to a span of length mτ0. (a) and (d) correspond to sampling at
max-stride ψ2

y ((m − 1)τ0, τ0) and min-stride
ψ2

y ((m/2)τ0, (m/2)τ0), respectively. (b) and (c) are realizations
between max and min separated by one m increment. Note that
average stride τs = 0.75mτ0.

on y(t) for different τs and τ in interval mτ0. The ‘sampling se-
quence’ is that function which is convolved with the frequency-
data vector before computing the mean-square variance. τn in
figure 1 is one discrete realization from the set of all those
possible, and τsn

is its corresponding stride. As τ increases
from τ0 to (m/2)τ0 in figure 1(a)–(d), stride τs decreases and
averages to τs = (1/N)

∑N
n=1 τsn

= 0.75mτ0.

2.2. Definition of Theo1

A new class of long-stride statistics is introduced in this writing
by ‘Theo1’ that averages ψ2

y (τs, τ ) over combinations of τs

and τ . τs , τ , x(t) and y(t) are continuous, but, in fact, actual
measurements are represented as digital, equi-spaced discrete
numbers in a time-series. It is usual practice to measure
the time-error between two oscillators with a time interval
counter [2]. Measurement samples of the time-error function
x(t) occur at a rate fs having an interval τ0 = 1/fs . Given a
sequence of time errors {xn : n = 1, . . . , Nx} with a sampling
period between adjacent observations given by τ0, we define
the ατ0-average fractional-frequency deviate as

yn(α) ≡ 1

α

α−1∑
j=0

yn−j ,

where we obtain {yn} from yn = (1/τ0)(xn − xn−1) with
n = t/τ0 starting from a designated origin t0 = 0. Index
n, integers m and Nx and sample-rate period τ0 are used in
discrete-continuous versions of actual measurements [23].

Theo1 variance averages ψ2
y (τs, τ ) in interval mτ0. Its

expectation value, in terms of symmetric differences of
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time-error values {xn}, is

Theo1(m, τ0) ≡ 1

2

〈
2

0.75m

m
2 −1∑
δ=0

1

m(m
2 − δ)

× 1

τ 2
0

[(
xn+ m

2
− xn+δ

) − (
xn−δ − xn− m

2

)]2

〉
, (2)

where τ0 is the minimum sampling interval. Theo1(m, τ0)

characterizes frequency stability at stride 0.75(m − 1)τ0. For
WHFM, Theo1 variance is made equal to the Allan variance
when the strides in each are equal.

2.3. Estimator T̂ heo1

The hat ‘·̂’ over Theo1 variance denotes an estimator for length
Nx consistent with nomenclature ‘σ̂ 2

y (τ ),’ or what has been
called Avar, the maximum-overlap, an unbiased estimator of
the Allan variance [2–4]. The maximum-overlap estimator of
Theo1 is the main subject of all discussions hereafter and is
given by

T̂heo1(m, τ0, Nx) = 1

0.75(Nx − m)(mτ0)2

×
Nx−m∑
i=1

m
2 −1∑
δ=0

1

(m/2) − δ

×[(xi+m − xi+δ+ m
2
) − (xi−δ+ m

2
− xi)]

2, (3)

for m even, 10 � m � Nx − 1, where frequency stability
is evaluated, in essence, at an average sampling interval
τs = 0.75mτ0. T̂heo1 variance estimates mean ψ2

y (τs, τ )

by summing over all τsn
and τn in span mτ0. This means

that the longest τs = 0.75(Nx − 1)τ0 or an averaging time
corresponding to 3/4 of the duration of a data-run length.
This is 50% longer than the longest τ -value of maximum-
overlap estimator σ̂ 2

y (τ ) in which m’s range is only 1 � m �
(Nx − 1)/2 [2, 3].

In (3), the symmetry of T̂heo1’s sampling (see figure 1)
means that m can take only even values, that is, m =
2, 4, 6, · · ·. Thus, T̂heo1(τ )’s evaluations actually occur at
τ = 1τ0, 3τ0, 5τ0, · · ·. An evaluation of T̂heo1(m−1, τ0, Nx)

in a time-domain setting simply means T̂heo1(τs − τ0). As a
practical matter, since τ0 and its effect can be made arbitrarily
small, T̂heo1(τs) = T̂heo1(τ ) just as σ̂ 2

y (τs) = σ̂ 2
y (τ ) with

Avar.

3. Properties of T̂ heo1(τ )

3.1. Compatibility with Allan deviation

The square-root of T̂heo1-variance of (3), or T̂heo1-deviation
is in convenient units of fractional frequency fluctuation, like
square-root-of-Avar, or Adev. m, as always, is the number of
units of data spacing τ0 in seconds that defines time interval
τ such that τ = 0.75mτ0. Thus, notation T̂heo1(τ ) means
T̂heo1(τ = τs = 0.75mτ0).

Table 1 gives coefficients for transforms of T̂heo1-
deviation level and slope on log–log plot to the square
root of noise spectrum,

√
Sy(f ), that is, carrier-signal

rms fractional frequency fluctuations (�ν/νo)rms in a 1 Hz

Table 1. Transform coefficients of T̂heo1-deviation level and slope
on log–log plot in the τ domain to (�ν/νo)rms, the square root of
noise spectrum,

√
Sy(f ), in the Fourier-frequency domain. QPM is

quantized phase modulation. QSFM(f0) means QSFM at f0.

Noise T̂heo1-dev T̂heo1-dev
√

Sy(f )

type level aµ slope µ

2 or
(

�ν

νo

)
rms

versus f

QPMa a−2 −1 f 1
2
√

3fh
τa−2

WH/FL PMa a−2 −1 f
1
2 π√

3fh
τa−2

WH FM a−1 − 1
2

√
2τa−1

FL FM a0 0 f − 1
2 1√

ln2
a0

RW FM a+1 + 1
2 f −1 1

π

√
6
τ
a+1

Drift a+2 +1 f − 3
2 2

τ
a+2

QSFM(f0) 1
2

�ν

νo

(
sin2 πfoτ

πfoτ

)
−1 (avg) �ν

νo
(fo)

a Requires fh (high-frequency cutoff), 2πfhτ � 1.

bandwidth evaluated at Fourier frequency f . ‘QPM’ is the
quantized phase modulation, and ‘QSFM(f0)’ means quasi-
sinusoidal frequency modulation (QSFM) at f0. Coefficients
are consistent with straight-line (on log–log plots) Allan-
deviation transforms to the Fourier-frequency domain [24].

Correlation of octave τ -values using T̂heo1 variance
is equivalent to that of Avar and is qualitatively tested
and compared by measuring each statistic’s expected 1/τ 2

response to a phase spike [25].

3.2. Smooth frequency response of T̂ heo1

The T̂heo1(τ ) sampling function shown in figure 1 is nearly
impossible to interpret in the time domain but easier to
understand in the frequency domain [7]. Frequency response
of a statistic is the square root of the sum of the squares
of the real and imaginary Fourier transforms (FTs) of the
statistic’s sampling sequence. For the multiple sequences
of T̂heo1(τ ), responses are averaged. Frequency-response
functions associated with T̂heo1, Total Avar and Avar are
shown in figure 2 to compare the effect of their sampling
functions. These plots were obtained by sweeping the
input of each statistic with a sine wave and observing
the output response. Results agreed with the FT method.
The thin line in figure 2 is the response of a constant-
Q, one-octave pass-band filter considered to be ideal for
extracting typical power-law noise levels [26–30]. Total
Avar implements a circular convolution of Avar’s frequency
response, resulting in reducing the depth of Avar’s periodic
nulls. But T̂heo1’s frequency response is by far the most
impressive approximation to the response of an ideal pass-band
filter.

3.3. Improved confidence of T̂ heo1

Table 2 compares edf between Avar and T̂heo1 variance from
100 simulation trials in which Nx = 1025 using the three FM
noises in the mid- to long-term range 16 < m < 1024. In
all cases, the increased edf using T̂heo1 is significant. Table 2
is interpreted to mean that at larger τ -values, unlike σ̂ 2

y (τ )’s
uncertainty, which grows quickly as τ → 1

2T , evaluations
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Figure 2. A comparison of frequency responses of T̂heo1 (——),
Total Avar (shown as Totvar) and Avar and a passband variance
consisting of a simple cascade of a single-pole high-pass followed
by a low-pass filter with identical break points at RC = τ/2
(- - - - [27]). Frequency responses are in [7] and were provided
courtesy of Chuck Greenhall using his generalized autocovariance
theory.

using T̂heo1(τ ) have significantly lower uncertainty as long as
τ0 � τ and whose uncertainty increases smoothly and nearly
monotonically as τ → 3

4T [31]. An empirically-determined

moderate starting m-sample size is m � 10 since T̂heo1’s
advantage over Avar begins with T̂heo1(7.5τ0).

4. Formulation of T̂heo1 that is unbiased relative to
long-term Avar

In statistics, for an estimator of a parameter, its bias is defined
as the difference between the expectation of the estimator and
the true value of the parameter. Bias in the context of this
writing means Theo1(m, τ0) relative to the Allan variance as a
ratio of σ 2

y (τ ) to Theo1(m, τ0) given by a normalized bias as

nbias(m, τ0) = σ 2
y (τ )

Theo1(m, τ0)
− 1. (4)

It is the unique data sampling of Theo1 in figure 1 that causes
bias with respect to zero-dead-time sampling of σ 2

y (τ ). T̂heo1
is defined to be an unbiased estimator of σ 2

y (τ ) in the case of
the white FM (WHFM) noise type. A method for determining
other noise types is to use Avar’s bias, or B1, function [16,32].
This function is undefined beyond T/2 since Avar is undefined,
which leads us to a difficulty in using this method for τ > T/2.
Since B1 does not exist for the longest τ values of T̂heo1, we
cannot determine the noise type and hence correct for T̂heo1
bias. Other estimates of noise type are obtainable [33, 34],
although use of these methods is limited at this time. An
ad hoc method of determining noise type and removing bias
previously reported in [35] has since been found to have its bias
slightly dependent on m [36]. The most accurate dependence
is given by the function

nbias(m) = a +
b

mc
− 1, (5)

where a, b and c are empirically derived constants. These
constants are summarized for each of the five integer-slope
noise types in table 3. Taken together, the above-mentioned

methods assume (1) negligible uncertainty of the noise type at
a particular value of m, (2) that only one noise type occurs and
(3) that the noise type fits neatly into one of the five integer-
slope noise models.

For these reasons, an estimate of (4) was investigated
in regions where essentially all τ -values of T̂heo1 and Avar
overlap. For a given τ0, uncertainty reduces as the data
run increases and the mean-ratio is proportionately weighted
toward the longest overlapping τ -values because the number
of point estimates in (4) increases with τ . Both these effects
are generally desirable.

Starting at the longest Avar τ -values, an unbiased version
of T̂heo1 variance, called ̂TheoBR variance (for ‘Theo bias-
removed’), is estimated by

̂TheoBR(m, τ0, Nx)

=
[

1

n + 1

n∑
i=0

Avar(m = 9 + 3i, τ0, Nx)

T̂heo1(m = 12 + 4i, τ0, Nx)

]

×T̂heo1(m, τ0, Nx), (6)

where n = 	(0.1Nx/3) − 3
 (where 	·
 denotes the floor
function). T̂heo1 is defined as (3) and Avar has its usual
definition [2, 3]. The range in the formula above is based
on extensive empirical tests that looked at minimizing bias
and uncertainty under the widest range of conditions. Avar
is limited to τ no longer than 20% of the data-run length as
recommended by [3] due to nulls in Avar’s frequency response
shown in figure 2 that potentially cause excessive variability
and downshoots in the long term [9, 11]. For n � 0, Nx � 90
ensures at least one term in the summand for computing a bias
of sufficient confidence. The method of determining ̂TheoBR-
variance in (6) does not require a priori assumption of long-
term noise type and works with non-integer slope types.

Figure 3 plots Adev, T̂heo1-dev and ̂TheoBR-dev for a
data run of a mix of WHFM and RWFM noise types whose
length Nx = 4097, thus, a data-run time of T = 4096τ0.
Note the effect of bias removal from T̂heo1-variance using (6)
results in ̂TheoBR-dev properly resuming where Adev leaves
off. ̂TheoBR-dev, like T̂heo1-dev, can extend to 3/4 data-run
length and is not subject to downshoots [31].

5. Definition of ThêoH

Define a hybrid frequency stability estimator called ThêoH
as a composite of Avar (m, τ0, Nx) and ̂TheoBR(m, τ0, Nx),
namely,

ThêoH(m, τ0, Nx)

=




Avar(m, τ0, Nx), for 1 � m < k
τ0

,

̂TheoBR(m, τ0, Nx), for k
0.75τ0

� m � Nx − 1,

m even,

(7)

where k is the largest τ � 10%T where Avar(m, τ0, Nx) has
sufficient confidence. ThêoH is Avar(m, k, Nx) up to 10%
of the length of the data run and ̂TheoBR(m, k, Nx) thereafter.
As Avar’s statistical properties become poorer in the long term,
we switch to ̂TheoBR variance, which has twice the range of
m-values as that of Avar and different dependence on m of
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Table 2. Comparison of edfs of Avar and T̂heo1 with 100 simulation trials of {xn} series consisting of Nx = 1025 points each. Note that
Avar extends to a limit of 512 points, while T̂heo1 extends to 1024 points given by (3).

WHFM FLFM RWFM

m edf Avar(m) edf T̂heo1(m) edf Avar(m) edf T̂heo1(m) edf Avar(m) edf T̂heo1(m)

16 81.00 205.2 70.94 149.1 48.57 94.91
32 45.50 101.5 32.45 72.23 27.44 46.74
64 26.13 58.72 14.67 32.51 12.70 26.28

128 10.54 30.87 6.77 14.37 6.34 11.86
256 4.54 14.28 3.63 7.34 2.15 5.90
512 0.94 6.02 1.11 4.33 1.02 2.08

1024 1.57 1.34 1.11

Table 3. Constant values for the bias functions of T̂heo1 defined in
equation (5).

Noise a b c

WHPM 0.09 0.74 0.40
FLPM 0.14 0.82 0.30
WHFM 1 0 0
FLFM 1.87 −1.05 0.79
RWFM 2.70 −1.53 0.85
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Figure 3. Adev, T̂heo1-dev and T̂heoBR-dev for a data-run time of
T = 4096τ0. Data are a mix of WHFM and RWFM noise types.
Long-term bias removed (BR) from T̂heo1-variance is
T̂heoBR-variance using (6). T̂heoBR-dev, like T̂heo1-dev, can
extend to 3/4 data-run time.

τ = 0.75mτ0 and τ = mτ0, respectively. Figure 4 shows
an example of usage of the hybrid statistic by applying the
recipe in (7) to obtain ThêoH deviation for the same data used
in figure 3.

It is important to note that the points computed using
̂TheoBR(m, k, Nx) are based on a new class of long-stride

statistics and are not a mere extrapolation of Adev. Several po-
tential definitions for ThêoH were investigated before deciding
on (7). Tests used a thorough range of simulated and actual
clock data [35], including steep, mixed integer and non-integer
noise types that change beyond the longest τ of Avar, into its
unobservable long-τ region [37]. Slight variations in where the
switch occurs from Avar to ̂TheoBR variance have negligible
effect since overlapping τ -values are closely matched anyway.

Online MatLab code is available [38] in addition to the

10
0

10
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10
2

10
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10
4

10
–12

10
–11

10
–10

τ

T
he

oH
–

de
v

TheoH dev

3T/4

Adev ThêoBR–dev

Data Run

Figure 4. ThêoH-dev combines Adev and T̂heoBR-dev to provide
one ‘Allan-compatible’ plot from shortest to longest τ -values.

aforementioned commercially-available, tested software (see
footnote 1) that executes ThêoH and other data-analysis
tools2. Figure 5 shows recent frequency stability results of
a free-running 563 nm laser that is ultimately locked to a
mechanically stable optical cavity at approximately 2.80 ×
1014 Hz with the methodology and measurement described
in [39]. This is an interesting illustration of exceptional short-
term frequency stability in the presence of steep τ +1 slope that
might be interpreted as frequency drift. However, systematic
drift is not indicated in the raw frequency data shown at the
top of figure 5. Indeed, ThêoH deviation indicates a long-
term slope change towards apparent RWFM whose level can
be estimated, even for this limited data run.

Characterization of models of the five noise types in the
frequency domain, Sy(f ), at extremely low f , is possible using
ThêoH with traditional mapping coefficients [2, 3, 24] rather
than with table 1.

6. Confidence intervals for ThêoH

An uncertainty (estimation error) can be assigned to ThêoH
by use of edf. ThêoH values have edfs that are substantially
greater than those using the max-overlap estimates of the
Allan variance (Avar), particularly at long-term τ -values. For
computing confidence intervals, empirical formulae of edfs

2 MatLab is a registered trademark of MathWorks, Inc. No endorsement is
implied. Shared code is subject to change and is a cooperative service for
users. Any such sharing is expressly exempt from any liability.
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Figure 5. Allan-compatible plot from shortest to longest-possible
τ -values of a laser frequency that is locked to a stable optical cavity.
Data are courtesy of J Bergquist and S Diddams, June 2006.

that fit simulation can be used [24, 40]. Here are the edf
formulae corresponding to T̂heo1, hence, ThêoH, for the five
noises with the condition that τ0 � T/10, as discussed in
section 3.3 and stipulated in (3):

edf︸︷︷︸
WHFM

=
[

5.5Nx + 1.07

m
− 3.1Nx + 6.5

Nx

](
m3/2

m3/2 + 8

)

edf︸︷︷︸
FLFM

=
(

2.7N2
x − 1.3Nxm − 3.5m

Nxm

)(
m3

m3 + 5.45

)

edf︸︷︷︸
RWFM

=
(

4.4Nx − 2

2.175m

)

×
(

(4.4Nx − 1)2 − 6.45m(4.4Nx − 1) + 6.413m2

(4.4Nx − 3)2

)

edf︸︷︷︸
WHPM

=
(

0.86(Nx + 1)(Nx − m)

Nx − 0.75m

)( m

m + 1.52

)

edf︸︷︷︸
FLPM

=
(

5.54N2
x − 5.52Nxm + 10.727m

(m + 48.8)1/2(Nx − 0.75m)

)( m

m + 0.4

)

Accuracy of the fit to simulation results is ±10%.
Chi-square distribution functions are used for the

Allan variance for calculating confidence intervals, but the
distribution functions are narrower using ThêoH(0.75mτ0)

(which is another of its benefits) at long averaging periods
in which τ0 � T [31]. Figure 6 shows exact upper-bound
values of 90% confidence intervals versus edf as a percentage
of Adev and ThêoH values for a short RWFM noise simulation,
and lower-bound values skew below computed values and have
little practical use. An empirical formula to obtain percentage
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Figure 6. Upper bound of 90% confidence interval for Adev
uncertainty (exact values from inverse chi-square) and ThêoH
uncertainty (exact values from [31]) in terms of a percentage error of
the computed value. Note the substantially lower error in ThêoH at
critical low edf, corresponding to long-term τ .

upper-bound ThêoH(τ = 0.75mτ0) uncertainty is

percentage error using ThêoH(τ ) = 100√
2(edf + 6.6)

, (8)

where edf � 1 is calculated from the formulae above. This
uncertainty is meant to provide some information on the spread
of possible values of ThêoH(0.75mτ0) that are consistent with
90% confidence. It does not address values obtained for a
specific case.

7. Improvements to estimating slopes

One of the main goals of τ -domain analysis is determining
noise type, level and other instabilities and efficiently finding
departures from stationary noise processes. The first occurence
of flicker FM behaviour and estimating its lowest level, or
‘floor,’ is significant since the sampling interval, or stride,
of ‘best stability’ is often regarded as the threshold of
‘best reproducibility’ which sets limits on accuracy [13–15].
Statistically, the FM noise is classed as stationary typified by
WHFM, or not stationary signalling the onset of FLFM or
RWFM processes. In the nonstationary case, a theoretical (or
infinite) mean frequency cannot be estimated reliably [41,42].

If an oscillator exhibits flicker FM, accuracy or
reproducibility claims are no longer valid since the mean
frequency changes proportionately as the sampling interval
increases. To see whether the flicker-like noise exists or not, we
must wait long enough for the confidence intervals to narrow
the range of possible slopes so that a determination of noise
type can be made. Accordingly, measurements of frequency
stability of 10−16, given such frequency standards, can require
extremely long averaging times, perhaps years, to verify that
a ‘mean frequency’ and accuracy apply.

Stability computations that occur in power-of-2 increments
(also called ‘octave’ increments) of m are used for determin-
ing power-law noise types since these points are sufficiently
independent, and an ‘eyeball’ estimate of slope-per-octave

Metrologia, 43 (2006) S322–S331 S327



D A Howe

Figure 7. For the confidence interval associated with the value of
ThêoH at each octave of τ , that is, 0.75mτ0 = τ, m = 1, 2, 4, 8...,
a range of slopes corresponds to the upper and lower confidence
factors. This ‘slope range’ is illustrated as the darkened region
between τ values.
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Figure 8. Spread of possible slopes-per-octave for simulated noise
consisting of 1025 data points of frequency noises (WHFM, FLFM
and RWFM) respectively proportional to τ−1/2, τ 0, τ +1/2. τ ′ is the
midpoint between two computations of Adev and ThêoH at τupper

and τlower separated by an octave. In the plots above, a spread
greater than ± 1

2 means that prevailing power-law noise type is
indistinguishable from its neighbouring type.

from a log–log representation is an adequate starting point.
A weighted, linear least-squares regression applied to Adev
and ThêoH versus tau provides a probabilistic interpretation in
the ‘spread’ or range of slopes on a per-octave basis [43]. The
regression is ‘weighted’ in the sense that the confidence inter-
vals are different for different τ -values. Figure 7 depicts what
is meant by the slope range that corresponds to the expected
group or band of slopes.

At long term, ThêoH deviation has enough narrowness in
its range of slopes as compared with Adev so that it enables
faster detection of the onset of nonstationary noise types of
FLFM or RWFM. To generalize this assertion, a range or band
of slopes can be established based on the 90% confidence
intervals of an Adev versus tau plot compared with ThêoH
deviation versus tau for each octave of sampling interval τ as
just previously discussed and as illustrated in figure 7. Figure

8 shows results of slope ranges for WHFM, FLFM and RWFM
of 1025-point simulated data runs and using Adev and ThêoH.
The plots show that for increasing averaging time, ThêoH
deviation has significantly narrower slope spread than Adev.
As an example, for FLFM, if the slope range is above ± 1

2 , then
FLFM is not readily distinguishable from RWFM or WHFM.
This occurs for Adev at τ ′ ∼= 40τ0, or about 4% of the data run,
whereas for ThêoH deviation, prevailing FLFM continues to be
detected as such to τ ′ ∼= 200τ0 or about 1/5 of the data run. For
WHFM, the range is below ± 1

2 , except at the longest averaging
times, noting only that white noise is detected better using
ThêoH deviation. All bands use 90% confidence intervals
based on chi-square distribution properties (see section 6).

The results above show promise when any number of
random noise components may be present in frequency-
stability data, depending on the type of test and reference
oscillators being compared and the environment in which
the data are obtained. If a ThêoH deviation plot has nulls,
‘structure’ or oscillations over a particular range of τ , then
it is probably not a power-law process and one must try to
estimate the spectral density L(f ) or Sy(f ) using a phase-
or frequency-noise measurement method and a DFT or FFT
analysis in addition to an analysis using ThêoH [44, 45].

8. Conclusion

T̂heo1 variance, the genesis of ThêoH variance, is the estimator
of a new class of theoretical variance which averages every
permissible squared second-difference of time errors in a given
period mτ0. ThêoH deviation consists of Adev for short and
mid τ -values in combination with points at very long τ -values
of T̂heo1 with BR in such a way that mixed noise types can be
accurately characterized. ‘H’ of ThêoH is used to indicate a
high confidence and/or hybrid statistic (Adev in short term
and TheoBR (bias removed) deviation in long term) with
evaluations that extend to 50% longer than possible using Adev
alone. ThêoH deviation provides the following:

• unprecedented confidence in estimating frequency
stability,

• automatic correction for bias relative to Adev, even for
non-integer power-law noises,

• improved power-law noise determination at very long
τ -values using ThêoH-versus-τ slopes,

• characterization to longer τ -values than with Adev, and
• characterization of Sy(f ) to extremely low f using

existing Allan mapping coefficients.

Long-term frequency stability can be obtained in essentially
one-third less time. For example, a two-month stability can be
obtained with three months of data, rather than four months of
data that is usually required for such a point.
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S328 Metrologia, 43 (2006) S322–S331
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Appendix A

A.1. Example calculation of T̂ heo1(τ )

To illustrate (3), consider a short segment of data consisting
of a series of five time-error measurements {x1, x2, x3, x4, x5}
taken once a day; thus τ0 = 1 d = 86 400 s, 3τ0 = 3 d =
259 200 s in this 5 d worth of data, thus our evaluation is at
m = 4 with Nx = 5. The outer (leading or first) summation
in (3) consists of only one term, noting that i goes from 1 to
Nx − 4 = 1, so we have only the inner or second summation
to compute, and it has two terms corresponding to indices
δ = 0, 1. They are

[(x1 − x3) + (x5 − x3)]
2 and [(x1 − x2) + (x5 − x4)]

2.

We obtain

T̂heo1(3, 86 400 s, 5)

=
(

1

0.75

)
1

16τ 2
0︸ ︷︷ ︸

16(86 400 s)2

{1

2
× [(x1 − x3) + (x5 − x3)]

2

+ 1 × [(x1 − x2) + (x5 − x4)]
2
}
. (9)

Figure 9 shows a representative set of time-error values
sampled from function x(t). These are example values used
in Annex C3 of [3], but we have taken the liberty of changing
the sampling to 1 sample/day rather than 1 sample/s in order
to discuss how T̂heo1-variance operates on long-term data in
a way that is different from how the Allan variance does.

In units of nanoseconds, we have

x1 = 1.08, x2 = 0.5, x3 = 2.2,

x4 = 4.68, x5 = 3.29.

The required first differences and operations on series {xn} in
(9) are

x1 − x3 = −1.12
+

x5 − x3 = 1.09


 = −0.03; 1

2
×(−0.03)2 = 0.000 45,

and

x1 − x2 = 0.58
+

x5 − x4 = −1.39


 = −0.81; 1 × (−0.81)2 = 0.656.

Using these values and taking the square root of T̂heo1, we get
√

T̂heo1(τ = (0.75)259 200 s)

= 1 ns

4
√

0.75(86 400 s)
{0.000 45 + 0.656} 1

2

= 0.81 ns

4
√

0.75(86 400 s)
= 3.15 × 10−15,

Time/day

x(
t)

/n
s

Figure 9. Time-error measurements taken once each day for a
five-day data run for four fractional-frequency error-values.
Three-day frequency stability, while impossible to compute with the
Allan deviation, is 3.12 × 10−15 using

√
T̂heo1 (τ = 2.25 d). Values

above are test data from Annex C3 of [3] with data spacing τ0

changed to 1 d.

which is our estimated frequency stability for a 2.25-day or
194 400 s interval based on this 5-day data set. The Allan
deviation is undefined for this long τ -value, but for comparison,
Adev at τ = 2 d has a value of 1.23 × 10−16, which is
almost 20 times lower and unrealistically low based on the
data set.

This small number of sampled measurements makes a few
issues apparent. First, the total number of terms in the inner
summation in (3) for obtaining T̂heo1-variance depends on the
range or extent of index δ, which is inversely proportional to the
ratio of data spacing to stride, that is, τ0-to-τ . Shorter τ0 means
larger ratiom and more terms to average in the inner summation
for an interval τ . Additionally, for a fixed τ , the number of
overlapping terms for the outer summation to average in (3)
is inversely proportional to τ0-to-T . Shorter τ0 provides a
greater ratio T/τ0. Second, the longest computable interval is
τ = 0.75(T − τ0). If we want to obtain an evaluation at the
longest possible τ -value, or T̂heo1(τ ) just shy of T itself, data
spacing τ0 should be as short as possible. Third, recall that
for an evaluation at T̂heo1(τ ), we must actually calculate (3)
at one-higher increment of data-spacing m + 1 corresponding
to τ + τ0. This preciseness is needed when m is small, but
in the case of long-term frequency-stability measurements,
the dimensionless quantity m = τ/0.75τ0 can often be made
arbitrarily large by simply sampling the data at a faster rate.
Based on measurements of edf and exact computations of
confidence intervals [31], m � 10 is recommended. In
conclusion, for a given τ -value, making data spacing τ0 short
allows T̂heo1 to extract or ‘squeeze out’ more information
about noise type and level. Our example data set in figure 9 is
therefore not ideal, but illustrates how T̂heo1-variance operates
on {xn} and is computed. In the example data, it would be
better to sample time-error function x(t) at 10 samples/day or
faster rather than 1 sample/day over a 5-day run for all of the
reasons given if we wish to estimate frequency stability in the
interval beyond 2 days. In contrast, Avar shows no substantial
improvement when measuring the time-error function between
two oscillators at a sample period (data spacing) of τ0

much shorter than its longest limit of τ = T/2, unless
of course you specifically want evaluations of shorter-term
stability.
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Test suite

For purposes of illustration, we calculate one value of
T̂heo1-dev from a test suite consisting of a short sequence of
numbers. The sequence can be used as a basic test of computer
programs. Consider the following sequence of twelve days of
equispaced time error measurements {xn : n = 1, . . . , 12} in
units of nanoseconds:

x1 = −2.15 x7 = −3.3
x2 = −0.99 x8 = 1.08
x3 = 1 x9 = 0.5
x4 = 2.5 x10 = 2.2
x5 = 0.65 x11 = 4.68
x6 = −3.71 x12 = 3.29

Let us calculate T̂heo1-dev for τ = 8.5 d (7.344 × 105 s).
From (3), the inner summand terms for the sample variance
T̂heo1(10, 86 400 s,12) for each index i are given by (for this
value of τ , note that m = 10):

i = 1 :
δ = 0 : 1

5 [(−2.15 − (−3.71)) + (4.68 − (−3.71))]2

δ = 1 : + 1
4 [(−2.15 − 0.65) + (4.68 − (−3.3))]2

δ = 2 : + 1
3 [(−2.15 − 2.5) + (4.68 − 1.08)]2

δ = 3 : + 1
2 [(−2.15 − 1) + (4.68 − 0.5)]2

δ = 4 : +1[(−2.15 − (−0.99)) + (4.68 − 2.2)]2

= 29.145,

i = 2 :

δ = 0 : 1
5 [(−0.99 − (−3.3)) + (3.29 − (−3.3))]2

δ = 1 : + 1
4 [(−0.99 − (−3.71)) + (3.29 − 1.08)]2

δ = 2 : + 1
3 [(−0.99 − 0.65) + (3.29 − 0.5)]2

δ = 3 : + 1
2 [(−0.99 − 2.5) + (3.29 − 2.2)]2

δ = 4 : +1[(−0.99 − 1) + (3.29 − 4.68)]2

= 36.66,

and, for the outer summation, we obtain
∑2

i=1(·) = 65.81.

T̂heo1(10, 86 400 s, 12) = 1

2(0.75)(10)2

2∑
i=1

(·) = 0.4387,

and

T̂heo1-dev(10, 86 400 s, 12) = √
0.4387 = 0.6623.

Since the original measurements were in units of ns/day,
we obtain 0.6623 × 1 ns/86 400 s for a sampling period
of τ0 = 1 d = 86 400 s. Therefore, for this set,
T̂heo1-dev(10, 86 400 s, 12) = 7.66 × 10−15.
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