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Creation of a six-atom 'Schrodinger cat’ state

D. Leibfried?, E. Knill!, S. Seidelin®, J. Britton!, R. B. Blakestad’, J. Chiaverini't, D. B. Hume!, W. M. Itano’,
J. D. Jost!, C. Langer', R. Ozeri', R. Reichle! & D. J. Wineland'

Among the classes of highly entangled states of multiple quantum
systems, the so-called ‘Schrodinger cat’ states are particularly
useful. Cat states are equal superpositions of two maximally
different quantum states. They are a fundamental resource in
fault-tolerant quantum computing'™ and quantum communi-
cation, where they can enable protocols such as open-destination
teleportation® and secret sharing’. They play a role in fundamental
tests of quantum mechanics® and enable improved signal-to-noise
ratios in interferometry’. Cat states are very sensitive to decoher-
ence, and as a result their preparation is challenging and can serve
as a demonstration of good quantum control. Here we report the
creation of cat states of up to six atomic qubits. Each qubit’s state
space is defined by two hyperfine ground states of a beryllium ion;
the cat state corresponds to an entangled equal superposition of all
the atoms in one hyperfine state and all atoms in the other
hyperfine state. In our experiments, the cat states are prepared
in a three-step process, irrespective of the number of entangled
atoms. Together with entangled states of a different class created
in Innsbruck®, this work represents the current state-of-the-art for
large entangled states in any qubit system.

One promising candidate system for scalable universal quantum
information processing (QIP) consists of atomic ions that are
confined in electromagnetic traps and manipulated with laser
beams’. Most of the basic ingredients for QIP'® have been demon-
strated separately in the last few years in this system. Furthermore,
some simple algorithms that could serve as primitives for larger scale
QIP, including quantum error correction, teleportation, and the
semiclassical quantum Fourier transform, have been implemented
in the atomic-ion system.

Before large-scale QIP with atomic ions can become a reality,
several challenges must be met successfully. In addition to building
larger trap arrays and improving the classical control systems, it is
necessary to demonstrate the ability to reliably create and maintain
highly entangled states of many ions. Among such states, the so-
called cat states, named after Schrodinger’s cat'!, are of particular
interest. Cat states are equal superpositions of two maximally
different states (see below) and play a distinguished role in quantum
information science. For three ion-qubits, they are also called Green-
berger—-Horne—Zeilinger (GHZ) states and provide a particularly
clear demonstration of quantum non-locality®. In addition to the
uses mentioned in the first paragraph, cat states can serve as a
universal computation resource'. They are also particularly sensitive
benchmarks for demonstrating good control of quantum systems'?
and the presence of entanglement. In the experiments described
here, we prepared cat states of up to six ion-qubits with verifiable
multi-particle entanglement.

The two states of a physical qubit are formally equivalent to
the two states of a spin-1/2 magnetic moment in a magnetic
field. Therefore we label our states | 1) and ||) and define
angular momentum operators S,,S,,S, accordingly. In particular,

S.11)=1%11)and S| 1) = —1]1) (for simplicity we set i=1). We

define [T, N)=1[T)|1 )./ Dvand L, Ny=[I)l1)..])n

In this notation, prototypical cat states of N qubits can be written

as:

1 .

NCat)=—(T,N)+¢”| [N 1

| ) ﬁ(l 1.N)+e"[|,N)) ¢))

To generate such states we initially prepare the ions in state | |, N)

and then apply the following unitary operation to transform the
initial state into |[N Cat) (ref. 7):

Uy = (exp (12T exp {I%WID (exp[i52]) (exp[ i3] ) @

The operators in the left and right pairs of parentheses represent a
s

common rotation by angle 7 of all N qubits, written in terms
of the global angular momentum operators_composed of the
sum of the N individual spin-1/2 operators | ZZJLS]- (Dicke
operators). The operator in the middle pair of parentheses
represents a global entangling interaction that is diagonal in the
measurement basis spanned by all product states of N qubits, each
in either | 1) or | ] ), and can be implemented by generalizing the
phase-gate mechanism described in ref. 14 (see also below). If N is
odd, £ = 1; £ = 0 otherwise.

Because of experimental imperfections, we need a measure to
indicate how close the generated state |¥y) is to the ideal state
N Cat). The simplest measure, called the fidelity, is the square

modulus of the overlap of these two states:
Fyca = ¥xIN Cat)l® (3

To determine the fidelity of |¥y) it is sufficient to know the
probabilites Py, Py of beingin | T, Ny or | |, N) and the coefficient
Ciniinof the | |, N) (1, N| component of the density matrix"

Fyca = %(PTN + Pp) + ICvan | = 2| Cpgw| (4)

where the last inequality follows from the positive semidefiniteness of
density matrices.

In general, the fidelity is not sufficient as a characterization of the
entanglement properties of |¥y). For N > 2 there is no single
measure that quantifies entanglement in all circumstances because
there are many different ways in which N qubits can be entangled"®.
Consider a partition of the N qubits into disjoint subsets A and B. The
qubits of A are said to be unentangled with the qubits of B if the state
is a product of a state of A and of another state of B, or if the state is a
mixture of such product states. In this case, non-classical correlations
between A and B are absent. Conversely, the N qubits are said to
exhibit genuine N-particle entanglement if there is no partition into
non-empty subsets A and B for which the state is unentangled. The
entanglement of two N-qubit states |$) and [) can be compared if it
is possible to obtain |¢) from |¢) by distributing the qubits to
different parties who then apply arbitrary quantum operations and
communicate classically. This means of transforming one N-qubit
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state to another is known as ‘local operations and classical
communication’ (LOCC)'”. For N > 2 there are N-particle
entangled states that cannot be transformed into each other, even if
[¥) need only be obtained from |¢) with non-zero probability of
success'®. This implies that such states belong to different entangle-
ment classes and that it is not possible to compare the amount of
entanglement by using LOCC transformations. One of the classes
with genuine N-particle entanglement is characterized by the cat
states.

Establishing genuine N-particle entanglement in the experiment
requires making measurements that clearly distinguish the produced
state from any incompletely entangled state. One approach is based
on so-called entanglement witness operators'®. If an entanglement
witness operator has a negative expectation value for a state, then that
state is definitely N-particle entangled. Thus, one way to experimen-
tally determine the presence of entanglement is to measure the
expectation value of a well-chosen witness and show that it is negative
with sufficient statistical significance. N-particle entanglement of cat
states can be proved with a particularly simple witness operator
(derived from ref. 15) based on the projector onto the ideal state
[N Cat):

W =1 — 2|N Cat){N Cat| (5)

The expectation value of this operator is directly related to the fidelity
in equation (3):

(W)y=1—2Fyca =1—4|Cpnynl (6)

A nice feature of this entanglement measure is that if it is negative,
then copies of | ¥ ) can be purified by LOCC to nearly pure cat states
by means of a simple and robust purification procedure™.

Another strategy for proving N-particle entanglement is based on
a ‘depolarization’ method. Using LOCC operations, the original
density matrix can be transformed into a standard, partially depolar-
ized form in which N-particle entanglement becomes obvious®'.
Therefore, if the depolarized state is N-particle entangled then so is
the original state. The depolarized state is definitely N-particle
entangled if

2|Cpgn | > InjaX(Pj +P;) )

where P; is the probability that state |j) is found upon measurement,
/) denotes a sequence of N ions in state | 1) or | | ), not all states
equal, and [j) corresponds to |j) with 1 and | interchanged. The
quantities |Cn;inl and Pj + P; are not changed by the depolarization
method. Consequently, we can obtain them directly from obser-
vations of the prepared state without actually implementing the
depolarization. Inequality (7) can be satisfied even if F < 0.5, but the
purification process to obtain nearly pure cat states with LOCC from
multiple copies may no longer be simple. For our experimental six-
qubit cat state (below), since (W) was found to be only slightly
negative, we used the depolarization method to conclusively establish
that it was six-particle entangled.

By extending methods used previously to create two- and three-
qubit entangled states”'*, we entangled up to six ions in states that
approximate N-qubit cat states. We confined *Be™ ions to the axis of
a linear Paul trap with axial centre-of-mass (COM) frequencies
between wcom/(2w) = 2.6 MHz and wcom/(27) = 3.4MHz and
radial COM frequencies of approximately 8 MHz (ref. 22). All N
axial motional modes of the ions were cooled to the ground state by
extending the method of ref. 23. We prepared the internal state of
each ion in the |F = 2, mp= —2) = | | ) hyperfine ground state by
optical pumping, where F and m  are the total angular momentum
and the component of the angular momentum along the quantiza-
tion axis. We take |F = 1, mp = —1) = | 1) as the other qubit state.
The encoding operations Uy were realized using two-photon stimu-
lated Raman transitions uniformly applied to all ions, incorporating
a phase gate Gy that is an extension of the gate described in ref. 14.
The phase gate was implemented by two laser beams that uniformly
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illuminate all ions with a relative detuning wcom + 6 with
0 < wcom, exerting a state-dependent axial optical dipole force
on the ions'®. The spacing of the ions was chosen such that the force
was proportional to (J,) (see Methods). If this dipole force is applied
for a duration ty = 2w/, the motion of the COM mode is excited and
de-excited in such a way that each state on which a non-zero net force
acts ({J,) # 0) traverses a circle in phase space'* and acquires a phase
given by the area circumscribed in phase space. This area is pro-
portional to the square of the net force and therefore to (J?) for that
state. In the experiment, the strength and detuning were adjusted to
yield a phase of 2 J%) on each component of the wavefunction, thus
realizing the third (middle) operator in equation (2). For N = 5 (and
therefore £ = 1) the left operator (up to trivial phases) was realized
by an appropriate change of the final pulse: exp [z’zi ]X} exp [1% ] z] —
€xp [i%] y] :

After creating each cat state, we determined the populations in
substates with equal numbers of | T ) components by observing state-
dependent fluorescence (see Fig. 1 and Methods). The most import-
ant information on the quality of the states resides in the magnitude
of coherence, C|n;in. A lower bound on this quantity can be extracted
by executing the interferometry algorithm described in ref. 7 on the
states. Here | W) is ‘decoded’ by applying the operation Uy, to it.
Un,e differs from Uy only by replacing the two J, operations by
operations ], = cos(¢)J + sin(¢)],. Note that the effect of applying
U, is equivalent to applying exp[—i/,¢]Un exp|iJ,¢]. Since this is
followed by measurement, the final exp[—iJ,¢] has no observable
effect. The first operator, exp[i] ,¢], is a rotation around the z-axis of
the Bloch sphere and uniquely ‘labels’ the coherence between | | , N)
and | 1, N) with a phase that evolves at N times ¢ (ref. 24). The net
effect is that Uy, transfers the coherence into a population differ-
ence. Ideally’

|¥4) =Un o|N Cat)
:—isin<g¢) ||, N)+NtIHE cos(%¢>) [1,N) ©
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Figure 1| Histogram and residuals of the |6Cat). Upper plot, the
experimental histogram is fitted to a sum of seven poissonian distributions
with mean values corresponding to 0,1,2,...6 ions in state | | ). The fit yields
the populations P1s, P s, and upper bounds on all other populations (see
Methods). The residuals of this fit are displayed in the lower plot. The sum of
all positive residuals is 1,243.6 and is forced to be equal to the sum of all
negative residuals by the fitting method. The deviations of the fit from the
experimental distributions are mostly due to repumping of | 1) into
fluorescing states and non-uniformity of the fluorescence detection over the
ion string.
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In the experiment we observed a fluorescence signal, which has a
contribution that oscillates N-times sinusoidally as ¢ is ramped
through 2w. This oscillation can only arise from the coherence
between | |, N) and | T, N) between applications of Uy and Uy 4.
It has a maximal amplitude A ., determined by the difference in the
fluorescence signal with all ions in state | | ) and the signal with all
ions in state | 1), which is achieved if all the operations are
implemented perfectly. In the imperfect case, the actual amplitude
of the oscillation A yields a lower bound on | Cx:;nl via the inequality
|Cingin| = A/ Anax. Because the imperfections in U4 match those
of Uxup to the high accuracy with which pulse phases are controlled,
this bound is overly pessimistic. However, it cannot be improved
without introducing additional assumptions.

Figure 2 shows the fluorescence as a function of phase ¢ for 4, 5
and 6 ions obtained by the method of the previous paragraph. As the
number of ions increases, the coherence is more strongly affected by
several sources of imperfection. Most importantly, decoherence due
to spontaneous emission increases in proportion to the number of
ions and the duration of the encoding operation U y (for six ions we
estimate an 18% probability of spontaneous emission per gate). In
addition, the susceptibility to magnetic field noise, which washes out
the fringe contrast, grows in proportion to N (for the noise observed
in our laboratory environment we estimate a dephasing time of about
150 us for |6Cat) that has to be compared to about 50 ps gate
duration to implement Us). As the length of the string of ions in
the trap grows, rotations of all ions become less uniform owing to the
approximately gaussian profile of the laser beams (for six ions, we
estimate the spread in Rabi frequencies to be about 4%). Further
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Figure 2 | Coherences of all prepared cat states. Measured traces (dots) of
the normalized total ion fluorescence as the phase ¢ of the decoding gate
Un,g is swept over a range of 2 for N = 4,5,6 (top to bottom). The
fluorescence is normalized to the difference in the count rate of N ions all in
state | | ) and Nions allin | 1 ). The contrast of the sinusoidal pattern with N
oscillations is determined by a weighted least squares sin/cos decomposition
restricted to frequencies of 0, 1,..., N. The component with frequency N is
shown (solid curves). The fitted contrast gives as lower bounds for the
magnitudes of the coherences in the prepared states: |Cjs4| = 0.698(3)/2,
[Ci545] = 0.527(3)/2, |Ci6;6| = 0.419(4)/2. The differences in the starting
phase arise from additional J, rotations inherent in our implementation of
the phase gates. These rotations do not affect the character or fidelity of the
produced states.
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imperfections include laser beam intensity and phase fluctuations,
both of the order of 5%. In spite of these imperfections, we
achieved coherences of |C 414l = 0.349(2), |Cys.15] = 0.264(2),
|Cl6.16] = 0.210(2). The error bars in these expressions are standard
deviations obtained by resampling (see Methods). For four and five
ions, the coherences alone are sufficient to prove genuine four- and
five-particle entanglement (equation (6)). Together with the popu-
lations from poissonian fits (see Fig. 1 and Methods) we obtain
fidelities Fycar = 0.76(1), Fscye = 0.60(2) and Fycae = 0.509(4),
all leading to negative values for the expectation value of witness
operator W in equation (5): (W4) = —0.51(2), (W5) = —0.20(4)
and (Wg) = —0.018(8). Although (W) is negative, it is not negative
by a significant amount. To show that the state obtained has
N-particle entanglement, we establish inequality (7). Although we
cannot distinguish the populations P; for different j with the same
number of ions in state | 1), we can place an upper bound on the
quantities (P; + P;) by using twice the maximum of the populations
Pyy,...Ps, where P is the probability that k ions are in the state | | ).
We obtained

|Cleg6l = 0.210(2) = max(Py; je{1,2,3,4,5}) = 0.119(9)  (9)

so that the desired inequality is satisfied with high significance.

It should be possible to improve state preparation in future
experiments. Decoherence due to spontaneous emission may be
reduced by an appropriate choice of the Raman-detuning® or by
an entirely different choice of ion species. Magnetic field noise may be
suppressed by utilizing field-independent transitions®®. Fluctuations
in beam power and phase may be actively cancelled by better feed-
back on the laser beams.

Cat states and the gates used to produce them are interesting in
several respects. The state [4Cat) is one of the basic building blocks
for the concatenated error correcting codes used in ref. 3 to achieve
fault-tolerant quantum computing with realistically noisy devices.
States with a higher number of qubits could be particularly valuable
for more complicated fault-tolerant encoding schemes. The direct
preparation method demonstrated here could significantly reduce
the overhead in such schemes. The phase gate used in the production
of [4Cat) has another interesting feature. Together with the phase gate
described in ref. 14 and single-qubit rotations, it provides a universal
gate set for quantum computing on a phase-decoherence-free sub-
space with logical qubits {| | 1), |1 | )} (refs 27, 28) where all gates
are implemented with the same resources. Another notable feature of
cat states is that they can be used to deterministically prepare Bell
states of any two of the qubits by rotating and measuring the others
and using the classical measurement outcomes to transform the two
qubits. This feature is not shared by states such as W-states that typify
some of the other entanglement classes. Bell states are the universal
resource for quantum teleportation and communication between
two parties. This feature is exploited in open-destination teleporta-
tion". The multi-segmented trap architecture we are using should
allow the distribution of entangled particles into separate locations to
explore such protocols in future experiments.

Finally, spin-cat states are of particular interest in interferometry.
If the contrast of the fringes in Fig. 2 were perfect, one could
outperform the signal-to-noise limit of a perfect unentangled inter-
ferometer by a factor /N and achieve the Heisenberg limit, the best
possible signal-to-noise ratio within the limits of quantum uncer-
tainty. Even with the imperfections of our experiments, all the states
discussed in this Letter exhibit verified features that could not be
reproduced with qubits that are not N-particle entangled, even with
perfect experimental control.

METHODS

Inter-ion distance and relative phase of the dipole force. Phase gates for
entangling N ions can be derived in a straightforward manner if the dipole force
in the gate drive has the same phase on all ions’. For the arrangement of the
beams in our experiment?, the phase of the force repeats every 213 nm along the
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alignment direction of the ions. The inter-ion distance is determined by the force
equilibrium between mutual Coulomb repulsion of the ions and the confining
force of the external trap potential, causing inter-ion distances to be unequal for
N > 3. Nevertheless, a spacing where the dipole force has approximately the
same phase for each ion can be achieved. As an example, the positions of
four ions relative to the trap centre are s(—1.437, —0.454, 0.454, 1.437),
where s= y/e?/ (47ragmgewéOM) is a universal scaling parameter, with e the
elementary charge, &, the vacuum permittivity, mp, the mass of the beryllium
ion and w oy the axial COM frequency. We can take advantage of the fact that
the two different distances have a ratio very close to an integer ratio, 1.437/0.454
—19/6 = 0.0014, and adjust the trap frequency wcowm such that all four ions are
spaced close to an integer number times 213 nm. The residual error would lead to a
gate infidelity of 0.004, much smaller than the imperfection produced by other
sources in our experiment. Similar considerations also hold for 5 and 6 ions. The
problem could be completely overcome by driving the gate on a radial COM mode
instead, an option that was not available for our current laser beam set-up.

Determination of populations from state dependent fluorescence. During one
detection period (duration 200 us) we typically detect on average A, = 0.5
counts if all ions are projected into | 1 ), and about A, = 10 additional counts for
each ion in state | | ). The parameters Ag and A were derived by fitting mixtures
of poissonian distributions to reference photon-count histograms obtained by
running many experiments for each of a small number of states including | | , N).
We used the maximum likelihood method for fitting the histograms and
parametric-bootstrap resampling for determining standard errors in inferred
quantities®®. Under the assumption that each ion fluoresces equally, the
histograms should be well approximated by E(P)o Poiss(Ag) + Pj; Poiss(Ag +
A+ ...Piy Poiss(Ag + NAy)), where E is the number of experiments contribut-
ing to the histogram and Poiss(\) is a poissonian distribution with mean A. The
parameters Ay and A; determine the maximum possible amplitude of the phase
oscillations in Fig. 2. This maximum amplitude is required for inferring a lower
bound on |C n;inl. The probabilities Py, ..., Py were obtained by a maximum
likelihood estimation of their values based on experimental population histo-
grams obtained by direct observation of the prepared cat states. Up to 39,900
experiments were used to acquire these histograms. The desired witness
expectations were computed according to the fits. From the populations Py,
we determine the quantity (Piy +Piy) =3(Pjo + Ppy), the first term in
equation (4). From the remaining populations, we can find upper bounds on
Pj. For example (N = 4), Pyy;jy = P,. Figure 1 shows the measured histogram
for the six-ion cat state together with the residuals between data and the fitted
distribution. The histograms and fits for four and five ions look similar. From
our fitted data we find (in the order {Py, Py, ...P|N}) Pacar = {0.44(2), 0.079(2),
0.046(2), 0.063(2), 0.37(2)}, Pscat = {0.328(6), 0.143(6), 0.044(6), 0.033(6),
0.111(6), 0.340(6)}, Pecar = 10.317(9), 0.099(9), 0.061(9), 0.054(9), 0.068(9),
0.119(9), 0.282(9)}, for the relevant populations of the prepared cat states.
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