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STATISTICAL ASPECTS OF CLOCK ERRORS

By Wm. Atkinson and Lowell Fey

Abstract

A relationship between the variance of time indicated by an
ensemble of clocks and the spectral density of the phase or frequency
fluctuations of the periodic elements of the clocks is developed.
Tables which apply this relationship to obtain explicit expressions for

time variances corresponding to several assumed spectral densities

of phase and frequency are presented. The particularly plausible case
in which frequency fluctuations exhibit the same spectral behavior as
white noise filtered by a single stage RC filter is examined in some

detail. This spectral behavior leads to results that are shown to be

closely related to the one-dimensional random walk problem. For the

low-pass filter type of spectral behavior the rms relative time fluctua-

tion is shown to decrease substantially below the rms relative frequency

fluctuation as running time increases.




1. Introduction

The technology of frequency control and frequency standards
has made possible the realization of oscillators having rms . frequency
deviations of one part in 1010. In popular exposition one often hears
that a clock constructed from such an oscillator could be expected to
gain or lose not nﬂuch more than a second in 1010 seconds or 300
years of running time. Attempts to find the exact relationship between
oscillator stability and clock accuracy led to some interesting results.
Various assumptions were made regarding the spectral density of the
plﬁse and frequency variance of an oscillator and the corresponding
formulas for the rms time error of a clock constructed from the

oscillator having the assumed statistical properties were obtained.

2. Theory Relating rms Time Error of a Clock
to the Statistical Properties of the Oscillator

The deta'ils of clock construction vary considerably from one
type of clock to another, but modern clocks in contrast to the hour
glass or water clocks all have a periodic element, or oscillator, which
may be mechanical or electrical. In addition clocks contain an inte-
grating system or counter which displays a number proportional to the
number of oscillations or the phase of the oscillator. The elapsed
time indicated by a clock is proportional to the elapsed phase shown by
the integrating device, the constant of proportionality depending on the
uni‘c of time, the frequency, and the unit of phase, i.e., complete oscil-

lations, or radians. Thus
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where T is the elapsed time indicated by the clock,
¢ is the elapsed phase in radians,

and a 1is the constant of proportionality.

. The concept of an rms deviation of time indicated by a clock
can be investigated by considering an ensemble of identical clocks
each of which consists of an oscillator and a counter that shows the
number of complete cycles executed by the oscillator. The clocks

; ' are set at the same instant which can be referredtoas t = 0., At
t = 0 all the counters read zero. As a result of fluctuations, or
noise, the instantaneous frequencies of the oscillators in the ensemble
e . do not agree at any instant t; but because all the oscillators do have
the same construction, the average frequencies approach a common
limit w as the averaging time increases. The reciprocal of this

common limit is the a of equation 1. At time t the instantaneous

frequency of the j-th oscillator of the ensemble is w + ¢3(t), the

phase is wt + ¢J, (t) - ¢j (0), the cycle counter of the j-th clock

shows N = %[}wt + ij(t) - ¢j(0):}ﬂ: X where IXISI and the
J v

time T ,(t) indicated by the j-th clock at time t is
J

@ a[ wt + ¢j(t) - ci)j(O) £+ 2 WX}. Here ¢ and ¢’ the derivative of
$ are the random variables and the set ¢>j (t) constitute a stationary

random process. The counting error represented by X will be
neglected in order to study the rms deviation of indicated time that

" results solely from the random process ¢J (t). For the j-th clock

the indicated time T . deviates from time t by an amount
J

T, -t = a[q;j(t) - ¢j(0)'J: adg, (2)
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(T, - 0% = %4 (3)

By stationarity one may either average over j or consider

various starting times to obtain the mean square deviation of indicated

time. The mean square phase discrepancy Ac])z may be related to

the autocorrelation function Rcb(t) of the random variable ¢ very

. 7
easily, i

W7
s 7o

A¢$ = average over t’ of {4)(1:’ +t) - ¢(t'):!2

1

St + )2 = 2a(tr + t) d(tr) + d(t)°

2¢2 - 2R¢(t) . (4)

By the Wiener-Khintchine theorem the autocorrelation function

Rq)(t) can be expressed in terms of the spectral density of the E
variance of phase fluctuations de (f) or the spectral density of the :
variance of frequency fluctuations G¢,(f). Thus
f=o0
R (t) = S G (f) cos (2wtf)df (5)
¢ f=zo
or

G ,(f) cos {2mtf})
R (t) = S &' df (6)
¢ f=o 41\'2f2
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Relations 3, 4, and 5 can be combined to obtain

_ 2 5 f=m
[,T(t) -t = 2a G, {(f)(l~-cos2wtf)df
] Jrlo @
> fzo s
= 4a g G (f) sin wtfdf (8)
; Lf__—o d)
- since
) f=0o
6" = ( G (f)df (9)
@ e
‘ By using (7) one can write
2 f=zoo G (f)sinzrrtfdf
2 a ) ¢’ .
T(t) -t = =5 ( 5 {10)

v ‘“f=o f

Equations 8 and 10 were used to calculate the mean square time
error of clocks having oscillators with various assumed G¢ (f) or
G ,{(f). The mean square angular frequency fluctuation of an oscil-

¢

lator having G ,{f) as its spectral density of frequency variance is

given by equation 11.
1 I\ Z
(4" = G, (f)as (11)

- For certain spectral densities of phase or frequency fluctua-
tions the integral in {10} or (8) will exist even though the integrals in
{5}, (6), (9), or (11) fail to converge. These difficulties arise from
assumed spectral densities which do not vanish sufficiently rapidly

at f = 0 or f = co. For instance a white spectral density of
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frequency variance, a.dmiftedly an abstraction frem physical reality,
is a spectral density for which equation 10 is meaningful despite the
lack of convergence of equations 6 and 9. To circumvent the difficulty
in the derivation one can introduce a spectral density which is white
between some lower frequency fl and some upper frequency fz, and
is zero outside of this range. For this modified white spectrum the
derivation of equation 10 is valid for any f, > 0 and fZ < oo . After

1

the integration in (10) is performed one can then let f. -0 and fZ )

1
to obtain a relationship that could be compared with experimental

results.

3. Results

It is convenient to analyse the behavior of a fluctuating oscil-
lator by considering a generélized noise source, which may be electri-
cal, mechanical, thermal, etc., followed by a filter whose output %
modulates an otherwise constant frequency oscillator. Tables I and II
were obtained by-assuming noise source characteristics resulting in
the spectral density of phase variance, Table I, or frequency variance,
Table II, shown in Column 4. The frequency independent factor h con-

tains the intensity of the primary source, the transfer characteristics

of the filter, and the proportionality factor relating instantaneous filter
output to oscillator phase or frequency. Column 5 gives the rms fre-
quéncy deviation obtained from equations 11 and 7 in Table I and from

equation 11 alone in Table II, Column 6 gives an exact expression for

2 . . .
(T = t) . the mean square time error at any time t, Column 7 gives

-

2
an approximate expression for (T -t) wvalid for small t,
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TABLE I

Mean Square Time Errors for Various Speciral
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TABLE Il

: Mean Square Time Errors for Various Spectral Densities of Frequency Variance
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and Column 8 gives an approximate expression for the mean square

time error valid for large t .

4. Discussion and Interpretation

The simplest assumption one could make regarding the
spectral density of the frequency fluctuations, namely a white spectrum,
leads to a mean square time error of the indicated time T that in-
creases in direct proportion to the time that has elapsed since the
clock was set. Figure 1 illustrates this behavior for an ensemble of
clocks. The abcissa T is indicated time, the ordinate y(T) is the
distribution function defined so that y(T )d T is the number of clocks
that indicate a time within a 'd T neighborhood of T, and the param-
eter t is the physical time that has elapsed since the clocks were set
at t = 0. The area under each curve is constant and equals the total
number of clocks N in the ensemble. The variance of each distribu-

tion is proportional to t. At t = O the distributionis N&(t ),

where §(t) is the delta function,

f=1
t=4
Y
distri-
bution iz9
function
"of en-
“semble
of clocks T indicated time
Figure 1

Diffusion of Indicated Time shown by an Ensemble of Identical Clocks.
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A direct increase in variance of the indicated time with physi-

cal time can be given an alternate explanation which is somewhat less
formal than the explanation given by equation 10. This alternate ex-
planation tells us that the distribution function y of Figure 1 is Gaussian.
The starting point is the assumption that the increase in indicated time
shown by a clock during a time interval t/n is completely independent

~of the increase in indicated time shown by the clock during any pre-
vious time interval of duration t/n. In this discussion n is an integer
which is made to increase without limit. The assumption implies that
thé autocorrelation function of the frequency fluctuations is zero for

any argument greater than zero; consequently the spectrum of fre-

quency fluctuations is white so that the starting assumption is equiva-
lent to the as surhption used in the 4th case considered in Table II.
The time T indicated after counting for a time t, which for argu-
mentative purposes is divided into subintervals of duration t/n, is

the sum of the increases in indicatecd time during each of the n subin- @
tervals into which t is divided. That is

T =T(5) YT, ¢ TyE) F T - T (D) (2)

where T is the indicated time t units of time after the

clock was set. @

Tj(-;—c-l) is the increase in indicated time during the j-th interval
of duration t/n into which t was decomposed.
By the central limit theorem of probability the variance of T is n
times the variance_of Tj(%) and the T's shown by an ensemble of
clocks must be distributed in a Gaussian fashion. Thus t‘he- mean
square error of indicated time would be directly proportional to the

time that has elapsed since the clock was set.
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In attempting to explain the behavior of actual clocks it would
seem that case 5 of Table II would be more realistic than case 4
which involves a white spectrum., Case 5 would arise if Johnson
noise or shot noise passed through a low pass filter and then linearly
modulated the frequency of the oscillator. A second mechanism for
the assumed spectral density would require that the frequency deter-
mining element of the oscillator be sensitive to temperature, that it
be in thermal contact with a thermal capacitance (i.e., a body with
non zero mass and non zero specific heat) and that the thermal capaci-
tance be connected by a finite thermal conductance to an ambient which
9 . undergoes temperature fluctuations that show a white spectrum. Still
another mechanism would involve a microphonic frequency determining
element excited by mechanically-filtered white acoustic waves. In
any actual oscillator frequency fluctuations can not occur at infinite

rates, so that the introduction of a filtering time constant 7 is very

plausible. For the mechanism involving modulation of the frequency/,
by a voltage obtained by filtering white electrical noise with a low
pass filter T is given by RC. Irrespective of the mechanism that
produces the spectral density of case 5 Table II whether it be elec-

trical, thermal, or acoustic, the parameter 7 can be characterized

@ by the following statement;
-1

a. G {17 ) = ¥ G (0)
: ¢’ ¢’
| b. R ,(7) TR (0}

. T) = e
: &' ¢’
- here R, is the autocorrelation function of the angular

irequency fluctuations.

c. The frequency deviation of the oscillator at any instant is

almost independent of the frequency deviation at earlier
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epochs separated from the instant by times greater than
10 .

d. The mean square change in frequency during intervals
less than . 1T is small in comparison to the mean square
frequency deviation.

It is interesting to compare the tabulated mean square time

h - . :
error az i <e t/ + —t_;_ -1 > with the mean square time error of

a clock whose frequency is determined by the flip of a coin at the

beginning of successive intervals of duration 7. The frequency is to

be one of the two values w,, or w, > W, - During the intervals be- '
279
tween flips the clock will either gain a<w2 - T >-r units of time
wz + wl
or lose a<—-———2— - w1> T units, that is, the clock will gain or Q

lose izl (wz - wl > seconds during each interval . . After t/T

flips or t seconds, the probability W of accumulating a time error

AT may be obtained by using the results of random walk theory.

t/v ! t/~
v oo 1
W(AT,t} ['CL | AT (/2) (13)
L o271 i a (wz - )T
here C is the binomial coefficient .

(AT) - i‘_ﬁj__(wz B} w1>ﬁ (14) .
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or

2 2 . .
(AT) = a tT. (mean square frequency deviation). (15)

For large t case 5 of Table II gives

2 2
(AT)" = 2a t7 <—;111—> = 2a2t7' (mean square frequency
T deviation).
The expression given in Table II for the mean square time
error can be put into the following form by using the rms relative

e time deviation and the rms relative frequency deviation.

Ye

(EHT- (T xem

where the left hand term is the rms relative time deviation,

the first factor on the right is the rms relative frequency

deviation, and X(t/7) is given by equation 17.

X(t/7) = 2%(t/r) et T

27 " :
x:(-t—7> for t>> 1

+ t/7 - 1)% (17)

M’v X

1-—15t/7' for t << 71

Values of X are given in Table III. The smoothing factor X, which
is always less than 1, tells the effectiveness of the integrating process
} in balancing out periods during which the clock runs too rapidly with

periods during which the clock runs too slowly. According to
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equation 16 a clock with 7 = 1 sec and an rms relative frequency
deviation of 10"10 will 1010 sec ( = 300 years) after being set have an
rms relative time error of 1.414 parts in 1015 or an rmstime error
of 14. 14 microseconds. This calculation neglects all sources of
error other than those which result from oscillator instability and
supposes that the spectral density of the frequency fluctuations is of

the form given in case 5 in Table II and that the a of equation 1 is

known precisely.

TABLE III

Values of the smoothing function X for various values of t/ 7

Ratio of elapsed time to
life time of deviation Smoothing function
t/r X
0.0 1.00
.2 ‘ .97
1.0 . 86
2.0 .75
4.0 .61
10.0 .42
100. .14
1000. .04
10000. .01






