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The Propagation Time of a Radio Pulse* 

Summary-The  propagation of the ground-wave  pulse  between 
points on the ground is of considerable  practical  importance,  particu- 
larly in the application of the Loran-C  navigation  system to  the abso- 
lute  time synchronization of geographically separated clocks. Thus, 
the envelope of the pulse is frequently  used  to  remove  ambiguities 
which would otherwise  result  from  the  pulse  synchronization at  the 
characteristic  or  carrier  frequency of the pulse. 

The propagation of the  ground wave  over  finitely  conducting 
ground  modifies the propagation time of the tagged  point-in-time on 
the envelope  by amounts which  may be sufiiciently large  as  to  cause 
cycle  ambiguity -IT radians  at  the  carrier or  characteristic  frequency 
of the pulse. It is  therefore  the purpose of this  paper  to  investigate the 
magnitude of this  error by ascertaining  the  true signal  velocity as 
determined by  tagging a point-in-time on the  leading  edge of a 
groundwave  pulse and calculating the  time  corrections  for  various 
ground  conductivities and  distances.  These  calculations can then  be 
applied to resolve the f n  radians ambiguity of the precision  phase 
velocity instrumentation for  Loran-C  especially  when the  system  is 
used  for absolute-time  synchronization. 

INTRODUCTIOS 

HE 4PPLICATION of the  Loran-C  radio  navi- 
gation  system  to  the  absolute  synchronization of 
clocks  separated  geographically  by  thousands of 

miles to  an accurac?; better  than  one psec requires a 
knowledge of the  propagation  time  correction  for  the 
Loran-C  radio  navigation  pulse at the  point-in-time at 
which the  synchronization  is  Precise  syn- 
chronization  is  ordinarily  performed  on  the  leading  edge 
of the  ground-wave  pulse,  since as a  result of the iono- 
spheric-wave  delay,4  the  various  ionospheric  waves  can 
be  sorted  from  each  other  and  from the  ground  wave 
with  the  system.  This  analysis will therefore  treat  the 
ground  wave  only,  but  the  techniques  are  readily  ap- 
plied to ionospheric  waves. The  techniques based  on 
the  direct  evaluation of the  Fourier-transform  integral 
have been  discussed and  summarized  by  Johler.4  This 
paper  applies  these  techniques  to  interpret  the  behavior 
of a defined point-in-time on the  leading  edge of a 
ground-wave  radio  navigation t1Fpe pulse. 
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Two  stages of detection  are  ordinarily  employed  in 
practice in the  Loran-C  system3 for both  radio  naviga- 
tin  and precision  clock synchronization.  The  first  stage 
of detection  identifies a point  on  the  leading  edge of the 
pulse  by  the  amplitude  envelope  minus  the  time  deriva- 
tive of the  amplitude  envelope  method  and  the  cor- 
responding  cycle of the  carrier. (Since this  time, a more 
precise method for tagging  a  point-in-time  on  the  pulse 
has been de~eloped .~)   This  resolves the cycle  ambiguity 
& 2 m ,  (n=0, 1, 2,  3 . . .). The second  stage is a vernier 
measurement which  resolves a  small  fraction of the  par- 
ticular  cycle  originally  identified. A recently  developed 
method5 for use with clock synchronization  employs a 
measurement of a zero  crossing of the cycle  along  with 
two  crests  (positive  and  negative)  immediatel~~  pre- 
ceeding  and following the zero  crossing. The  envelope 
and precision  phase measurement  are  thus  made  in a 
single operation. 

The  radio  navigation  systems  (Cytac,  Loran-C)  al- 
ways  measure  the  phase difference  between  signals  re- 
ceived  from a  master  and  from a slave  transmitter  and, 
hence,  measure  the  difference  between  these tn;o phase 
difference measurements.  The difference of the dif- 
ference  measurement  thus  became  known  as  the  dis- 
crepancy.  Thus,  even at  great  distances from the  trans- 
mitter,  the cycle  ambiguity would tend  to cancel in the 
difference of the difference measurement  and  show a 
small  discrepancy,  especially in the service area of the 
system  where  the  distances  to  master  and  slave  are 
approximately  equal.  However,  to  precisely syn- 
chronize  a  clock  with  such  a  system, i t  is  necessary to 
knou7 the precise point-in-time  on  the  envelope,  since 
in th i s  case  an  error of T or 10 psec  could  be  introduced 
notwithstanding a phase-lock  precision of 0.1 psec or 
better.  The  magnitude of this  error  has  never  been es- 
tablished  theoretically  for  the  ground  wave. I t  is the 
purpose of this  paper,  therefore,  to  investigate  the  error 
quantitatively.  This will be  accomplished by using a 
suitable  mathematical  model for the  transmitted pulse 
together  with  the  mathematical  definition of a  particu- 
lar  point  on  the  envelope of the pulse. The  propagation 
of this  point-in-time  on  the  pulse  envelope is then 
considered by  the  direct  evaluation of the  Fourier- 
transform  integral  appropriate  to  such  a pulse. The 
theory of propagation of the  continuous  time-harmonic 
wave will  he  introduced as a  transform of the  propaga- 
tion  medium  to  take  into  account  both  the  media  and 
the effect of the  boundaries. 
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THEORY 

The  transient  electromagnetic field E(t,  d )  volts  per 
meter  or H(t ,  d )  ampere-turns  per  meter, at a  time t and 
a  distance d are  the  fundamental physical  quantities 
described by 3;Iaasn-ell’s equations, 

- d -  
V X E + / * o - - H = O  

d t  

wheref is a conduction  or  convection  current,  amperes 
per  square  meter  and po and EO are  the  permeability  or 
permittivity of space,  respectively.  These  equations  are 
ordinarilq?  solved for time-harmonic  waves  such t h a t  
the ( d / d t ) E =  iwE, when the  frequency f =w/h. Such 
a solution  can  be  considered  to  be a transform in the 
frequencq- domain, E(w, d ) ,  H(w, d). I t  is not necessary 
to solve  Maxwell’s equations  again for the  transient 
solution  since  this  can  be  obtained  directly  from  the 
Fourier  integral  utilizing  the  time-harmonic  solution, 
provided  a  linear  amplitude  dependence is assumed, 

1 “  
E(t’, d )  = - exp ( i w t ) E ( w ,  d)f,(w) 

2 L  

. sox exp ( - iwt)F,( t )dfdw,  (1) 

where F,(t) specifies the form  or  shape of the dipole 
source  current-moment  and fr(w) is the  transfer  func- 
tion of the  equipment  or  instrumentation.  The local 
time t’ is defined by 

d 
t’ = t - ~ - - t  - d/c,  

C 

where G is the  speed of light in space [c-Z.997925(1Os) 
meters  per  second  and r]  is the  index of refraction of the 
air  medium (7--1.000338) for air at the  surface of the 
earth.  The  application of Fourier  integral  techniques 
to an  electromagnetic pulse (light  wave) in a region of 
anomalous  dispersion  was  described  many !-ears ago by 
Sommerfeld‘j and Brillouin’  in companion  papers which 
in  effect  defined a  signal  or  pulse  velocity of propaga- 
tion which was  always less than  the speed of light c, 
since the local time t’ a t  which the pulse exhibited 
measurable  amplitude  was alwa>;s finite, t’>O. These 
arguments  were followed by JohleI? \3,’ait,s.9 and  others 
in the  analysis of LF signals in t h e  time  domain.  Indeed, 
it  was  found  to  be  quite possible to define a  point-in- 
time on the  leading  edge of a pulse  precisely. Further- 
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more, i t  is possible to  study  the  behavior of such a 
point-in-time  as a function of distance d and  the elec- 
trical  properties of the  propagation  media. The  method 
known  as  the  “amplitude envelope  minus  the  time 
derivative of the  amplitude  envelope”  method  has  an 
experimental  analog3  and  has  been  described  theoret- 
ically by Johler.‘vlo. Thus,  the  root, t ‘=  T, of the  equa- 
tion, 

where C1 and C2 are  constants of the  measuring  device 
which set  the local point-in-time  on  the  pulse at which 
the  measurement is to  be made,  describes a precise 
point  on  the pulse. The  values of the  constants C1 and 
Cz or  the  ratio C,/iCl ordinarily  remain  constant  in a 
measuring  device as  the  distance d from the source of 
the pulse  is  changed. 

The numerical  techniques for the  direct  evaluation 
of the  Fourier  transform-integral  have been  described 

general nature  have been employed  to  describe  the 
source current  moment form or  shape F,(f). Indeed, 
experimentally  observed  waveforms of the field can  be 
employed  in lieu of  a  theoretical  source function.’l 
Holvever,  for  purposes of analysis of the  time of propa- 
gation of a pulse, i t  is  desirable to specify the  source 
function F,(t) theoretically  in a manner which can  be 
employed  to  synthesize  or precisely  specify a radio 
navigation  pulse  shape.  This is a c c ~ m p l i s h e d ~ ~ ~ ~   b y  
superposition of three  damped  sinusoids  as a sine- 
squared pulse, 

in detaip.11.12 and  various  mathematical  models of a 

F,(t)  = Alexp (-vt) + A2exp ( - v l t )  

+ A 3  exp ( -vv?t ) ,  ( 4  

where 

v = 61 + i w c ,  

V I  = 61 + i ( w c  + 2 w J ,  
V %  = c1 + i ( w c  - 2w,), 

and 

E(t’, d )  = AIE,(t’, d)  + A2EPl( t ’ ,  d )  + A3Evp( t ’ ,  d) ,  (5) 

where .d1=i/2, A z =  -i;4, and A s  = --2:/4. Each such 
damped  sinusoid  is  characterized  by  the  damping  factor 
c1 the  characteristic  frequency, fc =w,/2a and  the en- 
velope  frequency, f p = w p ! 2 a .  Since the  Loran-C is a 
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100-kc  system, f c =  100 kc.  Obviously a variety of 
damping  factors c1 and  envelope  frequencies fp can be 
employed  to  change  the  shape of the pulse.  Since the 
source  function F,(t)  is  complex,  (4),  the fields E(t',  d )  
and Ey(t',  d ) ,  (1) and (j), are complex. The  amplitude 
envelope of the  pulse I E ( t ,  d )  I has  therefore  been 
synthesized  together  with  the  pulse  Re E ( t ' ,   d ) .  This 
amplitude  envelope  can  be  identified  with  the  meas- 
ured  envelope  in  the  measuring  device  as  a  result of a 
detection  process. 

Each  damped  sinusoid  can  be  written as follows: 

wt' - 6,' + tan-' 

+ ii 
d C 1 2  + (w,  + w)2  

+ 
4 6 1 2  + (w, - w)2 

where 

and  the  transform  for  ground-wave  propagation  around 
the  surface of the  terrestrial  sphere a distance d is 

E(w, d )  exp (iwt) 

= I E ( w ,  d) I exp {i [ut' - 4,(w, d )  + - 
Eq. ( 7 )  can  be  evaluated  by  the  series of residues, 

1/2 

2ira2/3(kla)1/3 "3 
a 

00 exp {-i[ a 2a 4 

s = 0, 1, 2, 3 * , (8) 

where 

w 
K1 = -711, 

C 

i( ,42?/'kl?)~l/3 
6 ,  = (1 1) 

(kla)l/3[(k22/kl2) - 1 ] 1 / 2  ' 

and p0=4~(10-7) henry  per  meters, or=0.75-0.85 and 
T = T ~  are  the special  roots of Riccati's  differential  equa- 
tion, 

which  have  been tab~1ated . l~  

and, 

d  d d 
- dt' E(t', d )  = 1 dt   E,( t ' ,   d)  + - dt' EY l ( t ' ,   d )  

d + -' dt  E,,(t', d ) .  

Therefore, (3) can  be  written, 

d 
-cos  arg- E ( t ' ,   d )  - arg E ( t ' ,   d )  - (15) [ dt' 1 

low-radio-frequency  tables of ground-wave  parameters  for the spheri- 
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The complex spectrum, F,(w, d) ,  is defined, $=m k C  

F Z h ,  4 = 1 f(@, 4 + f(-w, 4 I 
. e=P [2: arg M U ,  4 + f( - w ,  4 1 I ,  

(0 2 0) (16) 

where  the  transform is  defined, 

f (w ,  d )  = E(w, d) exp (-iwt)F,(t)dt .  (17) 

The  quadrature  techniques  for  evaluating  the  integrals, 
in  (6), (13) and (1 7 ) ,  have  been  described bJ- Johler and 
Lilley.ll 

som 

ANALYSIS OF THE NAVIGATION-TIMING PULSE 
The  synthesis of various  shape  sine-squared F,(t) 

dipole-source current  moments  is  illustrated  in Fig. 1. 
The  Re F,(t) is shown.  Since a complex  source  function 
F,(t) is  employed (4), the  amplitude  envelope  (dashed 
line)  is  automatically  synthesized by the  values of the 
complex  frequencies, u, ul ,  v2. The  value of the  envelope 
frequency f, is varied  from 1 kc  to 10 kc  to  illustrate 
various  leading-edge  rise  times on the pulse. The  ring- 
ing of the pulse a t  later  times  can  be  reduced  by  in- 
creasing the  damping.  This, of course,  also  affects  the 
rise  time of the  leading  edge of the pulse. 

The  electromagnetic fields (vertical  electric)  in  space 
corresponding  to  these  elementary  dipole  current 
moments  are  illustrated in  Fig. 2, for  the  ground  wave. 
The  corresponding complex spectrum of the pulse 
(amplitude  and  phase)  is  illustrated  in Fig. 3.  Such  a 
presentation  can  be  employed to  ascertain  the signif- 
icant  amount of radio  spectrum  occupied  by  the  pulse. 
Thus,  the  width of the  spectrum  amplitude  to  the 
(2)-1'2 voltage  points  is  indicated as varying  from 12 
kc  to 66 kc for these  pulse  shapes at very  short dis- 
tances (1.86 statute miles), The  spectrum  mutilation  at 
the  greater  distances  by  the  propagation  transform 
E(w, d )  will attenuate  the higher  frequencies,4  since the 
ground-wave  transfer  function  appears  to  be a low- 
pass filter. I t  is  noted  in  this  analysis  that a perfect 
measuring  device, fi(w) = 1 ,  will be  assumed,  since  the 
purpose of the  analysis is to define the  propagation 
time of the pulse. Obviously,  the  transfer  function of the 
measuring  device, f + ( w )  # 1, is  a  complex  number  which 
can be introduced at this point in the  analysis as part  
of the complex  spectrum Fz(w,  d) .  

A particular  dipole  source  current  pulse  together  with 
the  electromagnetic field at various  distances  and 
various  ground  conductivities  are  illustrated  in  Fig. 4. 
Note  that  the pulse  slips  in  time to  the  right  (later 
time)  as  the  conductivity is  decreased or  the  distance 
increased.  This  can  be  readily  ascertained  from Fig. 4 
by  noting  that  the pulse  takes on appreciable  amplitude 
at even  later  time  relative  to t' = 0 as  the  conductivity is 
decreased or  the  distance increased.  Also, the zero 
crossings of a particular  cycle  under  the  pulse  can  be 

' compared  to  deduce  this  slipping in time.  Indeed,  the 

"E .t Yce:- 

Fig. 1-Dipole source  current-moments  as a function of time, 
Id  = F,(t), Id k 1, illustrating  synthesis of various  pulse  shapes, 
together xvith the  amplitude envelope  (dashed  curves) 1 F,(t) I .  

Fig.  2-Electromagnetic  (vertical  electric) field resulting  from pulsed 
dipole  source current moment a t  a  short  distance  from the source. 

pulse  slips to  the  later  time  by  amounts  greater  than 
2n radians or 10 psec a t  100 kc. The  amount of slip  in 
time  is  not  necessarily  a  linear  function of distance, 
;.e., the signal  velocity  has a small  distance  dependence. 

The  distortion of the  individual cycles under  the pulse 
envelope at early  times ( <20 psec) on the pulse  is 
illustrated  Fig. 5 .  The cycle  distortion  becomes  quite 
small  after  the  second  cycle  has  occurred at distances 
as great  as 2000 statute miles from  the  source  over 
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Fig. 3-Amplitude I F,(w, d )  j and phase arg F,(w, d )  spectrum at 
short  distance  from  the  source  for  the  various-shaped pulses. 

1-.  11*< 

Fig. 4-Electromagnetic  (vertical  electric) field, Re E(t', d )  resulting 
from a pulsed  dipole  source  current-moment a t  various  distances 
d from the source, and ground  conductivity u illustrating  a 
slipping of the pulse  in time  as  distance is increased or conduc- 
tivity, decreased. 

c 

W 

I- 
z 

RADIANS 

Fig. 5-Time as  a  function of zero  crossing  times of cycles under 
envelope of pulse  illustrating  phase  distortion a t  early  times 
( <20 ~ s )  on the pulse a t  various  distances  and  ground conduc- 
tivity. 

ground  conductivities  as  small  as 0.005 mho  per  meter 
(over  average  land).  This  is  obvious  from  the  linear 
curve  with a 45" slope  representing  the  time of zero 
crossing of the cycle  vs  time. 

The  behavior of the  amplitude envelope  minus the 
derivative of the  amplitude envelope  function, F(t',  
d)  = C11 E(t', d)  [ - Cz(d/dt)  I E(t', d )  I , is  illustrated a t  
distances, d=50, 1000 statute miles in Figs. 6 ,  7, for a 
conductivity, a=0.005 mho  per  meter  (typical  land), 
and in  Figs. 8, 9, u= 5 mho  per  meter  (sea  water). The  
zero  crossings of this  function, ie., the  roots of this 
differential  equation, t '= T,, describe a time  on  the lead- 
ing  edge of a pulse  which  is a measure of the pulse 
shape  or  dispersion. The  point-in-time so determined  is 
illustrated in Fig. 10 (u = 0.005) and Fig. 11 (u= j), at 
various  points on the  leading  edge of the pulse  de- 
termined  by  the  ratio, C2/C1. The  bottom  curve  on 
these figures show the  phase  correction, t,=#Jw(106) 
psec of the  continuous-wave  solution  calculated  di- 
rectly  from  the series of  residues of (8). The  con- 
tinuous-wave  solution so determined  cannot  resolve a 
cycle ambiguity of k 2nn where n is a n  integer ( n  = 0,  1, 
2 ,  3 . . ) or & 10 n psec  for 100 kc.  Only the  transient 
solution  together  with  a  method  for  tagging  a  point-in- 
time  can resolve such  an  ambiguity.  This  was  realized 
in the design of the  Loran-C ~ y s t e m , ~  and  the  two  types 
of detection  (amplitude  envelope  and  phase  detection) 
were  employed. The  amplitude envelope  detection  sim- 
ulated  the  mathematical process  described  in  this  paper 
by  forming  the  root of the  differential  equation (3) to  
identify  the  particular cycle. The  phase  detector  then 
made  the precision phase  measurement on the cycle thus 
identified. The  recently developed  method5  for use with 
clock synchronization  performs  these  two  operations 
together,  but  the  net  result is the  same.  Greater  in- 
strumental precision is obtainable,  however.  The  times 
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Fig.  +The  amplitude  envelope  minus the  derivative of the ampli- 
tude envelope  illustrating  zero  crossing on roots of F(t', d )  a t  
particular  times t'= T, for  various  values of C,/Cl. 

- . , , , , , , [L " I  ' ' ' c 2 
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0 , , . , I . , : I , . . , , , ,  
0 10 20 30 40 

TIME. t' (MICROSECONDS) 

Fig. 7-The amplitude  envelope  minus  the  derivative of the ampli- 
tude envelope  illustrating  zero  crossing of roots of F(t', d )  at 
particular  times t'= Tc for various  values of C,/Cl. 
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TIME. f (MICROSECONDS) 

Fig.  &The  amplitude  envelope  minus the  derivative of the ampli- 
tude envelope  illustrating  zero  crossing of roots of F(t', d )  a t  
particular  times t' = Tc for  various  values of C.Z/C,. 

TIME. t' (MIWOSECONDSI 

Fig. 9-The amplitude  envelope  minus  the  derivative of the ampli- 
tude envelope  illustrating  zero  crossing of roots of F(t', d )  a t  
particular  times t'= T, for various  values of CJCL 
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Fig. 10-Local  time t '= T, of occurrence of the tagged  point on the 
pulse as  a function of distance. 

1 

11 
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Fig. 11-Local time t'= T, of occurrence of the tagged  point on the 
pulse  as  a  function of distance. 

of zero  crossing are  illustrated in Fig. 5. Note  the  curva- 
ture  at  very  early  times  on  the pulse. Thus,  the preci- 
sion measurement  should  be  made  sufficiently  high 
on the pulse so that  the  curvature  shown in  Fig. 5 a t  
early  times t' is  negligible. Under  such  conditions  the 
continuous-wave  phase  correction  describes  the  correct 
propagation  time.  The difference  between the  phase 
measurement  and the envelope  measurement is ob- 
viously a criterion of the pulse  dispersion. Thus,  the 
pulse  dispersion  error  has  been  established  for the 
ground  wave  by  determining  the  position of the  point- 
in-time  on the  envelope of a  pulse  propagated  over  the 
smooth,  homogeneous  terrestrial  sphere.  The  results of 
such  a  determination  are  illustrated  Fig. 1 2  (u=0.005), 
and Fig. 13 (u= 5). The  results  are  also  illustrated  in 
Table I (u =0.005) and  Table I1 (n= 5 ) .  The  random 
variation in the  last significant  figure of these  tables 
represents  the  computation precision of the  quadrature 
polynomials  employed  in  the  computation.11J2  The  tabu- 
lated  values were  normalized to d= 50 statute miles from 
the source. Thus,  it is  assumed that  a point is tagged at 



1963 Johler: Propagation Time of Radio Pulse 667 

w T-- 

0 

c 

w 

l a = 0.85 
I 

J I l l  
IO‘ IO’ 10‘ IO* IO’ IO‘ 

DISTANCE, d (STATUTE MILES) DISTANCE, d (STATUTE MILES) 

Fig. 12-The discrepancy  between the continuous-wave t ine Fig. 13-The discrepancy  between the continuous-wave time 
and  the tagged-point  time,  illustrating  pulse  dispersion. and  the  tagged-point  time,  illustrating pulse  dispersion. 

TABLE I 
SIGSA4L PROPAGATIOX TIME OVER LAND 

f c =  100 kc 
0=0.85 

u=0.005 
e= 15 

I Fiducial 

: 50 Miles 
C d C ,  Point a t  

(MICROSECONDS) 

Tagged  Point-In-Time  on  the Pulse 

50 Miles 100 Miles 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.6  
0.5 
0 .5  
0 .5  
0.1 
0.4 
0.4 
0.4 
0.4 

0.9 ’ 3.6 
1.3 I 3.0 1 6.0 9.3 

5.4 I 9.3  I 10.6 
7( 10P) 11.9 
8( 13.4 
9(106) I 14.6 

10%. I 15.8 
1.2( 10”) 
1.4( 10”) 
1 .6( 

17.2 
19.8 
21.6 
23.2 
24.6 
30.1 
33.9 
36.6 
0.851 

1.1 2.8 5.4  9.6 
1.1 1 2.8 I 5.4 I 9.9 

Continuous  wave 5i10-) I 1.1 
1.325 1 3.583 i 7.930 j 14.87 

2 .7  5 .1  I 11.7 
0.0 I 0.534 

TABLE I1 
SIGNAL  PROPAGATIOX TINE OVER SE.4 \vATER 

MICROSECONDS 
u=5 

Fiducial 
Point a t  
50 Miles 

Tagged Point-In-Time on the Pulse 
CZ/ c, 

200 Miles 500 Miles 

5( 
7( 10-6) 

10-5 
1.2(10”) 
1.4(10*) 

2(10”) 

1  .6( 10”) 
1 .8( 

3( 10”) 
Continuous  wave 

11.1 
8 .5  

15.1 
17.0 
18.7 
20.8 
22.3 
23.8 
29.0 
0.0944 

0 .0  
0 .0  

0.02 

0.0 
0.07 
0.04 

0.0 0.04 

9.0 
0.0 

0.04 

0.0 
0.06 
0.06 

0.0  0.2 
0 .0  0.103 

0.0 , 0.04 

0.1 
0.3 
0.1 
0.3 
0.6 
0.1 
0.2 
0 .2  
0.5 
0.375 

0.8 
0.8 
0.5 
0.9 

0.7 
1 .o 
0.7 
0.7 
1 .o 
1.411 

1.6 I 2.5 

1.5 3.1 

1.2 2.4 

1 .3  
1.4  2.7 

1 .7  
~ 2.5 

2.9 
3.288 7 .OS6 



.* 

668 

50 statute miles  from the  source,  by  setting C2/Cl, a 
constant,  into  the  system of measurement.  Then,  on 
increasing  the  distance successivelq- to 100, 200, 500, 
1000, and 2000 statute miles the  discrepancy  increases 
to  values  greater  than ‘ i ~  radians  or 5 psec. Thus,  over 
land  the possibility of an  ambiguity  exists.  However, 
with  the  aid of the time-correction  values for the  en- 
velope,  this  ambiguity  can  be  resolved.  Indeed, a masi- 
mum  correction of 11.7 psec is noted for the cases  cal- 
culated. I t  is further  noted  that  the possibi1it)- of an 
ambiguity  over  sea  water (u=5) is  less. However,  the 
pulse  dispersion or  discrepancy is not negligible. 

I t  is quite  evident  that  Loran-C could  synchronize  a 
clock  on  the  wrong  cycle if the  results  (Tables  I  and 11) 
were  unknown  irrespective of the  nominal  0.l-psec 
phase-lock  precision. The  correct clock  setting  could 
be  readily  ascertained  by  the  calculations which are 
demonstrated in Tables  I,  and 11, noting  that 10 psec = 

= 2~ radians  or 1 cycle at 100 kc. 

CONCLUSIONS 
The  propagation  time of a radio  signal  propagated 

via  the  ground  wave  has been determined  by  tagging a 

point-in-time  on  the  leading  edge of a  pulse. I t   has  been 
found  that  under  certain  circumstances  the  error  in  the 
precision phase  measure  can  be *T radians  or f 5 
psec at 100 kc. The  computations in  this  paper  give 
the  magnitude of the  error,  and hence  allow corrections 
to be  made  in  the clock synchronization  system  em- 
ploying  Loran-C.  Thus,  the  full precision of a nominal 
0.1 psec or  better  can  be realized  for the  ground  wave. 

The signal  time  correction, t’ = T,, can be determined 
with  the  aid of the full  transient  solution  employing a 
direct  evaluation of the  Fourier-transform  integral,  by 
specifying  a  pulse  form or  shape.  Thus,  the  point-in- 
time  on  the  pulse  envelope  can  be  evaluated,  tabulated 
and  graphed  for  practical use in  radio  navigation sys- 
tems. 

The  results of this  paper  suggest  an  extension of the 
work  to  determine  the  pulse  dispersion  introduced by  
waves reflected  from the ionosphere. 
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Signals, Scatterers, and Statistics* 

VICTOR TWERSKYP, FELLOW, EEE 

Summary-In the  first  part of this  paper we consider  an  ensemble 
of complex numbers  (a  set of signals in time,  the field scattered by 
different  configurations of scatterers, etc.) and obtain  relations  among 
various average  functions that may  be d e h e d  for  such an ensemble. 
In particular,  we  consider the average  total  intensity,  the  coherent 
intensity,  and  the  incoherent  intensity  (absolute  squared  functions 
of the  ensemble); the coherent  phase,  average  phase  and  average- 
square  phase;  the  variances of the real  and  imaginary  components of 
the ensemble  and  their covariance (or equivalently, the  second mo- 
ments of any  phase-quadrature  components of the field), as well as  
the  higher  moments.  The  second  moments are represented in terms 
of the  incoherent  intensity  and the real and imaginary  parts of an 
‘asymmetry  function” P; if P=O, then  the  variances  are equal and 
the covariance is zero. In the second  part of the paper, we briefly 
sketch  the formalism that  leads  to  scattering function  representations 
for  the  intensities  and  coherent  phase, and  then develop the corre- 
sponding scattering  representation of the  new function P. We illus- 
trate  the development  by  explicit results  for ‘gas-like!‘ random dis- 
tributions of large  tenuous  scatteres.  Thus we  obtain  direct  rela- 
tions  between the various  statistical  functions  mentioned  above and 
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the fundamental  parameters of the scattering problem. Since the 
parameters  enter differently in the various  averages,  and  since 
these  functions  can be  measured  simultaneously  and  independently, 
the  results facilitate inverting  measured data. 

I.  INTRODUCTION 

N STXTISTICAL  scattering  and  propagation 
studies,  based  either  on  an  ensemble of spatial con- 
figurations of scatterers  (“scatterer 

or on an ensemble of time-varying  signals  (“signal  sta- 
t i s t i c ~ ” ) , ~ , ~  we may  deal  with  various  average  functions 
of a  complex  valued field. We  may consider  absolute 
squared  functions of the field, ;.e., the  average  intensity, 
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