IRE TRANSACTIONS ON ANTENNAS AND PROPAGATION 1

contributions

Propagation of a Ground Wave Pulse Around a Finitely Conducting
Spherical Earth from a Damped Sinusoidal Source Current*

J. R. JOHLER} anp L. C. WALTERS?}

Summary—The form of the transient electromagnetic ground
wave which has been propagated over a finitely conducting spherical
earth from a source current dipole can be calculated by a direct quad-
rature evaluation of the Fourier integral. The method is illustrated
in this paper by a calculation of the transient field radiated by the
particular case of the damped sinusoidal source current dipole. At
short distances from the source, the earth was assumed to be a plane
and the displacement currents in the earth were neglected. The pulse
was then calculated by a direct evaluation of the Fourier integral and
the integration was verified by special operational methods (inverse
Laplace transformation). The form of this pulse was then predicted
at great distance from the source by a direct evaluation of the
Fourier integral in which the displacement currents in the earth and
the earth’s curvature were introduced into the Fourier transform.
The form of the transient signal was found to be dispersed by the
propagation medium. The most noteworthy attribute of this disper-
sion is a stretching of the period of the wave so that the form of
the source is somewhat obscured by the filtering action of the me-
dium.

INTRODUCTION

N RECENT YEARS, the interest in the change
1[ with distance in the form or shape of various propa-
gated radio-frequency transients, especially at low
irequencies, can be attributed to the use of pulse tech-

* Manuscript received by the PGAP, April 21, 1958; revised man-
uscript received, October 23, 1958. The basic theoretical study in this
paper was in large measure completed in 1953 by NBS Radio Naviga-
tion Project 1404-30-6815 sponsored by Rome Air Development
Center, Rome, N. Y. The theory was further enhanced and reduced
to computational form in 1937 and 1958 on NBS Project 8830-11-8835
sponsored by AFCRC, Bedford, Mass. Part of the computational
work was completed in 1958 in connection with NBS Project 8830-12-
8833 sponsored by the U. S. Coast Guard, Washington, D. C,

T Natl. Bureau of Standards, Boulder Labs., Boulder, Colo.

niques in radio navigation systems and the interest in
sferics which radiate from thunderstorms. The predic-
tion of these propagated transients at various distances,
employing idealized source models, constitutes the
theoretical problem.

This paper introduces a vertically polarized point
source current or Hertz! dipole, the amplitude of which
varies in time as a damped sinusoid. The step function
and the impulse function are limiting cases of this
general type of source. More complicated sources can be
simulated by superposition of this basic type.

THEORY

The propagated pulse, at a distance, &, and a time, ¢,
which is described in this paper as a space-time function,
E(¢, d), is built upon a source, Fy(¢), for which the trans-
form, f.(w), may be written:

7@ = [ e (—iodm0a W)

where w = 27f, f =frequency, cycles.

The transfer function which characterizes the propa-
gation medium, E(w, d), and the source integral (1) to-
gether describe a Fourier transform, f(w, d),

flo, d) = fi(w) Ew, ). (2)

1 H. Hertz, “Die Krifte Elektrischer Schwingungen Behindelt
Nach der Maxwell’schen Theorie,” Ann. Phys. Chem. (Leipzig), vol.
36, pp. 1-22; 1889,
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The function, E(w, d), can be interpreted as the ampli-
tude, IE(w, d)!, and the phase lag, Arg E(w, d), of a
“continuous wave” signal, 7.e., a sinusoidal wave of con-
stant amplitude, uninterrupted in time, and propagated
around the surface of the earth from a Hertzian dipole
source current. The product of such a function and the
transform, fi(®w), of the particular source under con-
sideration, F;(f), (1), therefore describes the Fourier
transform of a pulse. The propagated transient, E(¢, d),
can then be formally represented in space and time as a
Fourier integral,

1 0
E(,d) = f exp (iwl)fy(@) E(w, ddo.  (3)

™
Primary interest is concerned with the real part of the
space-time function, Re E(¢, d), since this represents the
instantaneous signal observed in an “infinite bandwidth”
receiver. The amplitude envelope, IE(t, d)l , and the
phase envelope, ¢(¢, d), where

E(t,d) = | E@t, d)| exp {i[s(, d) — o]}, (4)

are only of secondary interest since these waveforms
would ordinarily be recovered at the output of the re-
ceiver with some sort of envelope detection.

The source currents, F,(f), employed in this paper
may be represented in complex form for the cosine
source,

Re Fy(f) = Re exp (—u)
= exp (—cuf) cos wet, (0 < ¢ < )
=0,<0) (5a)
or for the sine source,
—Im F,(f) = Re i exp (—wl)
= exp (—cuit) sin wed, (0 < ¢ < )
=0, (<0 (5b}
where
r = ¢ 1 iw,. (5¢0)

The transform, E(w, d), which represents the propaga-
tion medium, can be described as an amplitude and
phase transfer characteristic for a pulse as follows:

E(w,d) = | E(w, d) |

f@{—{wwﬂ—%+w} ©)

md
a = —
c

where
(6a)

and where m, is the index of refraction of air at the sur-
face of the earth (7:~1.000338) and ¢ is the speed of light
[c~2.997925 (108) meters/second ].

January

It is convenient to write

E(w, d) exp (iwf)
— | i [43 L w 1
= | E(w,d)| exp {LI: V' — ¢o(w, d) + 2:]} (N

where the local time, #, is

(8)

The primary propagation time, (6a), is thus included in
the local time and ¢.(w, d) is the secondary phase or
phase correction? resulting {rom the influence of the
earth on the propagation mechanism, The time, ¢’ =0,
thus describes the earliest time at which the pulse signal
could be observed.

The neglect of the earth’s curvature and the displace-
ment currents in the earth at short distances make pos-
sible the employment of the operational calculus to give
an immediate and somewhat useful solution to the prob-
lem. Employing the symbol, s, as used in the operational
method,

(9)

the Laplace transform of the Norton? surface wave! is as
follows:®

s = 1w,

1 1
E(s,d) = C 10
59 {f TP N v>} (1o
(5,d) = —— = = Jrmexp (%) exfc (sv/a) (1)
fﬂs’)_s—l~v e o exp (s%a) erfc (sve
where
Lda?  2(10°7)
C=2 =
4drrd® d
(Il = 1 ampere-meter, the dipole momentum). (12)

m-
x = —— a constant,
(2]

2 J. R. Johler, W. J. Kellar, and L. C. Walters, “Phase of the Low
Radio-Frequency Ground Wave,” NBS Circular 573, pp. 1-6;
June 27, 1956.

3 K. A. Norton, “The propagation of radio waves over the surface
of the earth and in the upper atmosphere,” Proc. IRE, vol. 25, pp.
1203-1236; September, 1937. See especially (57), p. 1212. See also
K. A. Norton, “The propagation of radio waves over the surface of
the earth in the upper atmosphere,” Proc. IRE, vol. 24, pp. 1367-
1387; October, 1936. Also, K. A. Norton, “The physical reality of
space and surface waves in the radiation field of radio antennas,”
Proc. IRE, vol. 25, pp. 1192-1202; September, 1937.

4+ A, Sommerfeld, “Uber Die Ausbreitung der Wellen in der
Drahtlosen Telegraphie,” Ann. Phys., vol. 28, pp. 665-736; March,
1909.

5 The complementary error function, erfc (z) is defined,

2 0
erfc (z) = \/-—‘— f exp (—u?)du.
T
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where, uo is the permeability of space, mo=4w(1077),
and®
mid
o= ?
20p0c3

(13)

in which ¢ is the conductivity of the earth (o =0.005
mho/meter for typical land).

The inverse Laplace transform of the Norton surface
wave may then be written:?

E(,d) = »Cexp (—»l') {—1 — »/7a exp (v¥a)
. t’ = 1 1
.[er‘ic (—7va) — erfc (— - y\/a>] 4+ —— _}
2o av  a¥?

4 —y'2 1
— 3 —1. 14
+ I:Zae -+ v:IC e‘(pli ™ J + C I:a%z] (14)

The introduction of the displacement currents (& %0)
and the earth’s curvature, Fig. 1, complicates the func-

Positive curren! spurce diptle .
(cosing spurce/ g

x /.

~——Centerof earih

Fig. 1—Orientation of the source dipole and the earth with
respect to coordinate systems.

tion fo(s). The transformation may bs formally written
as follows:

E({t',d) = Fo(t, d) + F; (¢, d)
Folt', d) = CL£Yo(s).

(13)
(16)

The function, Fo(#', d), is of primary importance in
this paper since the contributions from the induction
and electrostatic fields, F;,.(¢', d), are quite minute at

6 The index of refraction, n, of the earth’s atmosphere is constant
at the surface value with respect to altitude for purposes of the sur-
face wave transformation at short distances. The effect of the vertical
lapse of the index of refraction at great distances is introduced as the
factor, 8, (29), (8~A0.75).

7 J. R. Johler, “Transient radiofrequency ground waves over the
surface of a finitely conducting plane earth,” J. Res. NBS, vol. 60,
pp. 281-285; April, 1938. See also, J. R. Johler, “Propagation of the
radiofrequency ground wave transient over finitely conducting plane
eart7h,” Geofis. pura e appl. (Milan), vol. 37, pp. 116-126; February,
1957.
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great distances. The function, Fo(t’, d), may be re-
written in the Fourier integral, (3), notation employing
the variable w instead of the operational symbol s,

1 0
Fa(l’, d) = ;— €xXp (iwl')E(w, d)

-was(t) exp (—iwt)didw 1n

or, with the aid of (5a) and (5b), and evaluating the
inner integral of (17),

1 0
E(t,d) = - fo | E(w, d) |

wt’ — ¢, + tan™!
. 5]

Vel + (wo + w)?

cos

i —@+w]

(o]
Q
w

ol + & 4 tant —_(w—_“’)]

c1

Vel + (0, — w)?
- (wc"l"w):l

C1

sin [mt’ — ¢,/ + tan™!

t Vet (@t @)

- (wv — “’)

sin I:—wt’ + ¢, + tan-!
c1

I— deo,
N Ve + (o = o) j*

(18)

where
T

¢ =do—— -

5 (18a)

I't immediately becomes obvious that the real part of
the amplitude time function (18), Re E(¢’, d), is the de-
sired function for the cosine source (5a), and the imagi-
nary part, —Im E(, d)=Re [{E(, d)], is the desired
function for the sine source (5b). Thus the problem has
been reduced to the evaluation of a real integral,

E{, d) f wF;(w, d)dw

Re fwf(w, d) exp (iwf)daw. (19)

The transform of the pulse is asymmetrical as a result
of the source function. The Fourier spectrum, f.(w, d),
Fig. 2, can be determined for the transform, f(w, d), the
amplitude spectrum,

| flo, D] = | flo, & + f(=w,d)|  (@>0), (20)
and the phase spectrum,
$e(w, d) = Arg [flo, @) + f(—w, d)], (0 >0). (20a)
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VERTICAL ELECTRIC DIPOLE
COSINE SOURCE
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Note: fx(w,d) = f{w,d)| exp [Iqb(w d)l,
The Fourier Specirum

Amplitude Fy, (w,d)
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Fig. 2—Integrand of Fourier integral or image of pulse in the fre-
quency-amplitude plane at small distance from the source, illus-
trating the relation of the integrand to the Fourier spectrum
waves.

The integrand, F.(w, d), Figs. 2, 3, in the frequency-
amplitude plane, is rather severely mutilated at great
distances by the conduction and displacement currents
in the earth and the effect of the earth’s curvature. This
is quite advantageous from a computational point of
view, since the convergence of the integral at higher
frequencies is rapid, and, as a matter of fact, analog
methods such as a planimeter integration could be em-
ployed to evaluate the amplitude-time function, E(¢’, d).
However, numerical mastery of the problem is achieved
by a reduction of the computation to a digital process.

The integral, £(¢', d), which involves the limits zero
and infinity is rewritten as the sum of integrals with
finite limits as follows:

b2

(] bl
f Fyw,d)dw = Fi(w, d)dw + Fiw, d)dw
0 0

b

b3
+ Fw, d)dw + - - -,

by

(21)

where enough terms are taken so that any remainder
error is small. Each finite integral is evaluated by Gaus-
sian quadrature.®® The limits of each finite integral are
somewhat arbitrary, but are chosen consistent with the
required accuracy and the availability of Gaussian
quadrature weights and abscissas.? If the range of inte-

8 Z. Kopal, “Numerical Analysis,”
New York, N. Y., p. 367; 1955.

9 P. Davis and P. Rabinowitz, “Abscissas and weights for Gaus-
sian quadratures of high order,” J. Res. NBS, vol. 56, pp. 35-37;
January, 1956,

John Wiley and Sonms, Inc.,
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Fig. 3—Integrand of Fourier integral or image of pulse in the fre-
quency-amplitude plane at great distance from the source.

gration is increased for a given integrand and accuracy
specification, either more intervals or more Gaussian
weights and abscissas are required. Thus, it is possible
to express each finite integral as a sum:?

bn+1 A
f Fi(w, d)dw = 2 WaF dwn, d) + (20),
b

n m=1

(22)

where e(M) is an error term which can, in general, be
made arbitrarily small by increasing M, and where

(22a)
(22b)

m=1,2,3---M.
bn]xm + %[bn+l + bn]-

The x.’s are the Gaussian abscissas and M determines
the number of values of Fy(w, d) to be used in the quad-
rature. The Gaussian weights and abscissas can be de-
termined {rom the following considerations:

Wy = %[bn+1 -

Z Hof(2n)

b Hom.

f x)dx = (23)

I'Vm = %[bn+1 it

(24)

The x.’s are the roots of the Legendre polynomial de-
fined by

— (a2 —

Dm = 27p 1P, (x)
dxm

(25)
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Polx) = 1
Pi(x) = x
Py(x) = ix2 — i
2 2
Py(x) = ix3 - —3—1,
2 2

(26)

Polynomials of higher degree are determined by use of
the recursion formula.

(m 4+ 1) Pryr(x) + mPua(x) = 2m + 1) 2Pu(x). (27)

Upon determination of the roots, the weight coefficients,
H.., of the corresponding quadrature formula are evalu-
ated as follows:

2
H, = 2
(1 - Tm2)[ ,("'m)] ( 8)

The results of Davis and Rabinowitz® ({orty-eight
Gaussian weights and abscissas) were employed in the
quadrature.

The amplitude | E(w, d)| and the phase correction,
¢.(w, d), Tor the ground wave were calculated by means
of the convergent residue series (s series) of Watson,?
Bremmer,'1? van der Pol'! and Norton,® employing
the conventional time function, exp (—iwt) as fol-
lows:2:1

d e
E*(w,d) = — iwC [277',6’2’3(/2101')1/3 -—,:l
@

Bd T
o f amean 1 24 7)
d 4
2. (29)
=0 1
o]
6.2
in which
s=1,2,3 -,
= the radius of the earth [a’~6.36739(10%) Jmeters,

10 G, N. Watson, “The diffraction of electric waves by the earth
and the transmission of electric waves round the earth,” Proc. Roy.
Soc. (London), vol. 95, p. 83; October, 1918; p. 546; July, 1919,

1 B, van der Pol and H. Bremmer, “The diffraction of electro-
magnetic waves from an electrical point source round a finitely con-
ducting sphere, with applications to radiotelegraphy and the theory
of the rainbow,” Phil. Mag., vol. 24, pt. I, p. 141, July, 1937; pt. I,

p. 825, November, 1937; Supp J. Sczence vol. 25, p. 817; June, 1938.

12 H Bremmer, “Terrestrial Radio Waves Theory of Propaga-
t10n ” Elsevier Pubhshmg Co., New York, N. Y pp. 11-50; 1949,

1B K. A. Norton, “The calculation of the ground wave field in
tensity over a ﬁmtely conducting spherical earth,” Proc. IRE, vol.
29, pp. 623-639; December, 1941,

1t 7, R. Wait and H. H. Howe, “Amplitude and Phase Curves for
Ground Wave Propagation in the Band 200 Cycles per Second to 500
Kilocycles,” NBS Circular 574, pp. 1-17; May, 1956,
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E*(w,d) = | E(w,d)| exp i[qsc - ﬂ (30)
w
k1 = — N1, (31)
4
2 2
Bt = 1[62 44 ] (32)
c? »
ik_zz 31/3
B
5e = ’ (33)

k22 1/2
nus| 2
(k1) [ % 1]
and r, comprises the roots (see Appendix) of Riccati's

differential equation:!

da.

Ts

— 22,4+ 1 = (34)
The amplitude and phase transfer characteristic of the
ground wave is illustrated (Figs. 4, 5) in this paper for
a conductivity, ¢ =0.005 mho per meter, and a dielec-
tric constant, e=15. It should be noted that at short
distances, the induction and electrostatic fields enhance
the amplitude and phase at low frequencies. The earth’s
curvature and the conduction and displacement cur-
rents in the earth enhance the phase and attenuate the
signal rather severely at high frequencies and great dis-
tances. The convergence of the infinite integral (21) is
primarily a result of the exponential high frequency
attenuation (29),

d
exp {—Im [(kla')1’378,82/3 —’:I} .
[24

THE SOURCE

The cosine source used in this paper employs an
abrupt initial current (Figs. 7, 9, 11). The radiated field
therefore propagates an impulse type of function which
is superposed upon the sinusoid. This may be explained
quite simply for the case of an infinite conducting earth:
E(s) = (r=0,a==0) (35)
then

E{,

d) = £-1E(s) = 8(t"). (352)

8(¢") is the Dirac impulse function which can be defined
in relation to the step function, %(¢), as follows:

f ta(t)dt = u(1), (36)

where
w(l) = t>0 37
u(f) = t < 0. (37a)

15 Bremmer, op. cit., p. 45.
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Fig, 4—Amplitude transfer characteristic of the ground wave.

The step function response of the ground wave at con-
siderable distance {rom the source is a modified impulse
function. Indeed, this is merely a limiting case of (14),
a=0,v=0, or,

EW,d) = g— C exp [ _ ] (38)

2a

This is consistent with the step function response de-
rived by Wait:® It should be noted that the amplitude
and duration of the impulse becomes finite as a result
of the introduction of the finite conductivity of the
earth into the propagation mechanism.

The step function response resulting from the impul-
sive radiated field of the cosine current source is implicit
in the calculations of this paper. The sine current source
on the other hand does not imply such an additional
radiation field.

1 J, R. Wait, “Transient fields of a vertical dipole over a homo-
geneous curved ground,” Caxn. J. Res., vol. 34, pp. 27-33; Janu-
ary, 1956. See also J. R. Wait, “The transient behaviour of the elec-
tromagnetic ground wave over a spherical earth,” IRE TRaNs. ON
ANTENNAS AND PROPAGATION, vol. AP-5, pp. 198-202; April, 1957,
Also J. R. Wait, “A note on the propagation of the transient ground
wave,” Can. J. Phys., vol. 33, pp. 1146-1151; September, 1957.

VERTICAL ELECTRIC ZIPOLE SCURCE
Ic £ =1 Ampere - meter

& = 0005

=15

2aImL
0Q2mi

Phuge, ¢, , Kadians

005 =L

5 0.1 me
Q2mi,

Frequency, f, Cycles

Fig. 5—Phase transfer characteristic of the ground wave.

It is quite possible to introduce the cosine current
source less abruptly by redefining the source function,
F.(1), as {ollows:

Fy(t) = exp (—v) — exp (&) (39)

where

£ = co + iwe. (39a)
v has been described previously (5¢) and ¢, is assigned a
large positive value (c:>>¢;). In accord with the super-
position principle, this merely involves the sum of two
waves calculated as previously described (14), (18). The
space-time function, E'(¢’, d), may be written as follows
(Figs. 9, 11):

E'=E({,d) = E(', d) — E(, ). (40)

RESGLTS oF THE COMPUTATION

The detailed structure of the transient for various
combinations of characteristic frequency, f,, and damp-
ing, ¢, for both sine and cosine source functions was de-
termined at great distance (Figs. 6-11, pp. 7-9). The
transient waves with characteristic period, f., of 100 ke,
and a damping, ¢, of 2.5(10%) (Figs. 6, 7), and at a dis-
tance, d (Fig. 1), of 50 miles were calculated by both the
operational formula (14) and the direct evaluation of the
Fourier integral (18). In both cases, the earth was as-
sumed to be a plane, and the displacement currents in
the earth were neglected. Close agreement was found
between the two methods, in Figs. 6, 7.

The displacement currents in the earth and the effect
of the earth’s curvature were then introduced by the
calculation of the theory (29) of Watson, Bremmer, van
der Pol, and Norton (29) at great distances (Figs. 4-11).
The dispersion of the pulse at great distance was evident
from the calculation. The most noteworthy attribute of
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Fig. 6—Instantaneous signal and corresponding damped sine wave
source current of a propagated ground wave pulse, illustrating
close agreement at short distance between the form of the wave
predicted by the operational formulas (inverse Laplace transform)
and the form of the wave predicted by the direct evaluation of the
Fourier integral.

this dispersion was an increase in the period of the pulse.
The form of the source was somewhat obscured by the
filtering action of the medium.

THE STEP, DELTA, AND GENERALIZED
SoGRCE FUNCTIONS

The special case of the step function response of the
ground wave has already been discussed (38) in con-
nection with the damped cosine source. This formula-
tion (38) can be readily extended to the spherical earth
theory with the following result:

E(,d) = L f °°[ E(,d)| {i sin |:wt' - ¢.c']} do. (41)

The special case of an impulse source function or

“delta function,”
F,(5) = 6() (42)

reduces to the following simple formula:

1 2
E(, d) = - f | E(w, d) | {cos [0t — ¢/ ]}dw (43)
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Fig. 7—Instantaneous signal and corresponding damped cosine wave
source current of a propagated ground wave pulse, illustrating
agreement at short distances between operational methods and
the direct evaluation of the Fourier integral.

where each of the above formulas is readily evaluated
by the previously described quadrature (22). The re-
sults can be checked against the operational methods
based on the plane earth theory (14), which vields the
following result {or the impulse source function or delta
function.®

1 ¢ — 2
13 — — —_—

E(, d) {za [za] }Cexpl: y ]

During the past several years some very interesting

papers have appeared which describe the propagation

of a “delta” or impulse source function over the surface

of the earth, Whereas it is questionable whether such a

source function represents anything in nature, this is

an important theoretical problem nonetheless, and pre-

sumably the more complicated source functions could

be synthesized by application of the superposition prin-
ciple.

The results of Levy and Keller'” account for the

earth’s curvature but neglect the displacement currents

(44)

17 B, R. Levy and J. B. Keller, “Propagation of electromagnetic
pulses around the earth,” IRE TraNS. oN ANTENNAS AND PROPAGA-
TION, vol. AP-6, pp. 56-61; January, 1958,
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VERTICAL ELECTRIC DIPOLE SOURCE
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Fig. 8—Instantaneous signal and corresponding damped sine wave
source current of a propagated ground wave pulse.

in the earth by the assumption of an infinite conduc-
tivity. These authors then approximate the “lossy” case
by taking only the first term in the infinite series which
represents the roots of Riccati's differential equation
(34) (see Appendix). In contrast, the results of Pekeris
and Alterman!® completely neglect the conduction cur-
rents in the earth and consider only the displacement
currents, and further assume that the earth is a plane,
which is reasonable only at short distances. On the
other hand, Wait," has developed a method for the solu-
tion of this problem which not only considers displace-
ment currents and conduction currents, but also the
earth’s curvature.

It seems to be quite possible to get an exact solution
to this problem by the method described in this paper
(43), especially since the delta or impulse source func-
tion is a much simpler one than the sinusoid with which
this paper is primarily concerned.

The source functions which represent natural phe-
nomena will not in general have the precise mathemati-
cal form of a damped sinusoid. Since the application of
the superposition principle is not always practical,

18 C. L. Pekeris and Z. Alterman, “Radiation from an impulsive
current in a vertical antenna placed on a dielectric ground,” J. Appl.
Phys., vol. 28, pp. 1317-1323; November, 1957.
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Fig. 9—Instantaneous signal and corresponding damped cosine wave
source current of a propagated ground wave pulse, illustrating
the introduction of a less abrupt initial source current.

another approach to the general problem is appropriate.
Indeed, it is quite possible to extend the theory to com-
plicated waveforms. Consider an experiment in which
the signal, Re E(¢', d) is observed and recorded at some
distance, di, from the source. The theory is then re-
quired to predict the form of the signal recorded at some
other distance, d.. The theory is also required to deter-
mine the form of the source, F,(z).

The spectrum (18), (20}, (20a) can be determined di-
rectly from the observed signal, Re E(¢/, d):

ﬁ@&)=]mem(—wﬁReﬂﬂ@&C (45)
1}

The infinite integral can, as before, be split into the sum
of finite integrals subject to the previously described
(21) conditions of convergerce,

f2(w, d) =f 1F(w, hHdy —i—f‘~ Flw, Ndt" + - - -

0

t'n+1

+ Fleo, 1)dl + - - -+,

t'n

(46)
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Fig. 10—Instantaneous signal and corresponding damped sine wave

source current of a propagated ground wave pulse.

Fnt1 M
f Flw, 1)l = 2, WnF(w, !'n), (47)
'y m=1
m=1,2,3---M, (472)
fm, = %(t,n+1 - t,n)xm + %(t’n+1 + t’“)' (47b)

The spectrum of the source, fs,.(w), can then be deter-
mined,

fz(w) d) .
Elw,d)

Jos(w) = (48)
Since the real part of the signal, Re E(¢/, d), was em-
ployed in the analysis (45), the source function, Re F,(f),
can be described as an integral with a symmetrical
integrand,

F() = % f _: exp (iwh)fz,s(w)dw, (49)
or
1 0
R = — fo | Fo(@) | {cos [t 4 do(@)]}do (50)
Also
 foler )
fm(wa d2) = E(w, dl) E(w: d2): (51)
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Fig. 11—Instantaneous signal and corresponding dampegl cosine
wave source current of a propagated ground wave pulse, illustrat-
ing the introduction of a less abrupt initial source current.

and
1 0
E(,dy) = :f | faleo, d2) | cos [t + ¢o(w, d2) dew.  (52)

The integrals (50), (52) can be evaluated by previously
described quadrature (22).

The recovery of the form of the source (50) is not al-
ways practical at great distance, since the ground wave
is rather severely attenuated at high frequencies (Fig. 4).
The limit of resolution for which the source can be re-
covered at a given distance is experimental, 7.e., the
resolution is dependent upon the accuracy with which
the signal, Re E(#', d), can be observed and the accuracy
with which the constants which characterize the propa-
gation medium can be determined. But this is merely
another way of stating that the form of the source is
somewhat obscured by the propagation medium at
great distances.

CONCLUSIONS

The form of the transient ground wave signal which
has been propagated to great distance from a current
source has been theoretically determined. More compli-
cated signals can be formed by superposition and the
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simple signals such as the step function can be formed as
limiting cases of the more general sinusoid. Complicated
waveforms at a given distance from the source can be

January

APPENDIX
The roots of Riccati’s differential equation (34) can be

found as follows:

2 1 4 u 1 58 328 16
Te = Ts0 — & — — 73,063 + —o6t — - Ts,0263 + — 73,066 - = (D + 873, 3)57 + __Ts,0268 — N\ T Ts.0 + 8°
3 2 5 9 7 135

1552
175

423
(o

315 495 1

G-l Lo
Ts = Ts,0 — - = - - +
2750l O 875,51 62 1275, 1670

7576 32 1
Ts,ua)aw—( oo + — 7, 0>511+ e < —

81

2

:Il l: 7 n d ]1
5168 | 967,.t | 1287,.7 8¢

21 7 1 29 77 2 Tt
[4015 W3 3207, .0 + 25615,9]57 B [72078,;: +12801-€,w8 T 102475,;1]5—6
19 143 33 1
[11275 o 360m. + 25607, 10 + 204375,;3]57
163 429 429 1
Lworm 25607 ¢ T 8100m, 7 32768&,;5}5?
13661 6769 2431 715 1
[ 2887, .0 3628801“, 921607, 1! 491527, 1t 655361—5,0017]6_9
2309 820573 37961 46189 2431 1 ) 1
[ 2016007, 7 145152007, .0 © 4608007 .5 | 9830407, 8 262144Ts,m19]ﬁ+ el > o

evaluated in practical experiments by a Fourier trans-
formation employving numerical integration of the ob-
served or real part of the signal. The signal can then be
predicted at some other distance from the source by an
inverse Fourier transformation employing similar nu-
merical integration. The source can in principle be re-
covered from the observed signal, but at great distance
it is somewhat obscured by the propagation medium.

The technique for the direct evaluation of the Fourier
integral for the case of the ground wave suggests appli-
cations to other problems, such as the propagation of a
transient through a filter or the propagation of the
transient sky wave.

The poles and zeros |7,.| and |7,,0| have been tabu-

lated,!® where

= el exp| i and g = [ ool esp i
Ts, = | Ts,0 e.\p[z? and 75,0 = | Ts,0 exp[zg].
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19 Johler, et al., op. cit., p. 33, table 44.




