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An Infrared Spectrometer Utilizing a Spin Flip Raman Laser,
IR Frequency Synthesis Techniques, and CO2 Laser Frequency Standards

J. S. Wells, F. R. Petersen,
G. E. Streit, P. D. Goldan and C. M. Sadowski

The central part of this spectrometer is a cw spin flip Raman laser which
operates between 1900 and 1800 cm . The spin flip laser has so far demonstratec
capabilities of resolving spectra separated by 0.01 cm and shows promise of
exceeding this resolution capability. When used with an opto-acoustic detector
or with a detector and a flow system, it is capable of making a variety of measur
ments of environmental interest. Many of these environmental applications requir
only wavelength metrology.

By using CO, laser standards as frequency references and incorporating
infrared frequencCy synthesis techniques, spectroscopy with the spin flip Raman
laser can be put on a frequency metrology basis. A CO, laser has been used with
a metal-oxide-metal diode to synthesize a known frequeficy reference which was
used to stabilize the CO pump laser. The MOM diode also has the potential
for measuring the frequency difference between the SFRL and the CO pump laser,
a step which will complete absolute frequency measurements with the SFRL. The
progress toward achieving this goal, the potential capabilities of this unique
spectrometer, and some future applications are discussed.

Key words: Air quality measurements; improved resolution spectroscopy;
infrared spectrometer; infrared frequency measurements; spin flip laser;
tunable IR laser.

1. INTRODUCTION

As a result of continuing technological development in the laser field,
tunable laser sources are now available and many new possibilities for high
resolution infrared spectroscopy now exist. These tunable sources include the
dye laser and parametric ampfifiers in the visible, and diode lasers, spin
flip Raman lasers (SFRL), and wave guide lasers in the infrared. The spectral
brightness of these sources has precipitated a revolution in spectroscopy.]

We have constructed a cw spin flip laser which operates between 1900 and

1300 cm—]. This spin flip laser has, so far, demonstrated capabilities of

. 2 -1 . . .
resolving spectra separated by 0.01 cm and shows promise of exceeding this



resolution. When spin flip laser technology is combined with the infrared
frequency synthesis technology developed at NBS,3 one has the potential for a
unique infrared spectrometer. This spectrometer is being developed in the follow-

. 4
ing manner. Because of the absolute frequency measurement and stabilization
5

with CO2 lasers, excellent secondary standards in the intermediate IR

spectral region now exist. One CO2 device has been used with a metal-oxide-

work

metal diode to synthesize a frequency reference yith which to stabilize the €O
pump for the spin flip Raman laser and thus provide the requisite accuracy

and long term stability required for high resolution spectroscopy and chemical
kinetic studies. The diode has also demonstrated a potential for measuring the
frequency difference between the spin flip laser and its pump, a step which will
permi£ absolute frequency measurements. High resolution spectroscopy and
absolute frequency measurements are extremely useful for characterizing potential
lasers and molecular species of high scientific and technological interest.

Our group also has a novel NOAA developed opto-acoustic (0A) detector which
is capable of measuring infrared absorption in gases at relative concentrations
well below a part per miHion.6 This detector is very useful for doing spectro-
scopy on atomospheric pollutants and could be advantageous for investigations

of compounds of low volatility in technological applications.

The capabilities with laser stabilization, infrared frequency synthesis,
and high resolution spectroscopy, along with the spin=-flip laser and the new
detector provide us with unigue opportunities to do some rather diverse experi-
ments. The spin flip laser, stabilized lasers and opto-acoustic cell are com-

bined into the spectroscopic system shown in Figure 1.
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Some potential applications using this system are:

Category

1.

2.
3.
Category

1.

| (Environmental Problems)

Point sampling of atmospheric pollutants.

(1aboratory spectra on coilected samples)

Evaluation of the OA detectors for field use.

Measurement of chemical kinetic rates.

i1 (Metrology Problems)

Establishment of bench mark frequencies for laser diode users.
(moderate resolution)

Measurement frequencies in molecules involved in saturated
absorption experiments (high resolution)

Measurement of frequencies in molecules with potential for non-
linear lasers (e.g. rolecules where the energy level of interest
is the sum of two CO2 laser frequgncies, i.e. NH3, SiFh, CH3F’ etc.)
Updating conventional molecular spectroscopy on molecules of high

scientific interest.

These applications will be discussed in some detail after the following descrip-

tion of the spectrometer and its associated technology.




2. SPIN FLIP RAMAN LASER CHARACTERISTICS
8,9

Since many excellent references exist on the spin flip laser,7’ only

a rudimentary sketch of the theory will be given. Our objective is to indicate
how the experimental variables at one's disposal (magnetic field, pump frequency,
input power, carrier concentration, temperature control technique, and InSb
resonator size) are related to the performance of the spin flip Raman laser

(SFRL). We also point out some limitations of the Iaserlo’]]

that are generally
not widely publicized, as well as advantages for certain applications.

A useful model in describing the Raman scattering12 is indicated in Fig.
2. The magnetic field splits the Landau levels into electron spin down and
spin up levels as shown. One of the requirements for spin flip lasing is that
the magnetic field be strong enough to lift the upper spin level (spin down)
above the Fermi level. The magnetic field at which this occurs is called the
quantum limit. The diagram on the left indicates a field below the quantum
Vimit.

Vith the upper level above the Fermi level as shown on right hand side,
one can view the Raman scattering process as one in which the pump photon of
energy hvp is absorbed, exciting an electron from the valence band to the
empty upper level, leaving a hole in the valence band. This hole is filled by
an electron from the lower Landau level (spin up) which drops down to fill
the hole along with the emission of a photon of energy h\)S which is shifted
from the pump photon by g* BH. This whole process (non-zero matrix elements
of the dipole operator between the conduction band, with its pure spin up or
spin down states, and the valence band) is made possible by the fact that the
valence band state is a linear combination of spin up and spin down states.

This mixed spin state is due to the spin-orbit interaction. At the end of the proces:
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there is one more electron in the upper level and one less in the lower level;
hence the net effect of the process is to flip the spin of one electron in the
conduction band. The more general process involves virtual transitions and the
exact match between photons and energy levels suggested in Fig. 2 is not require

The spontaneous output freguency, Vs is given by

where vp is the pump frequency, g the effective g-factor, B is the Bohr

magneton, and H the magnetic field intensity. Using an effective g-factor

of 45, one gets an approximate value of 23 cm-l per Tesla for a tuning rate.
In practice, the fact that the InSb is a resonator coiplicates the tuning

rate. Modes in the resonator have frequencies, VR given by

= =S
R 2Ln

v
where c is the speed of light, L is the resonator length, n is the index of
refraction, and m is an axial mode number . For a 7mm long InSb cavity, this
mode spacing is about 5.35 GHz or 0.0075 Tesla.

Because of the existence of these cavity modes the output frequency of the
spin flip laser is not the same continuous function of magnetic field as is
the spontaneous frequency indicated by vs. As the magnetic field is swept,
the output frequency may change at a rate less than predicted for Voo
then hop in a discontinuous manner to the next higher frequency mode.
These features are referred to as mode pulling and mode hopping.]3 They result

from competing processes due to the discrete modes in the indium antimonide

resonator.



The output frequency is given by the expression13

VRFs + vSFR

FS + FR

where FR is the resonator linewidth and FS is the spontaneous linewidth

for the Raman scattering process. (FS is approximately the lasing bandwidth
for the spin flip laser). Typical values are 0.15 ch] for FR and 0.04 cm-]
for FS for electron concentrations on the order of 8 x lOlscm-3.

In practice, one can operate in the so called spin-saturation regime]
(where the power is limited by the relaxation rate from the spin down to spin
up level) with several closely spaced off-axis modes operating simultaneously
and this mode hopping behavior is not discernible. The resulting linewidth
(the order of 0.01 cm-1) is still often less than pressure broadened lines of
gases of interest in certain applications, as is shown. later.

The coarse tuning is accomplished by pumping the spin flip laser with
different CO laser transitions. This method turns out to be preferable in
some instances to large tuning with a super conducting magnet for reasons
appearing in the next paragraph. The preceeding discussion indicates the
obvious frequency dependence on the pump freqqency and magnetic field. A
more subtle magnetic field dependence relating to the intensity appears in
the following discussion.

In order to operate at frequencies far from the energy gap, i.e., about

14

50 to 200 cm'] away, it is necessary to consider the lasing condition,




R exp[(G-a) L]2_1

where G and o are the gain and loss per unit length, L is the resonator length
and R is the sample reflectance. Of particular importance in this expression

is the gain:

where Io is the intensity at the crystal which depends on the pump power available
and the f number of the input lens. The resonance enhancement factor, S, is

given by:

where hvr Wy =€_+(2+3nh w; (H) + % g*RH. Those quantities not pre-
viously defined include, %, the orbital quantum number, A, a constant of the
order of 2.3 x 10-23, and Ne the excess (spin up over spin down) electron
concentration. The product h vr(H) is the energy difference between the
top of the valence band and the bottom of the upper spin state of the parti-
cular Landau level (and hence depends on magnetic field) involved in the
scattering process. The dependence of V. on H may (depending on sample
concentration) dictate keeping H small and accomplishing the gross tuning
by selecting a pump frequency vp closer to the desired SF frequency.

The resonance factor presents some difficulties as one moves away from

3

the energy gap. Table 3 indicates the relative value of §S/v” at different

pump frequencies. The most effective method of compensating for the
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decreased gain at lower frequencies is to increase the pump intensity, however
some limitations exist here. One can also increase the carrier concentration,
however this is partially compensated by an increase in the spontaneous line-
width FS. Fs and the Fermi level are related to the carrier concentration

by the following proporticonality.]5

2/3
rs a Eg o (Ne)

Since the Fermi level is also related to the carrier concentration, the
upper spin level moves through the Fermi level at different magnetic fields for
different concentrations. The Fermi level also is somewhat magnetic field
(as well as temperature) dependent. The primary practical results relate
to two considerations. One is the power output as a function of magnetic
field. This is best illustrated by Fig. 3 which shows some results by the
Heriot Watt group.]6The spin flip laser power output is plotted vs magnetic
field for two different electron concentrations. For some experiments,

it is desireable to have the most power possible at 0.2 Tesla,2 hence a 2.5

X 10]5/cm3 sample is preferable. A second consideration is to obtain the
narrowest possible linewidth. In this case it is advantageous to choose a
low concentration sample where FS and the gain bandwidth are smaller. In

this case, it would also be preferable to select the spectral feature of
interest to be close to the InSb band gap.

Several different techniques exist for cooling the InSb resonator to
the desired 2K to 20K region. One technique is to use a commercial cryogenic
refrigerator if one's budget permits this initial investiment. The other

t
two methods involve the use of liquid helium, either for immersion in the

11
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liquid, or cooling by a cold finger. Each technique has both advantages and
drawbacks. We have used both techniques in our operation.

For immersion, we have found ZnS windows sealed with a suitable low
temperature epoxy to give fairly reliable operation, although a vacuum failure
may occur upon repeated recycling. Pumping on the helium to get below the
lambda point is mandatory in order to avoid scattering of the infrared radiation
by bubbles in the helium. The dewar requires over night precooling with liquid
nitrogen before helium transfer if helium consumption is to be minimized. The
additional set of windows in contact with the liguid helium can present some
interference problems, particularly if the window coatings are not good. The
major advantage of this technique is that one can be reasonably certain of the
InSb surface temperature.

Cold finger operation is simpler once the initial difficulties are over-
come. The cold finger in our apparatus is constructed of oxygen-free high-
conductivity copper with about 2-3 mm thickness separating the liquid helium
from the InSb resonator. Vapor deposition of gold17 on one surface of the InSb
appears to improve the indium solder bond between the sample and the cold
finger. Our procedure is to precool the helium reservoir with liquid nitrogen
then syphon this liquid to the nitrogen reservoir of the double dewar. This
procedure reduces lead time for helium transfer to about 30 minutes. Cold
finger operation is the obvious solution for operation with the resonator
external to the InSb crystal. However, several undesireable effects may be
present in this configuration. For instance, the output power may be less
stable than in the immersed case. Also, if the input beam is chopped, the
crystal can change temperature by larger amounts which can give rise to a
frequency modulation, or chirping. To date, however, we have not observed

these effects.



3. CARBON MONOXIDE PUMP LASER
An ideal pump laser for the spin flip laser would be one whose lines
are separated by about 50 GHz, with several watts of power available on
each line. Unfortunately such a laser has yet to be developed. The next
1216

best laser is perhaps the CO taser. The energy values for the “"C "0 laser

may be obtained from the following term value expression.

T(v,J)

o (v -w X_(ve5) 2 4w ¥_(v)?
- weZe(v+%)b + weae(v+%)s- mebe(v+%)6 + 00

+ J{J+1) [ Be- ae(v+%) + ye(v+%)2 - ae(v+%)3 + ~--}

r

- J2(J+l)2 De- Be(v+5) + ne(v+5)2 - "'}

-

B3 H, = ng (vi) + --']

=3

+

where the constants have the values, given in cm-] as indicated below:

w, = 2169.813 5802(881)

wX, = 13.288 3076(435) B, = 1.931 280 8724(443)

WY, = 1.051127(758) X 1072 a_ = 1.750 441 21(729) X 1072
wz, = =5.7440(541) X 107° Y, = 5.487 00(186) X 10”7
wa, = 9.8310162) x 1077 §_ = 2.541(156) X 1078

wb, = 3.1660(173) X 1078 D, = 6.121 468(291) X 107°

14



1.526(199) x 1072

w
[}

1.8050(154) x 10”10

=]
it

5.8272(597) X 1072

x
[}

=3
1}

1.7375(229) x 10713

The laser frequencies are the term differences
T(v+1.3+1)-T(v,J)
where v is the vibrational quantum number and J is the rotational quantum
number. The resulting frequency differences between levels are indicated -

in Fig. 4 which points up the frequency spacing problem.

Since carbon monoxide lasers are not readily available commercially, we
have constructed and used several lasers designed at NBS. We describe model !!
which is currently in use. This laser operates over a 1900-1700 cm-] range
and was designed for high output power at 6 um to compensate for the fall off in
resonance enhancement as one moves away from the band gap.

The resonator frame consists of 15 cm square aluminum end plates which
are epoxied to 4 quartz rods, each 2 m long by 2.5 cm in diameter. One end
plate holds a grating mount with an integral micrometer drive; the other end
plate supports a mirror holder driven by a PIT piezoelectric stack or transducer.
Adjustable irises at each end are used to force the laser to oscillate on a TEMOC
mode. Power is coupled out of the cavity through a 7mR, 90% reflectivity
mirror. The second surface is flat and AR coated. The transmittance of the
nominally 90% reflectivity mirror is shown in Fig. 6. The transducer can move
the mirror about 10 um. The sweepable drive voltage for the transducer comes
from a standard NBS unit which was developed for laser stabilization. The
drive unit has provisions for dithering, ramping, and servo correction. The

other end of the resonator is terminated by an adjustable grating. We have
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. - 12
and v_ (25). For this reason, not all of the transitions shown are
m:mﬁmvﬁm for pumping the spin flip laser.
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attempted to make a compromise between large dispersion and having a reasonable
angle (the diffracted beam misses the rear output window for large angles) to
permit use of the smaller power output from the grating. The particular grating
in use has 240 groves/mm and a 26° 45' blaze angle. The relative efficiency

for S polarization falls from about 95% to 5 um to 90% at 6 um for this model.‘9
Table 1l shows the relative power output versus frequency for the CO lines
which typically oscillate in this laser.

The 10 mm {.D. discharge tube is 192 cm long with Brewster windows at
each end. Air spaces between the windows and resonator reflectors are sealed
with bellows to avoid air currents in the optical path. The discharge is
split with a single anode in the center and cathodes at each end to avoid undue
heating due to ion bombardment which would result from the single cathode
arrangement. All three electrodes are platinum '""hollow cathode'' elements.

A 30 mm 0.D. concentric cooling jacket surrounds the discharge tube proper
and a 4 mm 1D tube which connects the discharge to a ballast region also allows
communication from the anode to both cathodes. This connection is very beneficial
in ''sealed off' systems; otherwise, the power gradually diminishes during the
course of the day due to impurity build up associated with cataphoresis.

The connecting tube has stop cocks between the anode and each cathode to
prevent the discharge from firing through the connection tube at start up. The
discharge tube is shown in Fig. 5.

Two different cooling schemes are used. In both cases methyli-cyclohexane
is used as the coolant. This coolant does not exhibit the viscosity of ethyl
alcohol at reduced temperatures and does not freeze until 147 K. In one scheme,
the methylcyclohexane is circulated through a heat exchange coil immersed in a

mixture of dry ice and alcohol. A temperature of 203K can be maintained with
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Table 11

Multiline power output vs frequency for CO pump laser.

Grating micrometer Operating frequency Power relative
reading in 0.001 cm region in cm™! to maximum output
945 1915 .24
936.5 1911 .28
926.5 1906 .45
918.5 1902 .32
907.5 1898 .36
898 1894 .55
8§78 1884 .65
368.5 1880 .81
858.5 1876 .77
848 1872 .83
835 1867 .24
828.5 1863 .77
808.5 1855 .99
798 1851 1.00
788 1847 .76
777 1842 .73
763.5 1837 .26
757 1834 .73
744.5 1830 .26
736 1826 v
724.5 1822 .86
7th 1817 .55
709.5 1813 .72
692 1809 .75
680.5 1805 .b6
669 1801 .45
636 1788 .53
625 1784 .60
615 1780 .34
600 1776 .36
579 1767 47
568.5 1763 .49
556.5 1759 .43
545 1755 b
530 1751 .34
520 1747 .19
508 1743 .34
496 1738 .37
480 1733 .10
469 1729 .24
456.5 1726 .28
445 1722 .26
421 1714 .18
Loy 1709 .14
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CO LASER DISCHARGE TUBE

91.5cm
#18 BALL

»\\\\ JOINT

STOPCOCKS —_ |
- +— 4.5cm CONNECTING :::/ % 6mm 0D
Ye Xr
ﬂ 5Imm 0D
—»||<—gmm 0D T~ BALLAST RESERVOIR
S COOLANT OUTLET «
n P4
=~ \~ *
™\ COOLING JACKET ! § )2mm 0D
CATHODE 30mm 0D ANODE
ELECTRODE SUPPORTS 90° FROM
NaCl WINDOW AT PLANE OF CONNECTING TUBE
BREWSTERS ANGLE 1 9mm 8/»
12mm 0D
G
/ ——
W ROD, 1.5mm DIA PT THIMBLE, 12.7mm 0D,

0.4mm WALL, 30mm LONG

DETAIL OF ELECTRODE

Figure 6. Sketch of CO pump laser discharge tube design. Overall tube length is 192 cm and
the tube is symmetric about the anode plane, except for coolant inlet which comes

in at the bottom of the cooling jacket.
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this arrangement. At laser operation near 6 um, however, lower temperatures
are required and a second cooling coil in series with the first is immersed in
a methylcyclohexane bath. Liquid nitrogen flowing through an additional coil
in this bathcools the methylcyclohexane to near its freezing point. With
this system, a temperature of 158°K can be attained. This second stage is
bypassed for 5.3-5.5 um operation.

The gas fill mixture in the CO laser 20 is a premix of 6.3% Xenon,
6.3% nitrogen, 5.3% carbon monoxide and the balance is helium. Typical fill
pressures vary between 2,000 and 2,700 Pa (15 and 20 Torr), depending on the
intended operating temperature. The discharge current is typically around 10mA.
Each side of discharge is powered by a 25 kv power supply with 200 k ohms of
ballast resistance in the circuit.

The transducer contéolled mirror permits one to adjust the frequency of the
CO laser within its gain profile. A reference frequency is synthesized by a
method described in the next section. The CO laser frequency is locked
30 MHz away from this reference frequency by means of a 30 MHz discriminator,
an operational amplifier and filter, and the previously mentioned driver unit
which adds the amplified correction voltage to the bias voltage already on

the PZT transducer.

21



k. INFRARED FREQUENCY SYNTHESIS TECHN!QUES

One of the prime objectives of the infrared frequency synthesis (IFS)
program at the National Bureau of Standards (NBS), was to determine the
frequency of the 3.39 um P(7) transition in methane. In the process of
achieving this goal, two definitive CO2 laser frequency measurements were
made.3 Using these two frequencies as a basis, a thorough program to deter-
mine values for stabilized CO2 taser frequencies was undertaken and completed
at NBS.Q By using two CO2 lasers, a klystron, and an appropriate diode one
may synthesize any frequency between 0 and 100 THz.ZI A list of two-laser,
CO2 combinations for generating frequencies in this fashion has been compiled.
More recently, the IFS technique has been used to measure the frequency of
the Xenon laser at 2.0 um.22 A long term objective has been to extend the
technique to the visible. A secondary objective is to laterally extend the
technique to use the CO2 laser synthesizer with tunable lasers and make
absolute frequency measurements.

An example of two-laser infrared frequency synthesis is shown in Fig. 7.
To accurately measure the frequency of a laser, Vy» @ frequency, Vs’ which is
close to the frequency to be méasured, must be synthesized. The difference

between these two frequencies is an intermediate frequency, VIF’ typically

less than one GHz. The unknown laser frequency is:

Vy = Ve TV
M

V. = Qv] + my, + nv ..

S 2 uw

vy and v, are basis laser frequencies which have been determined by prior

synthesis measurements, and v W is a microwave frequency. The quantities
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2, m, and n are harmonic numbers which are allowed both positive and negative
values. The quantity (1 + |2] + |m| + |n|) is called the mixing order.23
The harmonic generation as well as the mixing which produces the inter-
mediate frequency to be measured, occurs in a suitable diode, typically a

24,25

tungsten catwhisker on a nickel base. Two relevant points are indicated
in Fig. 7. First, the laser beams are polarized with the electric field
vector in a plane which contains the catwhisker antenna. Second, the

angles between the laser beams and antenna are given by long-wire antenna

26 . . ;
theory. According to this theory, the angle between the antenna direction

and the direction of the first maximum in the radiation pattern is given by

8 = cos-] ( 1 - 94211& )
max L

where A is the wavelength of the radiation being coupled to the antenna and L
is the distance between the tip of the tungsten wire and some discontinuity
in the wire, either in shape or direction. Although some contention exists
as to the type of coupling that prevails at 3.29 um (perhaps a conical antenna)3
our experiments indicate that the long wire antenna theory is applicable at
5.3 um. Our measured value of @m = 11° + 1° is commensurate with the antenna
length at 100 um. The unetched diameter of the antennas used in this work
is 25 um.

The physical mechanism of the harmonic generation in these diodes is
not universally agreed upon. Theories postulating asymmetric tunnelling due
to geometry, quantum mechanical scattering, field emission, and barrier
tunnelling have been made. In some of the tunnelling theories voltage is
considered the independent varfable; in others the current appears as the

wave fundamental quantity. Since the antenna coupling tends to be associated
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. 1h
with generation of currents and the existence of currents near 10 Hz
has been demonstrated, this latter theory has considerable appeal.

27

The essential ideas of one tunnelling theory are as follows.

The diode consists of two dissimilar metals (nickel and tungsten in our
case) separated by some unspecified insulating barrier, probably an oxide
which is several lattice parameters thick. If ﬁl and 02 are the work
functions for metals one and two and V is the voltage between the two
metals, the expressions for the electron tunnelling currents given by

. 28
Simmons are:

The quantity A is the contact area of the diode, which may correspond
o]
to a 500 - 100 A radius of the tip, and t is the approximate barrier thickness,

o
15 - 20 A. T is given by

T = hw(tz - tl) J 2me N byt J Zme

h ~ h

where tz and t] are classical turning points in the barrier penetration
problem. The quantities e, m, and h are the electron charge, electron mass
and Planck's constant, respectively. VWhile no further use of the above expressions

is made here, they do show one explicit current-voltage relation and indicate some

dependence of the current on the physical dimensions of the junction of the diode.
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It is then assumed that the current, |, through the diode consists of an
external bias, ib’ plus currents which the laser radiation induces in the

antennas. For example,

| = 'b + |1 coswlt + |2 coswzt

This current and the tunnelling current expressions are combined to give
the voltage as a function of current
vV=2g(l)
where g(I) is a non-linear function of the total current.
The harmonic generation is mathamatically evident when g(l) is expanded

in a Taylor series about the bias current, ib.

1 2

_ oy, dg : :
Vv g(lb) + 5 )_ (|] cos w,t + i, cos o t)
i 2
b
1 d2 2
+ = 23 (i, cosw,t + i, cosw.t)" + ...
2! dlZ 1 2

'b

The general term corresponding to the nth harmonic has not been shown
since we can illustrate our immediate use with the second order term. For
stabilization of the CO laser, we have not found it necessary to use an
equals zero. An examination
b
. e . .2 .2
the second order term indicates constant terms proportional to i and iy

external biasing current on the diode; hence i

as well as terms involving sum, difference, and doubled frequencies. These
constant terms represent rectified optical signals and can be used to
advantage to monitor coupling of a particular radiation to the diode.

This is accomplished by chopping the laser radiation and adjusting the
optics for a maximum value of the modulated rectified voltages on an
oscilliscope, (typically indicated in Fig. 8), which shows rectified

signals and the resulting beat notes.
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Figure 8.

Rectified voltages for CO, and CO lasers on a metal oxide
metal diode. a) Rectifieg CO0, induced voltage on a 5 mV
per division scale. b) Recti;ied CO0 induced signal on a
0.5 mV scale. <c¢) Beat note at 30 MHz when a 46 GHz signal
from a klystron additionally irradiated the diode. Signal
to noise ratio for the beat note is 30 db and dispersion is

1 MHz/division. The spectrum analyzer bandwidth is 100 kHz
and sweep time is 1 ms per division.
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The coefficients of the frequency sum and difference terms are propor-
tional to the product of the two laser induced current amplitudes. Thus,
by compensating with increased power from one laser, mixing experiments can
be done even though the other laser induced signal may be weak. Significant
non-linearities, such as burning-up of the tungsten antenna, will ultimately
limit the extrapolation of this technique. Hopefully, power compensation
by one of the synthesis lasers may help solve the problem of measuring the
frequency of the relatively low power, spin-flip laser. We defer that
discussion until the latter part of this section.

In order to see the desireability for IFS techniques with the stabilized
CO2 lasers in our spectrometer, we need only consider some of the properties
of CO and CO2 lasers.

The CO2 laser is unique in that it has over 100 lines (more or less
uniformly spaced) extending from 9 to 11 um, all of which can be stabilized
to standing-wave saturation resonances observed in the 4.3 um fluorescent
radiation. The fractional frequency variation of lasers stabilized in this
way at the National Bureau of Standardsh is 3 x 10_11 T-% for 10—2 < T > 10s.
It is estimated that the fractional uncertainty in the resetability of each
CO2 laser is about 2 x 10-]0. Further, the absolute frequencies of these
lines are known to within about one part in 109.

The lines in the CO laser do not have the same desirable separation as
in COZ; in fact many transitions nearly overlap, and unfortunately the CO2
stabilization technique cannot be used for CO. We have used an alternative
stabilization procedure for CO, as shown in Fig. 1. Here the CO laser is
locked to a frequency which has been synthesized from the second harmonic
of a stabilized CO, laser and an appropriate microwave frequency. Both the

2

2nd harmonic generation and the mixing are done simultaneously in the point
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contact diode with the properties indicated in the caption of Fig. 8. Over
100 CO lines lie within 40 GHz of the second harmonic of some CO2 laser'line
and may be stabilized in this manner. The CO laser would then have nearly
the same long term stability as COZ’ and its absolute frequency would be known
to within a part in 109. This procedure increases the utility of the CO
laser as a pump for a tunable Raman spin flip laser to be used for high
resolution spectroscopy. Also, as a monitor of the CO laser operation, one
can observe the output from the diode and make appropriate adjustments to
insure that the CO laser is operating in a single mode and on a single transi-
tion.

The problem of measuring the difference frequency between the pump laser
and the SFRL output is complicated by three factors. First, the spin flip
and pump signals have mutually orthogonal polarizations, which originally
presented difficulties in coupling to the diode antenna. Second, the power
output from the SFRL is low compared to levels generally used for synthesis
in MOM diodes. Third, the large colinearly-transmitted pump power makes
focusing the weak SFRL output beam on the diode difficult.

Long wire antenna theory indicates that for best coupling the antenna
should be rotated in the plane of polarization by the angle Om with respect
to the beam direction. !lormally, our diode holders have provision for
rotation in the horizontal plane only. A tapered fixture which tips the
diode down 11° in the vertical plane while maintaining an 11° projection
in the horizontal plane with respect to the beam direction has permitted
5 um signals with either polarization to be coupled to the diode.
15 c -3

An InSb crystal with an electron concentration around 4 x 10 m

has a maximum in the power output curve at about 0.2 Tesla as indicated in

15

Fig. 3. We have used a crystal with a carrier concentration of 2.5 x 10
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cm © and obtained an estimated 30 mw maximum output power near 0.205 Tesla.
This point of operation is selected since the frequency difference between
the CO pump and the SFRL is predicted to be about 150 GHz corresponding to
the 2nd harmonic of an available klystron. Since the power available from
the SFRL is low, it is deemed desirable to keep the mixing order as low
as possible in the initial experiments. The SFRL power density is increased
at the diode junction by focusing it down with a 2.5 cm focal length lens.
Sufficient transmitted pump power (although the radii of curvature of the
pump and SFRL signals are not generally equal) might also be coupled to the diode
through the same lens to produce a beat note between the laser and the
‘75 GHz klystron. We are exploring the possibility of measuring the frequency
difference in this manner.

While the MOM diode has considerable potential for heterodyning the
SFRL signal, a reliable procedure needs to be developed for coupling the
laser signal to the diode. Some of this development involves improvements
in the SFRL itself. An external resonator configuration would permit
single mode operation of the SFRL, a single wave front for coupling to the
diode, and hopefully greater power output. The inclusion of a Brewster angle
window within the resonator could also reflect some of the troublesome
transmitted pump radiation from the beam. An additional improvement would
be to bring the pump and spin flip beam to the diode along separate path
lengths as proposed in Fig. 17, for example. Separate focusing would afford
some control over the relative powers, permit parameters to be evaluated

on a quantative basis, and pave the way for routine heterodyning procedures.
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5. OPTO-ACOUSTIC DETECTOR

The development of air pollution monitoring equipment capable of detecting
the presence of atmospheric trace constituents at concentrations as low as one
part per billion has led to a number of highly sensitive measurement techni-
ques. One such device developed on our laboratory and elsewhere is the
resonant opto-acoustic detector.

In this device a confined gas is irradiated by a laser tuned to a vibra-
tional frequency of the molecules in the gas, and consequently, some of the gas
molecules reach an excited state. Subsequent collisional de-excitation of
these molecules results in a thermalization of the absorbed energy and there-
fore a pressure rise in the gas. Thus, modulation of the intensity of the
irradiating laser produces pressure fluctuations which may be detected by a
suitably mounted microphone. |If, in addition, the laser is modulated at a
frequency which corresponds to one of the natural acoustic resonances of the
gas confining cavity, the acoustic signal generated will be enhanced by an
amount proportional to the cavity Q, thus, creatly increasing the system
sensitivity. The basic features of such a system are illustrated schematically
in Fig. 9 (details available elsewhere)5 which shows a cylindrical sample
cavity with a microphone mounted flush with the cylindrical wall. |In addition,
Fig. 9 indicates that we have greatly enhanced the chance for absorption of
the irradiating laser beam by multiply reflecting it between two mirrors
forming the end walls of the cavity, thus further increasing the system
detection sensitivity.

Measurements with this system have demonstrated acoustic Q's exceeding
750 and detection linearity for all absorber gas concentrations below a
saturation threshold which corresponds roughly to an absorption coefficient
of 6 x 10_2 cm-]. Since the opto-acoustic detection sensitivity is directly

proportional to the absorbed infrared energy, direct comparison with conven=-
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tional measurement techniques which depend only upon fractional absorption is
somewhat difficult. Measurements to date indicate, however, that a signal to
noise ratio of 1 is achieved at a bandwidth of 1 Hz, with a 1 watt irradiating
laser and a gas fill having an absorption coefficient of 3 x 10-9 cm-1 at

53,000 Pa (400 Torr). To achieve comparable sensitivity, a conventional absorption

detection system would require an effective absorption path length of ~100 meters

compared to the 20 cm opto-acoustic absorption cell.

The opto-acoustic system thus currently displays a linear detection
range exceeding 7 orders of magnitude. The system noise is currently dominated
by electronic amplifier noise whereas the fundamental limitation is the
thermal acoustic noise on the microphone element itself. Improvements in
microphone and electronic design should allow us to reach this fundamental
limitation. Improvements in the cavity optical design should also result in
greater system ultimate sensitivity.

Since the defection system requires the conversion from vibrational
excitation to random thermal energy via a gas kinetic collision mechanism,
some loss in system sensitivity is bound to occur as the cell pressure and
thus the molecular collision frequency is reduced. We have, however, made
relatively low level absorbtion measurements at pressures as low as 700 Pa (5 Torr)
indicating that measurements even at low pressures may be made by the opto-
acoustic technique. More work in this area is needed to see if specialized
microphone design could improve the low pressure measurement capabilities.
A device such as this offers advantages on two counts. One, materials having
low vapor pressure at room temperatures could be investigated and two, parti-
culate scattering (which could be a problem fn transmission spectroscopy)
does not adversely affect operation. A spectrum obtained by using the

opto-acoustic detector and spin flip laser is shown in the next section.
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6. ENVIRONMENTAL PROBLEMS
The spin flip laser (including the CO pump), opto-acoustic detector, a
stabilized CO2 laser, and some additional infrared frequency synthesis apparatus
are assembled into the system shown in Fig. 10.

A stabilized CO, laser, microwave source, and point contact diode are

2
used to synthesize a suitable reference to frequency offset lock the CO laser.
For example, P(17) in the 8 to 7 band for the CO laser is stabilized by
operating the CO2 laser on P(18) in the 10.6 um band and phase locking the
microwave oscillator to 46.608 GHz. \‘lhen these three oscillators simultaneously
irradiate the diode, a 30 MHz beat note is produced which is used to stabilize
the CO laser frequency. The correction voltage generated by a conventional
dfscriminator is amplified and applied to a piezoelectric transducer on the
CO laser. Stabilization of other CO laser lines requiées additional klystrons.

A reference oscillator and power amplifier control the speed of the
synchronous motor which drives the chopper. The chopping ét the opto-
acoustic detector frequency is done preceeding the InSb sample to minimize
heating of the crystal in the cold finger configuration. The beam from
a light-emitting diode is also chopped, and this signal provides the reference
for the phase detector.

The signal from the opto-acoustic detector is also fed to a phase detector,
and its output is fed to the Y-axis of an X-Y recorder. 7The X-axis is driven
by a signal derived from a Hall probe in the magnet.

In an alternate simple absorption experiment, a mirror is used to direct
the spin flip output through a 10-cm-long absorption cell equipped with
Brewster windows. The filter may be a monochromator, and the detector

currently in use is a gold-doped germanium diode.
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The application of the first scheme to detection of poliutants is
demonstrated by the nitric oxide spectrum in Fig. 11. iiitric oxide29 has
a large number of strong lines within the frequency capability of the
system. Tunability of the spin flip laser permits selection of a transition

which avoids the spectral lines of other pollutants. By tuning the laser to

7

the R(%) transition, a sensitivity of one part in 10"/ of NO can be achieved
with a 30 mW SF signal.

The operating pressures in the opto-acoustic cell (about é,700-53,300
Pa or 50-400 Torr of buffer gas) soAfar have precluded high-resolution non-
pressure-broadened spectroscopy. However the spin flip laser does have this
capability. This resolution is demonstrated in Fig. 12 where the alternate
system has been put into use.

The system is not limited to use for detection or identification of
pollutants which have a fundamental band overlaping the 5.3 um region. For
example several molecules have overtone bands which also fall within this
region. As an example, the spectrum of 502 is shown in Fig. 13. This
characteristic signature of SO2 in this region provides an interesting contrast
with the simple and well known spectra of NO in Fig. 11.

Finally we point out the potential for chemical kinetics investigations
in this region. Due to the great selectivity and high sensitivity for
molecular detection achieved with the tunable IR radiation of the SF laser,
this system should prove excellent for chemical kinetics studies. Once an
appropriate spectral feature has been chosen, it can be monitored quantitatively

throughout the reaction providing the frequency of the SF signal does not

change. This is assured by the frequency locking servo on the CO laser
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TRANSMISSION THROUGH 10 cm CELL
CONTAINING 2 TORR OF NITRIC OXIDE

Figure 12.

xAd\NVd\N LINE
-1

AT 1881.0 cm
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A DOUBLING SPLITTING
1

0.012 cm™
360 MH:z _

-1
- 0.26 cm
0.0125 TFSIA

Spectrum of R(1/2) 1/2 transition in NO obtained at NBS-il0OAA with spin flip laser and
gold doped germanium detector. One trace is with the 10 cm long absorption cell empty,

the second shows the transmission with 300 Pa (2 Torr) of ,NO in the cell. The A doubling is
clearly resolved, indicating a resolution around 0.01 cm '.
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and the feedback control which maintains the magnetic field at a constant
value.

Either the opto-acoustic detector or the simple absorption cell may be
used to monitor the gas concentration in a flow tube system.30 The opto-~
acoustic detector, however, unless modified to obtain low tufbulence flow
characteristics, is suitable only for very low flow velocities and hence
measurement of slow reactions. Because of this constraint, a flow tube
system incorporating an absorption cell is currently under construction to
study kinetics of some of the free radicals detectable within the available

tuning range of the SF laser.

7. METROLOGY PROBLEMS

Most of the technological problems that the spectrometer could help
solve would involve making absolute frequency measurements. One category
would be to provide reference or bench mark frequencies that diode laser
users could find beneficial. Diode lasers at present do not have sufficient
power to use with metal-oxide-metal diodes, and while they do afford excellent
potential for high resolution,al they apparentl are not exactly reproducible
from day to day in regard to their frequency-current relations. Large
facilities where diodes are in use are forced to refer all measurements to
an internal standard whose absolute frequency is not known.32 Fig. th4 indicates
the type of spectrum that could be useful as a reference in regions where
the spin flip laser operates.

A second category of experiments is related to some current activities
' 33

regarding isotope separation and a related class of two-photon experiments

involving CO2 lasers. Since the CO2 laser has very desireable properties,
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such as high efficiency, high power, cleanly separated transition frequencies
and scaleability, several proposals have been put forth to use CO2 lasers to
construct an optically=-pumped NH3 laser involving two input CO2 photons and

to get 16 um laser action from the NH as indicated by the energy level

3
3»
diagram in Fig. 15. Since the two photon total tunability is about 100 MHz,
the energy levels must be known to this accuracy. The 5.3 um operation of
the spin flip laser overlaps a large portion of the frequency region equal
to two CO2 laser photons.

Fig. 16 indicates the spectrum of NH3 obtained with our spectrometer.
The increased resolution of the spin flip laser produces about ten times

35 )
more lines than were obtained by previous means in the region where the

spectra overlap. The spectrum shown consists of some Vv

36

2 transitions, however,

the majority of the lines result from the vy, mode~~ and the spectrum will
require considerable effort to unravel.

In order to explain this spectrum and obtain some useful parameters,
one would like to make accurate frequency measurements on some of the line
positions. There are several accuracy levels and techniques that can be
used here.

One method which has been used at Heriot Watt37 and could be put to
use here is to use a known calibrant (the NO spectrum in Fig. 11 for
example) along with a low finesse Fabry Perot cavity for interpolation.
The unknown spectrum is compared with the calibrant over identical pump
frequency and magnetic field regions.

A preferable but more difficult technique (and the one we are working

toward here) is to replace the wavelength metrology with frequency metrology

by a incorporating the frequency synthesis technology into the system.
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Preliminary spectrum of 1% NH

tions in NH3. The spin flip laser was operated in the quasi continuous
(spin saturated) regime with a linewidth the order of 300 MHz; a very
useful mode for survey work. Several different pump lines were used

to obtain spectra in the various 23 cm-l regions that a 1 Tesla

sweep produces, then the traces were subsequently joined together. A
future improvement will consist of normalizing the absorption signals
by a ratio detection scheme in order to simplify the assignment of
transitions.
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A block diagram for a scheme currently under investigation is shown in Fig.
17. The spin flip laser is tuned to some resonance feature in the gas
undér investigation, and the spin flip laser frequency is measured relative
to the CO pump frequency. The CO pump frequency is known since it is frequency
locked to a CO2 based reference. This CO laser stabilization has already
been accomplished. The more difficult measurement is the CO - SF frequency
difference. Since the pump electric field and the SFRL field are presumable
polarized orthogonally, the use of the Brewster angle beam splitter should
effectively separate the two signals and permit one to bring the two signals
to the diode independently. The major difficulty to date has been the
relatively low SFRL output power. We have achieved 30 mw near resonance,
but the power drops off toward longer wavelengths. The diodes seem to
operate reliably with about 100 mw of power focused through an F5 lens. Ve
have succeeded in observing a rectified signal from the SFRL radiation.
The amplitude of this signal was less than 100 uv.

The low power from the SFRL may be partly caused by bounce modes
which approach the InSb surface internally at an angle greater critical angle
and are permanently internally reflected until they come to a corner.3
The most promising answer to the problem appears to be that of external cavity

39

operation. \lith this operation one expects not only higher output power,
but also a narrower linewidth since bounce modes would be eliminated. An
alternate solution for the CO pump-SFRL frequency difference measurement
might be a fast solid state detector which requires considerably less power
for operation. To date, even the best of these, however, has only 65 GHz

or so bandwidth. Thus, the much wider bandwidth of the MOM diode makes it

preferable at present, and we are continuing in this direction.
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Figure 17. Block diagram of absolute frequency measurement technique under development. The CO

frequency determination occurs in the laser stabjlization process. |In the proposed
scheme above, Lhe Brewster's angle beam splitter should allow the pump power to be
transmitted unreflected, while reflecting about 80% of the spin flip power (polarized
orthogonal to the pump power) to the diode. The pump power is directed to the dicde
by an independent path to allow optimum coupling for each signal.
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I'n summary, we make the following points about the spectrometer:

1. The system has developed to the point where the spin flip laser
operation is routine, and further improvements in performance require
external cavity operation. 2. The present system is useful for survey work
where operation is in the spin saturation mode and tuning is quasi continuous
with a linewidth of about 300 MHz. 3. The system can now be operated in a
1

mode modulated fashion with a resolution of better than 0.01 cm L. By

using a ratio detection scheme now on hand, one can measure chemical reaction
rates if one of the reactants has a spectral feature in the 1900-1840 cm-]
region. 5. An additional effort is required to develop the absolute frequency
measurement capability.

We wish to express our gratitude to Dr. J. R. McMNesby of the OAWM
Headquarters, MBS, Washington for valuable support of the aspects of this
work dealing with environmental problems. We are indebted to Drs. A. Mooradian
and S. R. J. Brueck of the MIT Lincoln Labs and to Prof. S. D. Smith and Drs.
R. B. Dennis, M. J. Colles and others of Heriot-Watt University for valuable
technical discussions on the spin flip laser. Several of our local colleagues
have been helpful, we especially want to thank Drs. K. M. Evenson and J. J.
Jimenez for helpful pointers on the diode, Dr. D. A. Jennings for valuable
comments on various aspects of the project, and Dr. R. J. Mahler for a
critical review of the manuscript. Dr. B. Woodward, who is now at Molectron,

also made some prior contributions to the spin flip laser development.
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