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"What then," asked St. Augustine, "is time? If no one asks me, 1 know
what it is. If I wish to explain it to him who asks me, I do not know."
We have learned a few things since St. Augustine, Einstein has taught us a
lot. But still there are a lot of unanswered questions. In particular,
how do you measure time? It intrigues me that we never measure time; we
measure time differences, i.e. the time difference between two clocks. I
know of no way to measure the time of.a clock. I can measure the time of
an event with reference to a particular clock. Another intriguing
question is, if time cannot be measured, is it physical or is it an
artifact? We conceptualize some of the laws of physics with time as the
independent variable. We attempt to approximate our conceptualized ideal
time by inverting these laws so that time is the dependent variable. The
fact is that time, as we now generate it, is dependent upon defined
origins, a defined resonance in the cesium atom, interrogating electron-
ies, induced biases, and random perturbations from the ideal. Hence, at a
significant level, time -- as man generates it by the best méans available
to him -- is an artifact. Corollaries to this are that every clock
disagrees with every other clock essentially always, and no clock keeps
ideal or "true" time except as we may choose to define it. Frequency or
time interval, on the other hand, is fundamental to nature; hence, the
definition of the second can approach the ideal. Noise in nature is also
fundamental., Characterizing the random variatidns of a clock opens the
door to optimum estimation of environmental influences and to the design

of optimum combining algorithms.




Let's define some terms[1]: Beginning with a sine wave voltage with
frequency v(t) as the variable frequency output of a precision oscillator,
we may write V(t) = v, sin(2n v(t)+t), where we assume that amplitude
fluctuations are negligible around Vo, and where v(t) is the average
frequency from 0 to t. We can redefine this equation with Vo being a
constant nominal frequency and place all of the deviations in the phase,
V(t) = V, sin (2nv0~t + ¢(t)). We then define a quantity

y(t) = (v(t) - vo)/vo, which is dimensionless and which is the fractional
frequency deviation of v(t) from the nominal value. We can integrate

y(t) to get the time deviation, x(t), which has the dimensions of time.
From the above we can write the time deviation of a clock as a function of
the phase deviation: x(t) = ¢(t)/2mv,.

Why do we have time deviations? We conceptualize two categories:
systematics, such as frequency drift (D), frequency offset (yo) and time
offset (xo); and then random deviations e(t), which are not considered to
be deterministic:

x{(t) = x

o+ Yoot + 172 Dt? + e(t). (1)

Note, the quadratic in the D term is because x(t) is the integral of y(t),
the fractional frequency. In Figure 1 we have simulated two systematic
cases: one a clock with frequency offset, and another case with a
negative frequency drift. systematics caused by environmental influences
are also very important. Figures 2 through 6 summarize some of the
important systematic influences on precision oscillators. An important
set of systematic deviations are modulation side bands, e.g. 60 Hz,

120 Hz, daily and annual dependences, those induced by vibrétions, ete.

The random deviations of precision oscillators can typically be catego-
rized by power law spectra, Sy(f) ~ % where f is the Fourier frequency
and o takes on integer values, i.e. -2, -1, 0, 1, 2[1,2,3.4]. Figure 7
shows noise samples corresponding to these different power léw spectra and
Table 1 shows the nominal range of applicability of these power law
models. Given a time deviation plot x(t) for the time difference between

a pair of clocks or a clock against some primary reference, and some



sample time 1 (see Figure 8 for example), the average fractional frequency
for each interval is the time difference at the end of the interval minus
that at the beginning of the interval divided by 1. We can thus construct
a set of discrete frequency values over such a data set from this time
deviation plot. We can calculate a classical standard deviation for these
values, but one can show that for some kinds of power law spectra
encountered in precision oscillators that the standard deviation is
divergent[SJ, i.e., it does not converge to a well defined value, and it
is a function of data length[ZJ. Hence, the standard deviation should not
be used for characterizing clocks. An IEEE subcommittee has recommended
sy(r) in the frequency domain and a measure, oyz(r) in the time domain[1].
The latter has come to be called the two-sample variance or the Allan
variancef The convergence of oy(r) has been verified[1'2'3'u3 for

the power law spectra of interest in precision oscillators. It is defined

[13,

as follows

oyz(r) -1 ayp)> (2)

where Ay is the difference between adjacent fractional frequency
measurements each sampled over an interval 1 and the brackets <>

indicate the infinite time average or expectation value.

A pictorial description is shown in Figure 9 for a finite data set. A
data set of the order of 100 points is quite adequate for convergence of
Oy(T), though of course the confidence of the estimate will typically
improve as the data length increases[sl. Given a discrete set of stored
data, the value of 1 can be varied in the software[7]. If T is the data
spacing for the stored data set, ;&, from the measurement system, one can
change to 1t = nt, by averaging n adjacent values of yito obtain a new
fractional frequency estimate with sample time 1 as input to Equation (2).
Hence, in a very convenient way one can calculate Oy(T) as a function of
7, which will be shown to be very useful in a moment. For a finite data
set, Equation (2) then becomes

M+1-2n

2
21y = —1 7T -3t
o () = STz kzl (y;m yk) »  and (3)




: M+% -2n ,
0 (1) = —— (xk on 2xk + xk) (4)
y 2t (M+1-2n) k=1 ren n

where the yg are average fractional frequencies averaged over 1 = nrt

o,
starting at k, and the XS are the discrete time deviation measurements,
‘i-
X, = KTt Y.
k o} i
i=1

Equation (3) is obtained from a first difference on frequency, and
equation (4), from the second difference on the time; they are mathemati-
cally identical, which gives us the option of using frequency or time
data.

For power law spectra, u is constant for a particular value of a, where
Oyg(T) ~ tH. The relationship of the spectral density, Sy(f) ~ £,

exponent a versus u is u = -—a-1 (-2< a $1) and u = -2 (agl).

For example, Oy(T) is proportional to 172 {(which is typical) for cesium,
rubidium and passive hydrogen; then u has the value of -1, and hence a has
the value of 0 (white noise frequency modulation). This is the classical
noise exhibited by most atomic clocks for 1's beydnd a few seconds and in

this case o ) is equal to the classical standard deviation. Fortu-

y(To
nately for most cases where 1 ¢ 1 second the relationship pu = -a-1 is

applicable.

We have an ambiguity at u = -2; we cannot tell whether we have flicker
noise phase modulation (PM) or white noise PM. We can avoid this problem
by realizing that in this region Oy(T) depends on the measurement
bandwidth[2'3]. One can construct a variable software bandwidth, fs, by
realizing the followingts'g]. In any measurement system a hardware
bandwidth, fh, exits through which we measure the phase or the time
difference between a pair of clocks; define Th = 1/2nfh. In other words
T is the sample time period through which we sample the data. If we
average n time or phase readings, we increase the time period to nt, =1
But T

s®

s = l/anS, where fs = fh/n, i.e., we narrow the effective bandwidth,



fs' in the software by n. In other words fs = fh/n gets smaller as we
average more values; i.e. increase n (1t = nt, ). We can therefore
construct a second difference composed of time deviations so averaged, and

then define a modified oyz(r) that will remove the ambiguity through
bandwidth variation:

» : N-3n+l /n+j )2
Mod.o_“(1) = ) z (x, -2X, .+ Xx.) (5)
y 2°n?(N-3n+1)  3=1 ( i=] iran s

where N = M+1, the number of time deviation measurements available from

the data set. And now if Mod.oyz(r) - ¥, then p’= -a-1 (15 a 53)[9’10].

We typically employ MOd.Oy(T) as a subroutine to remove the ambiguity if
Oy(T) ~ 17! because the u’ dependence only approximates that given by
equations (3 and 4) for a <1. But for a = 2 and 1, u /2 exactly equals
-3/2 and -1 respectively, providing a clean differentiation between white

noise PM and flicker noise PM.

Table 2 illustrates why one should not use the classical standard
deviation to characterize clocks. For the different kinds of noise
processes we list the classical standard deviation of the time deviations
and the classical standard deviation of the fractional frequency
deviations as a function of Oy(T) (the square root of the Allan variance).
The divergent nature of either classical standard deviation is apparent,
and even for classical white noise FM the standard deviation is apparent,
and even for classical white noise FM the standard deviation of the time

diverges as the square root of the data length i.e. the number of samples
e |

Using Oy(T) or MOd.Oy(T) we can characterize typical power law processes.
We then have the opportunity of determining optimum estimates of
values by employing the statistical theorem that the optimum estimate of a

white noise process is just the simple mean.




For example, consider the very common and very important case of white
noise FM typically found on the signals from cesium standards, rubidium
standards and passive hydrogen masers. The optimum estimate of the
frequency is the simple mean frequency, which is equivalent to

(xy -x1)/M10. It is still all too common within our discipline to see our
colleagues erronecusly determining the frequency for these kinds of
oscillators by calculating the slope from a linear leasts squares fit to
the time deviations and quoting the standard deviation around that fit as
a measure of the clock performance. There are three problems in
proceeding this way. First, the fﬁequency estimate is not optimum in a
mean square error sense and is equivalent to throwing away about 20% of
the data, increasing the cost in the case of a calibration. Second,

the standard deviation diverges as the square root of the data length and
third, the standard is significantly dependent on the filter (linear
leasts squares) as well as the clock deviations. On the other hand such a
filter can be useful for assessing'outliers. The optimum "end point"
method outlined above has the risk that if either of the points is
abnormal, i.e. the model fails, the result will, of course, be adversely
effected, so such a filter is useful to assess whether there are, outliers

-- paying especial attention to the end points.

There are other useful, and maybe not so obvious, optimum estimators at
the conclusion of a data set: (1) Given white noise PM, the best time
error estimate is the simple mean of the time deviations, the frequency
estimate, then, is the slope from a linear least squares fit to the time
deviations, and the frequency drift, D, is determined from a quadratic
least squares fit to the time deviations per equation (1). (2) Given
white noise FM, the optimum estimate of the time is the lést value, the
optimum frequency estimate is outlined in the previous paragraph and the
optimum frequency drift estimate is from a linear least squares fit to the
frequency. (3) Given random walk FM, the optimum time estimate is the
last valué, and optimum frequency estimate is obtained from the last slope
of the time deviations, and the optimum frequency estimate is from the
last slope from the time deviations, and the optimum frequency drift
estimate is calculated from the mean second difference of the time

deviations. Caution needs to be exercised here for typically there will



be higher frequency component noise in a real data stream, such as white
noise FM, along with the random walk, and these can significantly
contaminate the drift estimate from a mean second difference. If random
walk FM is the predominant long-term, power-law process, whiéh is often
the case, then the noise can be handled by calculating the second
difference from the first, middle and end time deviation points of the
data. The flicker noise cases are significantly more complicated, though
filters can be designed to approximate optimum estimation [11'12’13]. In
the limit as the data length increases without limit, the time is not
defined for flicker noise PM, an the frequency is not defined for flicker
noise FM. This has some philosophical implications for the definitions of
time andvfrequency unless some low frequency cutoff limits exist. If
significant frequency drift exists in the data, it should be optimally

subtracted from the data or it will bias the long term values of Oy(T):

og(x) = 5L . (6)
Once the power law spectra are deduced for a pair of oscillators, then one
can also develop an optimum predictor. Table 3 gives both the optimum
prediction values for the various relévant pure power law spectra, as well
as, their assymtotic forms. Special forecasting techniques must be used
for optimal prediction when combinations of these processes are present.
To illustrate how these concepts relate to real devices, Figure 10 shows
a oy(r) diagram for some interesting state~of-the-art oscillators, and
Figure 11 shows the rms time prediction errors for the same set of

oscillators.

In conclusion it is clear that classical statistics does not allow
characterization of common kinds of random signal variations found in
precision oscillators. The two-sample or Allan variance provides an
efficient and convergent measure of the power law spectral density models
useful in characterizing most of these oscillators. Once characterized we
can calculate optimum time and frequency estimates as well as predicted
values. Characterizing the random variations also provides near optimum
estimation of systematic effects, which often cause the predominant time
and frequency deviations. For example, if we wanted to optimally

determine the temperature dependence with the temperature set at two




different values, we would set at one temperature and measure the
frequency against a reference for a time Tgm» COrresponding to the 1 for
the minimum Oy(T) value. We would then change the temperature to the
other value and repeat the measurement with the same criteria and note the
resultant Ay between the two optimally determined frequency values. If
these two steps are repeated several times, an arbitrarily good précision

is achieved and is approximately given by o }/¥P, where P is the number

y(Tm
of Ay values obtained from switching back and forth. Knowing the
characteristics of both the random and the systematic deviations of
precision oscillators clearly is useful to the designer, the planner, the

user, as well as the vendor.
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Figure 1. Frequency, y(t), and time, x(t), deviations due to frequency
offset and to frequency drift in a clock.
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Figure 2. Nominal values for the temperature coefficient for the
frequency standards: QU = quartz crystal, RB = rubidium gas cell,
H = active hydrogen maser, H(pas) = passive hydrogen maser, and
CS = cesium beam. :
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Figure 3. Nominal values for the magnetic field sensitivity for the
frequency standards: QU = quartz crystal, RB = rubidium gas cell,

H = active hydrogen maser, H(Pas) = passive hydrogen maser, and

€S = cesium beam.
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Figure 4. Nominal capability of a frequency standard to reproduce the
same frequency after a period of time for the standards: QU = quartz
crystal, RB = rubidium gas cell, H = active hydrogen maser,

H(pas) = passive hydrogen maser, and CS = cesium beam.
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Figure 5. Nominal capability for a frequency standard to produce a
frequency determined by the fundamental constants of nature for the
standards: QU = quartz crystal, RB = rubidium gas cell, H = active
hydrogen ,maser, H(pas) = passive hydrogen maser, and CS = cesfum beam.
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Figure 6. Nominal values (ignoring the sign) for the frequency drift for
the frequency standards: QU = quartz crystal, RB = rubidium gas cell,

H = active hydrogen maser, H(pas) = passive hydrogen maser, and

CS = cesium beam. .
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Figure 8. A simulated time deviation plot, x(t), with indicated ;sample
time t over which each adjacent fractional frequency, Yis 18 measured.

The equations are for the standard deviation and for the estimate of o, (1)
for a finite data set of M frequency measurements. It is often the caBe
that the standard deviation diverges as the data length increases when
measuring the long term frequency stability of precision oscillators,
wehereas Oy(T) converges.
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Table I.

Typical Applicable Oscillators and Range of Applicability
a, Noise Types Cs H-active H-passive Qu Rb
2 White Noise PM < 100 s < 1ms
1 Flicker Noise PM <1s
0 White Noise FM 210 s 100 s ¢t 108 s 21 s 21 s
-1 Flicker Noise FM > days 2104 s > days 21 s 10t s

-2 Radom Walk FM

2 weeks 2 wWeeks 2 weeks 2 hours 2 days




Table II

Typical
Noise
Types

Classical

Standard

Deviation
of x

White Noise PM

Flicker Noise PM

White Noise FM

Flicker Noise FM

Random Walk M

T 0, (1)/3
(congtant)

inM

~ 1 e oy(T) T

T4 ° Oy(To) !%l
undefined

undefined

Classical

Standard

Deviation
of y

2(N+1)
oy(Th’ 3N

2(N+1)8nt

oy (==

3N

Oy(To)

o,(1) N in N_
y 2(N-1)&n2

Oy(T) VN/2




Table III.

Typical Optimum Time

Noise Prediction Error:
Types X(Tp) Asymptotic
rms form
White Noise PM T . Oy(T)//B constant
nt
Flicker Noise PM ~ T - Oy(T) §I§§; Jznrp
wWhite Noise FM T Oy(T) Tp1/2
Flicker Noise FM T oy(t)//£n2 T
Random Walk FM T Oy(T) 1p3/2



