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THE GENERATION AND RECOGNITION OF FLICKER NOISE 

James A. Barnes 

Abstract 

Flicker noise is  defined as noise whose power spectral  

density var ies  inversely proportional to the Fourier  

frequency. 

electronic devicej but comprehensive explanations as to its 

source and level are lacking. 

approximate flicker noise by analog methods which a r e  

amenable to the use of analog computers. 

cer ta in  diffusion processes  and certain Poisson processes  can 

generate flicker noise. 

using a digital computer is presented. 

Flicker noise appears to be present in every 

It is shown that one can 

It is also shown that 

A method of generating flicker noise 

With a little practice one can learn  to recognize noise 

processes  with various power law spectra--some examples 

a r e  shown. 

spectral  density from time domain measurements which have 

been developed recently by several  authors is presented. 

A review of techniques for inferring the power 

Key Words: Noise, Flicker Noise, Diffusion, Poisson Process ,  
Spectral Density, noise, Effective Stationarity. T 
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Introduction 

Flicker noise is the name given to a random noise whose power 

over a very large spectral  region. 6-f spectral density var ies  as 

Equivalently in the time domain, a time ser ies  whose standard deviation 

i s  independent of the sampling time is a flicker noise. 

to present compelling arguments why this behavior cannot pers is t  to z e r o  

Fourier  frequency, experiments to determine a low frequency break in  

behavior have failed for most  (if not all) devices. Measurements have 

indicated a continuation of this behavior at one cycle per  year in some 

devices [Atkinson, e t  a l . ,  19631. 

While it is possible 

Part of the difficulty in analysis of this type of noise may be ascr ibed 

to its very mild divergence characteristic. 

an oscil lator 's  frequency is modulated by a flicker noise, and one can 

measure the frequency with an  uncertainty of, say, *A in five milliseconds, 

then one can show that the oscillator will be within about *5A of that f r e -  

quency a t  an age of the Universe la ter!  This is a logarithmic divergence 

in the t ime domain, and it is so mild as to give experimenters a false 

sense of security and to cause them to consider the process to be stationary. 

It is interesting to note that the false assumption of stationarity can, in  

specific situations, yield cor rec t  answers (see Appendix). 

That is, i f  one assumes that 

The present paper places emphasis on noise processes  which have a 

power spectral density varying as Iw I 
consider this noise in its relation to noises whose power spectral  densities 

a r e  proportional to 1 0 1  for constant values of cy. 

Implicit in most of the discussions in this paper is the assumption 

'. However, it is of value to 

-CY 

that one may meaningfully consider power spectral  densities of the f o r m  

S+(w) = h IO I-". 
This is not a tr ivial  assumption because for cy 2 1 one can show that +(t) 

is not covariant stationary [Barnes and Allan, 19661. Thus the assumption 



that S (a) = h Iw I - C y  r a i se s  doubt that S (a) can even be defined for +(t). 

There a r e  given in this paper two plausibility arguments to support the 

as sumption that 

+ 4) 

is a meaningful relation. 

First and foremost, experimentally one encounters noise processes  

which appear, in fact, to be described by such power spectra and very 

often (Y 2 1. 

methods with theory. 

Here one may well wish to compare the actual experimental 

Secondly, it is entirely possible that these power spectra break into 

a well behaved, convergent spectral  law a s  w -. 0. 

extremely low frequencies for some devices since, in general, these 

cutoff frequencies have not been observed. 

cutoff frequency, w l ,  and construct the theory accordingly. 

to date, not been an observable in most  cases,  one considers only those 

quantities which are insensitive to 01 for very small w l .  

called a cutoff independent formulation. 

problems of power spectra with the specific form 

Such cutoffs a r e  at 

One may thus assume a lower 

Since wp has, 

This could be 

This method of formulating the 

is considered in some detail in the Appendix. 

Searle, 19661 that many quantities of interest  a r e  not critically dependent 

on the form of S (0) for w smaller  than the reciprocal observation time-- 

indeed, this is precisely why w1 is not normally an observable. 

One can show [Cutler and 

+ 
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1. The Generation of Flicker Noise 

z 2  
Thus, if K >> I'; 

1. 1 Analog methods 

, 

An operational amplifier is a device whose t ransfer  function, g(w), 

is approximated by a large,  real ,  negative number, -K, over a very large 

spectral  region (0 s w 5 ah)  which is assumed to include the frequency 

domain of interest. If one connects such an operational amplifier with the 

two impedances, Z1 and Z 2 ,  a s  shown, 

the overall transfer function, G(w) ,  is given by 

z2 

z1 
G(w)  % - -. 

Consider the case where the first impedance is a resis tor ,  Z1 = R, 

and the second a "fractional capacitor" [Carlson and Halijak, 19641, 

a ,  where Z is defined as the impedance of a 5 - th "fraction" 

Actual networks which can realize impedances of this form 
2 2 z 2 = -  (J:c)s 

of a capacitor. 

are considered below. The t ransfer  function of this device then becomes 

3 



G(w) - - 1 (L) R jwc 

ff f f -  

where RCZ = T '. 

For  convenience and simplicity it is desirable to follow this device 

by an inverting amplifier to give an overall t ransfer  function of 

If the input signal, e has a power spectral  density, Si(w), and, 
i' 

similarly, the output signal, e 

then 

has a power spectral  density, So(w), 
0' 

So(o)  = IG ' (w)  12Si(u). (1 - 2 )  

F o r  a white input noise of power spectral  density h and T = 1 second, 

-a a 2  for Iw  I K > > 1. 

noise source, an operational amplifier, and a "fractional capacitor. " 

Thus, one may generate I w  I noise from a white 

It i s  of interest  to determine the operation of this device in the t ime 

The impulse response function of a filter is the Four i e r .  

Fo r  a filter whose transfer function 

domain, also. 

t ransform of the t ransfer  function. 

4 



a 

one can show that the impulse response function is [Campbell and 

Foster ,  1948 (Pair 516)] 
Y - 1  

1 2 

Thus, if e.(t) is the input signal in  the t ime domain, the output, e (t), is  

the convolution of e.(t) with the impulse response function. 
1 0 

That is, 
'-1 

a o r  eo(t) is the 
a 

- fold integral [Courant, 19571 of ei(t). Note that for 

= 1, one has a "whole" capacitor and the output is 

0 
(1 - 5) 

This  is the proper result  for an integrator as used in  analog computers. 

Typically, integrators used in analog computers real ize  a K 2 10'. 

one, theoretically, has  an  integrator working down to - one cycle per  12 

days. There a re ,  of course, other effects which limit its operation long 

before this low frequency is actually realized. 

Thus 

a -- 
2 

1. 2 Realization of the impedance ( jw)  

0. Heaviside [1950] noted that the impedance of a semi-infinite lossy 

One may show that this is reason- E* transmission line has the form 

able by considering the lumped-constant t ransmission line shown. 

5 



z- C d X  

The solution of this network is 

I I 
=I Z 

2" =A t Zp6X. jw c 

In the limit as 6X .-. 0' (a continuous line), (1-6) reduces to 

or 

z =p jw c 

where p and c are the resistance and capacitance per  unit length of the 

line. 

Additional methods of constructing impedances of the form ( j ~ ) - ~  

may be found in the l i terature  [Carlson and Halijak, 1961; Lerner ,  1963; 

and Roy and Shenoi, 19661. An intuitive and relatively simple method 

. 

6 



of constructing such impedances was devised by the author. 

the network 

Conside? 

0 I e 

The t ransfer  function of this network is 

R C a n d 7  = R 2 C .  For  small  frequencies @(T t T 2) < < l), 
1 2 7 .  

1 for large frequencies (UT2 > > I), g(w) M 

If one has a sequence of such f i l ters  such that for the i-th filter 

and 

T (i) = ( P ) i ~  (O) for i = 1,2, - - N, and p < 1, 
2 2 

and these f i l ters  a r e  cascaded with appropriate isolation amplifiers 

between successive fi l ters,  the over-all t ransfer  function becomes 

r 1 

At frequencies near where WT (o)(P)Nry 1, the t ransfer  function has 

approximately the value 

G (W)'. [-IN 
7 



At frequencies near WT (O)w 1 the t ransfer  function has approximately 

the value unity. 
1 

Thus, over an interval of frequency from 

the (voltage) t ransfer  function is reduced by 
1 

to w = 1 w =- 
2 N (0) 

p T 1  
1 (0) 

T 1  

the factor 

If this filter is to approximate a fi l ter  whose transfer function 

(in magnitude) var ies  according to the relation 

CY -- 
IG‘W I.. Iw l 2  9 

then 

For  flicker noise, a =  1 and (1-9) becomes 

. 

8 



( O )  
( O )  = 37 ‘”), one has (3 = - 1 and (1 -8) becomes 

+ T 2  1 9 
Setting N = 4, and T 

G ( w )  = (S+1 - ) ( S t 9 ) ( S + 8 1 ) (  - S t 7 2 9 )  
3St1 3St9 3 S t 8 1  3S+729 ’ (1-10) 

(0 1 where S = j w T  . 

amplifiers between sections) which should approximate (+I’ over a 

relative frequency range of 

one were  to consider (1-10) as a function which approximates (,Po)’, - one 

could consider an impedance, Z(o), which has  exactly this same 

functional form. That is, 

Equation (1-10) is the t ransfer  function of an active fi l ter  (with isolation 

94 o r  nearly 4 decades of frequency. If 

One can decompose (1-11) into a realizable impedance: 

2.250 0 .  962 0. 323 0. 0863 

(1-1 1) 

By scaling the r e s i s to r  and capacitor values, one obtains a circui t  

whose impedance approximates e f o r  A =  1816 - (*I2, within *O. 5 dB 

from about 1 Hz to 4 kHz. 

amplifier as in Section 1. 1 (impedpnce 2 ),one obtains an amplifier whose 

(magnitude) gain differs f rom 

sec. 
By using such an impedance with an operational 

2 
as shown in Figure 1. 

9 





The circuit diagram of the impedance used fo r  Figure 1 is shown below. 

4.475 1. 913 0. 6424 0. 1716 

Also of interest, i f  one intercharges Z and Z using the previous 

. + f  1 2 
fi l ter ,  one obtains a filter with a t ransfer  function proportional (jw) 

Thus, i f  one applies a flicker noise signal to the input, the output is 

white noise. 

1. 3 Flicker noise in Diffusion Processes  

Heaviside's semi-infinite lossy transmission line may be considered 

the electrical  analog of a diffusion process.  Consider a semi-infinite rod 

which obeys the diffusion equation 

- a  (1-12) 

where $(x, t) might be temperature or  an impurity concentrat,an,and 

p(x,t) is the source function, e. g. ,  a heat source. 

[Morse and Feshbach, 19531 for this problem is 

The Green's function 

where U ( T )  is the unit step function defined by the relation 

11 



Thus, i f  the source for this sys tem is e . ( t )  located a t  X = 0, the end of the 

rod, the solution of (1-12) may be written 
1 

(1-13) 

At the end of the rod, X = 0, (1-13) is formally identical to (1-4) for P = 1 

(except for  the factor -), and thus, i f  e. (t) i s  a white noise process,  

$(O, t)  is a flicker noise process.  

2n 
a 1 

An obvious implication is that impurity diffusion ilp a semiconductor 

should cause a flicker noise process  a t  the surface--a cri t ical  region for 

semiconductor devices. 

referred to as "semiconductor noise. '' 
temperature dependence of actual flicker processes, however, does not 

seem to support the present model of impurity diffusion as the cause of 

flicker noise. 

J. M. Richardson [1950] and shown to give flicker noise and yet not be 

significantly temperature  sensitive. However, some assumptions in the 

Richardson model do not seem entirely physical. 

It is interesting to note that flicker noise i s  often 

The apparent lack of a strong 

A different diffusion model has been considered by 

1 . 4  Quantum Mechanical Model 

The treatment here,  due pr imari ly  to Dr. D. Halford [1967] ,  
i s  based on discrete events in a Poisson process  and hence is easily 

amenable to quantum statist ics.  

Consider a real, "localizable" function h(X). For  convenience, le t  

12 



It is, thus, t rue that h(X) has  a Fourier  t ransform,  g(y), defined by the 

relations 

and 

1 
h(X) = - 

21T (1-15) 

(1-16) 

One requires  h(X) to be a "reasonable" function in the sense of being nearly 

realizable in some physical device. Therefore, one further assumes h(X) 

i s  finite for all values of X. 
It is t rue  that, for y = 0, (1-16) may be writ ten in the form 

by virtue of (1-14). Thus, in the region of small  y, i f  one were  to 

approximate the energy spectrum, 

Y 
by a power law, A Iy I O, one would have 

for "small"y, and, hence, 

(1-17) 

(1-18) 

Y 2 0. 
0 

(1-19) 

13 



In the region of "large" y, the total energy must  also be finite; i. e . ,  

(1 -20) 

1 

where y is a "large" number. 

approaches the function B lylYm as y -, a, 

This  implies that i f  U(y) asymptotically 
1 

Y < - I .  
OD 

It can be shown that the conditions on h(X) are sufficient to guarantee that 

Y s - 2 .  (1 -21) 
m 

While it is possible to le t  h(X) be a very general  function, it is 

sufficient for the present treatment to further r e s t r i c t  the acceptable 

c lass  of functions, h(X). In particular,  define Y (y) such that 

Only those fcnctions, h(X), will be considered for  which Y (y) is  a 

monotonic function of y from Y 

some problems in defining effective t imes of the functions generated by 

to Y w  as y goes from 0 to w . This avoids 
0 

h(X). 

One may now consider a Poisson process composed of a superposition 

of functions obtained from h(X) by scaling amplitude and time and also by 

(1 - 2 2 )  

14 



Since this is  assumed to be a Poisson process,  the distribution of 

occurrence times, t 

over the time interval of interest .  

is random, uncorrelated and uniformly distributed 
i’ 

Let  the T.  Is and a.’s be distributed according to some probability 
1 1 

distribution density function, p ( 7 ,  a). 

observing a “life-time” between T and T t dT and an amplitude between 

a and a t da is 

That is, the probability of 

p(7 , a)& da. 

The Fourier  t ransform of m.(t) may easily be shown to be 
1 

- iwt  
mi(t)e dt (1-23) 

- iwt  
= a.7 .e g ( w i ) ,  

i 
1 1  

where g(y) is defined in (1-15) and (1-16). 

associated with m. (t) is then 

The energy spectrum 

1 

If R is the average rate of occurrence of events, m.(t), then the 
1 

average ra te  of energy expenditure (i. e. , power) at frequency o due to 

events of life-times between T and T t dT and of amplitudes between a 

and a t da is given by 

Thus the total power spectrum due to a l l  events is 

(1-24) 



Consider the function A2 (T)P(T) defined by the relation 

and P(T) is the probability density for  T without regard to amplitude and 

Aa(-r) is the mean square amplitude f u r  the actual events of lifetime T. 

Equation (1-24) can now be writ ten in the form 

(1 -2 5) 

If it should happen that 

(1 -26) 6 T”A~(T)P(T) = BT 

over some range of T ( s a y  T < T < T,) and be ze ro  (or practically so) 

outside this range, then (1-25) becomes 
0 

(1-27) 

If it is t rue  that y = WT and y = UT reasonably include the major 
0 03 03 

portion of the a r e a  under the function Ig(y) I 2 6  y for  positive y, then (1-27) 

may be approximated by 

and for  6 = 0 one obtains 

(1 -28) 

16 



by virtue of (1-14),(1-15), and (1-16) and the symmetry of lg(y) I". 
the restrictions noted above, (1-28) is valid and hence the process  generates 

a flicker noise. 

forms for 6 = 0: 

Within 

These restrictions on o may be expressed in  the following 

(1-29) 

o r  

(1 - 30) 

Obviously these conditions cannot be satisfied at w = 0. 

More extensive and complete solutions of the integral equation 

have not been considered in  the l i terature  to this author's knowledge. 

1. 5 Comments on Current  Pape r s  

For  6 = 0, (1-26) may be written in  the form 

A"(T)P(T) =-. B 
2 

T 

(1-31) 

That is, a necessary condition for the generation of flicker noise by the 

process just described is that (1-31) is valid over a sufficient region. 

Unfortunately, one can find in the l i terature  [van de r  Ziel, 1950; 

Mueller, 1965; and Jordan and Jordan, 19651 this condition reduced 

17 



nearest  integer. Starting at location t. the integer 1 is added to every 

location up to and including a location congruent to (t. t 7.)  mod T. 

using modular ari thmetic in  the storage process one insures  that the 

entire data a r e  equivalent to a segment of an infinite periodic process. 

An alternative is to limit t .  + T. 

the data. 

1’ 

B y  1 1  

S T and use only the latter portion of 
1 1  

Repeating the above process  a total of 4096 times with T = 1024, 

yielded the results shown in figure 2. 

(finite) integrals of the flicker noise samples. 

in Section 2, six independent samples of flicker noise generated by this 

scheme were  analyzed. 

density of the form 

Also included in figure 2 are the 

Using methods described 

The data were  consistent with a power spectral  

where CY was determined to be 0. 9 8 * .  02. 

these tes ts  were  computer generated by a pseudorandom process [Andrew, 

1966; and Chambers, 19671. 

The random numbers used for 

2 0  



F i g u r e  2 
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2. Noise Recognition 

2.1 General Remarks 

The most comprehensive treatment of recognition of noises with 

the power law types of power spectral  densities is to be found in the 

Proceedings of the IEEE, Vol. 54, No. 2, February 1966. Of particular 

note a r e  the papers by Cutler and Searle [1966], Vessot, e t  al. [1966], 

Allan [1966], and Barnes [1966]. These papers deal with the inference 

of power spectral  densities from certain t ime domain analyses. While 

one can approach the classification problem directly in the frequency 

domain either by analog techniques o r  other analysis [Blackman and 

Tukey, 19581, one is normally interested in predicting performance both 

in the frequency domain and the t ime domain. 

domain implications of the frequency (time) domain behavior a r e  of great  

value. 

The t ime (frequency) 

2. 2 Visual Inspection 

One of the most  surprising aspects of noise characterized by a 

power law type of power spectral  density is the fact that, with a l i t t le 

practice, a visual inspection of the data is often adequate to classify the 

spectral type. 

source and hence often one has reason to suspect one type of noise over 

another before the data a r e  acquired. 

Of course,  one often has other information about the noise 

It is apparent that, i f  one has  a noise whose spectral  density is of 

the form 

S(w) = hlwl-a, 

then for cr 5 1 the process  is high frequency divergent. 

does not, in reality, observe such a process since the measuring 

apparatus has a finite high frequency limit. 

One certainly 

What one does observe, 

22 



however, is that for processes  where a <  2, the visual appearance can be 

drastically changed by the high frequency cutoff. 

While it i s  true that for CY 2 1 the process  is low frequency divergent, 

Cutler [ 19661 points out that a finite data sample analysis is equivalent to 

high-pas s filtration. Thus, the low frequency divergent character is 

obscured to some extent. Indeed, the operation of "zeroing" amplifiers, 

oscilliscopes, and various measuring devices, is, to some extent, high- 

pass filtration. 

Thus for valid noise comparisons, one should compare those noise 

processes  with similar products of data length with high frequency cutoff. 

In figure 3 a number of noise samples which were  computer generated a r e  

shown. 

figure 3. 

The cutoff (cycle) frequency data length product is about 500 for 

2. 3 Standard Deviation Measurements 

A familiar statist ic of a noise process is the standard deviation of 

different values of the noise, X ( t ) .  

noise process one averages the noise value over some time interval, T, 

to obtain a finite set  of, say, N measurements.  As pointed out above, 

for some noises the system bandwidth, w is a significant parameter.  

If there  exists "dead time", T ~ ,  between successive averages of X, then 

this dead time may also be of significance. 

quantity ~ ' ( N , T , T  ,w  ) defined by typical equations for the sample standard 

Normally when considering a continuous 

h' 

Thus one may compute a 

d h  

where x is the average of X ( t )  over the n-th time interval of duration T .  
n 

Normally one i s  interested in a sample standard deviation a s  an 

estimate of the "true" standard deviation which would be obtained in the 

l imit  a s  N approaches infinity. Fo r  many of the types of noises being 

23 
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considered here,  however, this l imit  does not exist (i. e. s diverges as 

N -. a). For  the work here ,  the "true" standard deviation a 

is defined a s  the limit 

is the sample standard deviation of the i-th inde- 

d pendent set of measurements  characterized by the parameters  N, T, T , 
and w This approach extends the utility of the concept of the standard 

deviation to noises whose power spectral  densities may be described as 

1 

h' 

where Q < 3. 

used. 

again a sample standard deviation. 

Fo r  noise processes  where (Y 2 3 other techniques must  be 

Since one can never actually pass to the limit M - a, one measu res  

It has been shown by Vessot,  e t  al. [ 19661 and Allan [ 19661 that if 

Sx(w) = h I w  1'" 

then 

c1 = ks 

and p and a a r e  related as 
d' where T U  

shown in figure 4. 

> > 1, k is a function of N, T 
h 

It is thus possible to plot In 0 vs. In T and infer (Y f rom 

the slope of this plot and figure 4. 
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For  a, -1, Allan [ 19661 shows that 

T w > > 1,and A depends only on w h h' the noise level, d T + T  

where r E -, 
7 

and noise spectral  type. 

2 . 4  The Chi Tes t  

Following A l a n  [1966], one may define the quantity, X, by the relation 

This should not be confused with the statist ician's  chi-squared test .  . 
Provided TO h 
of noise being considered. 

values of N and a. 

2. 5 Finite Differences 

>> 1, X(N,a)  is a function only of N and the spectral  type 

Table 1 lists values of X(N, a) for  typical 

The first finite difference of the quantity X ( t )  may be defined as 

AXi = X ( t i +  T )  - X(ti) .  

Similarly, the second, third, and fourth differences a r e  

and 

A4xi = x(t .  4- 47) - 4X(t. t 37) -I 6X(t. -I 27)  - 4 ( t i t  T) t x(ti). 
1 1 1 
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N 

4 8 16 32 

-2. 0 .a33 
-1. 9 .a45 
-1. 8 .858 
-1.7 .a71 
-1. 6 . 886 

. 750 

.765 

.782 

.a01 

.a22 

. 708 

. 724 

.743 

. 763 

. 786 

. 687 

. 704 

.722 

.743 

. 767 
-1. 5 . 902 .a44 .a12 .793 
-1.4 . 919 .870 . 841 . 824 
-1. 3 
-1. 2 
-1.1 

.937 

. 956 

.977 

.a97 

. 928 

. 962 
. 873 
. 910 
. 952 

.859 

.a99 

. 946 
-1.0 1.000 1.000 1.000 1.000 - . 9  1.023 1.041 1.054 1.062 
- .8 1.049 
- .7 1.077 - .6 1.106 

1.088 
1.139 
1.197 

1.116 
1.188 
1. 270 

1. 136 
1.223 
1. 327 

- .5 1. 138 1.261 1.365 1.450 - .4 1.171 1.332 1.475 1.598 
- .3 1. 208 - .2 1.247 - .1 1.288 

1.412 
1.501 
1. 602 

1. 604 
1.753 
1. 928 

1.777 
1.993 
2.257 

. o  1.333 1.714 2.133 2. 580 

. 1  1. 381 1.840 2.374 2.978 

.2 1.432 1. 981 

.3 1.487 2.141 

.4 1. 546 2. 320 

2. 658 
2.993 
3.390 

3.470 
4.082 
4. 846 

.5 1. 609 2. 522 3. 862 5.802 

.6 1. 677 2.750 4.424 7.005 

.7 1.749 3.007 5.093 8. 523 

.8 1. 827 3.298 5.893 10.446 

.9 1. 910 3.627 6.851 12. 888 
1. 0 1. 999 4.000 8.000 16.000 
1. 1 2.095 4.421 9.379 19. 974 
1.2 
1. 3 
1. 4 

2.198 
2. 308 
2.426 

4. 900 
5.442 
6.059 

11.040 
13. 041 
15.457 

25.062 
31. 593 
39. 992 

1. 5 2. 552 6.759 18.376 50.815 
1. 6 2. 687 7.554 21. 908 64. 788 
1.7 
1. 8 
1. 9 
2. 0 

2. 832 
2.988 
3. 154 
3.333 

8.460 26. 187 
9.490 31..377 
10. 663 37. 677 
11.999 45.333 

82. 855 
106. 253 
136. 597 
176.000 

TABLE O F  X VALUES 

TABLE 1 

28 



N 

64 128 256 512 1024 
. 677 . 671 . 6 6 9  . 667 . 667 
. 693 . 688 . 685 . 684 . 683 

. 7 3 3  . 727 . 7 2 5  . 723 . 723 

. 756 . 7 5 1  . 7 4 8  . 7 4 7  . 746 

. 815 . 810 . 807 . 806 . 805 

. 7 1 2  . 706 . 704 . 7 0 2  . 7 0 2  

. 7 8 4  . 7 7 9  . 7 7 6  . 7 7 4  . 7 7 4  

. 851 

. 893 

. 942 

. 847 

. 889 

. 940 

. 844 

. 887 

. 938 

. 843 

. 886 

. 938 

. 842 

. 886 

. 9 3 7  
1.000 1 .000  1.000 1.000 1.000 
1 .068  1.072 1 . 0 7 4  1. 075 1 .076  
1. 150 1. 159 
1. 249 1.266 
1 . 3 6 9  1.400 

1 .165  1. 168 
1. 278 1.286 
1.422 1.437 

1 .171  
1. 291 
1.447 

1. 517 1. 568 1. 606 1. 634 1. 655 
1.700 1. 782 1. 847 1. 898 1.937 
1. 928 
2. 215 
2. 580 

2. 058 
2. 417 
2. 892 

2. 167 
2. 598 
3.190 

2. 257 
2.758 
3. 472 

2. 332 
2.899 
3. 736 

3. 047 3. 527 4.015 4. 508 5 .004  
3. 649 4. 384 5.183 6.045 6. 973 
4. 431 5 .554  6.857 8. 362 10.097 
5.454 7.166 9.290 11. 916 15.156 

23.496 6. 800 9.407 12.866 17.444 
8.583 12.547 18.177 26.157 37.456 

10.957 16. 982 26. 141 40.046 61. 139 
14.135 
18.407 
24. 177 

23. 285 
32. 301 
45. 265 

38.181 
56. 521 
84.639 

62. 405 
98. 717 

158.134 

101.779 
172.20 9 
295. 300 

32.000 64.000 128.000 256.000 511. 999 
418. 126 895. 897 42. 643 91. 192 195.211 

57. 172 130. 818 299.864 688.060 1579. 703 
77.064 188. 766 463.475 11 39. 479 2803.483 

104. 373 273. 778 720. 174 1897. 334 5002. 701 
141. 955 398. 853 1124. 206 3174.015 8969.196 
193. 791 583. 344 1761. 937 5331.243 16146.011 
265.432 856. 107 2771. 095 8986. 198 29168. 198 
364.630 1260. 222 4371. 641 15193. 658 52856. 122 
502.214 1860. 075 6915. 323 25758. 904 96042. 085 
693. 333 2752. 000 10965. 336 43776.034 174933. 41 

~ ~~ ~ ~ ~~~- 

TABLE OF X VALUES 
Table  1 (continued) 

-a! 
and S ( w ) = h l w l  ; p = a ! -  1, - 2 < p < 2  2 9  



For  Fourier  frequencies, w, such that 

the power spectral  density of n-th finite difference,S (a), of the 
(AnX) 
\ I  

function X is related to the power spectral  density of X by the approximate 

relation 

(w) M Sx(w) * ( w I F .  
s(*nx) 

Thus, i f  %(w) is low frequency divergent in a power-law sense,  

there always exists some finite n for which the n-th finite difference has  

a convergent power spectral  density. 

[1966] for the recognition and classification of flicker noise. 

is sufficiently large,  the limit 

This fact is exploited by Barnes 

Provided n 

always exists. 

cutoff, w 

As before, i f  the measuring system has a high frequency 

then one normally works in the range where 
h' 

W T > > l .  h 

The mean square of the n-th finite difference is, in general, a function 

of the delay time, T, and the high frequency cutoff, w h' 
It is t rue  that i f  N (the number of independent differences used) is not 

large or the order  of differencing, n, is not adequately large,  the expected 

value of 
N 

1. C ( A n X i ) 2  
N 

i= 1 

for fixed N may differ f rom (Anxi)? as defined in (2-3). One may, in 

fact, use  Allan's [1966] theory to t rea t  these cases  (see also Section 2. 3).  

30 



2 ,  6 Ratio of Variances of Finite Differences 

In analogy to the X-function of Allan [ 19661 (see Section 2. 4), one 

may compute the ratio of the variance (or mean square i f  appropriate) 

of the ( n t  1)-th finite difference to that of the n-th finite difference. 

ratio is a function only of the order  of differencing used and the noise 

spectral  type. 

obtained for the ratio of variances of finite differences. 

figure 4, the point at (Y = 1 is actually degenerate for all  CY such that (Y 5 1. 

One might consider that for this situation p is the more  fundamental 

quantity and p 2 - 2 as indicated in figure 4 regardless of CY. 

This 

By extending the work of Barnes [1966], figure 5 can be 

As shown in 

2. 7 Bandwidth Dependence 

Vessot, et  al. [l966] consider the case where one may, roughly, 

equate 

1 
and consider a2 kY-, 0 , ~ ~ ) .  Obviously this will exist only for noises 

where (Y < 1. 

method. 

the variation of (J with w 

w 
This $as been referred to a s  the "marching bandwidth" 

As one may expect there  does exist noise spectral types where 

is one of the better means of diagnosis. h 

2. 8 Summary of Relations 

The use of precision oscil lators in frequency standards, clocks, 

spectrum analyzers, and Doppler radar  ranging has resulted in the 

development of several  statistical quantities of significance. 

of the variable use of oscil lators it i s  of value to relate the various 

quantities and consider their  sensitivity as a diagnostic tool. 

By virtue 

Consider +(t) to be the fluctuations in phase of some oscillator 
d 

relative to an ideal definition. 

is assumed to have a power spectral  density, S *  (w), which may be 

The instantaneous frequency, c$ (t) = =+(t), 

+ 
31 
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expanded in a Laurent s e r i e s  where only four t e r m s  a r e  of any significance 

in its use. That is, 

A I u l - ’ t  B t C l w l  t Dw2, I w I  < u h  

0, otherwise. 
s -  (w) = + (2-4) 

This specifically assumes  that the lowest order  noise process  affecting 

the frequency i s  a flicker noise. 

subjected to various external perturbations one would expect a t e r m  

proportional to Iw  1’” to be of significance. 

assumes l’ideall’ ambient conditions. 

In actual practice if the oscillator is 

The present model, thus, 

It is of value to consider four different statist ics of the process: 

First, the standard deviation of the average frequency, a’ (N, T, T , w ), 
a s  defined in Section 2. 3 is important. 

is zero,  the equations simplify significantly and it is of value to consider 

this special case. 

difference of the phase, D2 ( T , u ~ )  = ((A +) ). 

d h  

d’ Second, when the dead time, T 

The third quantity of interest  is the mean square second 
2 2  

When used in Doppler radar  ranging, one compares the phase elapsed 

during some interval, T, with that elapsed during a delayed interval of 

the same duration. Thus, the fourth quantity may be defined as 

and will be re fer red  to a s  the Doppler range e r r o r .  

definition of the four quantities and relates  them to the autocovariance 

functions and the power spectral densities for general (effective 

stationary) noi s e p r  oc e s s e s . 

Table 2 l i s t s  the 

Table 3 shows general relations between the four statistical quantities 

for any noise process.  Fo r  the specific model, (2-4), the t e r m s  arising 

33 



f rom each t e r m  of the Laurent expansion a r e  given for each of the four 

statist ical  quantities. 

Inspection of Table 4 reveals various general rules  for diagnostics of 

pow e r -law s p e c t r a: 

(1) Changing N in the variance (X-test of Section 2. 4) is useful in 

recognizing white o r  flicker frequency modulation (A and B 

terms) but not for distinguishing between white and flicker 

phase modulation (C and D terms). 

Changing T for any of the quantities is similar to changing N 

((1) above) in the variance. 

Changing w 

phase noise (D-terms) f rom the others (A, B, and C-terms). 

Increasing T 

losing sensitivity for distinguishing among any of the te rms .  

(2) 

(3) is the most  sensitive method of distinguishing white 
h 

(4) f rom zero  in the variance has the general resul t  of 
d 
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Appendix 

A. 1 The Random W a l k  Problem 

Consider a fi l ter  whose t ransfer  function may be expressed as 

where w1 is the low frequency cutoff. 

t ransfer  function with a res i s tor  and a capacitor. 

It i s  easy to real ize  this exact 

As in Section 1. 1, assume the input, e is a white noise whose i’ 
spectral  density i s  

Si@) = h. 

The output, e has a spectral  density which is, then, 
0’ 

or  

F rom work with analog computers, one knows that as w 1  becomes 

smaller ,  the fi l ter  becomes more  nearly a perfect integrator. T h y  one 
h 

is tempted to consider the limit function of the sequence 

as w1 

walk, 

0 to  be the t rue  power spectral  density of a (continuous) random 

This l imit  function is just  h I w  1’”. 
For  non-zero w l ,  one may obtain the autocovariance function of the 

output defined by the relation T 
2 

Ro(r )  = Lim L[ e 0 (t)eo(t t 7)dt. T T+Q) 
(A-4) 

. 
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It is often easier  to obtain R (T) as the inverse Fourier t ransform of 

S (a) (Wiener-Khinchin theorem). 

because e (t) is a stationary t ime function. 

Foster ,  19481 (pair 444) 

0 

For  w # 0 no problem is encountered 

The result  is [Campbell and 
0 I 

0 

Irh R0(7) = - 
I w (A- 5) 

It is apparent now, however, that the sequence @&)I does not have a 

limit function as w While one can consider the limit of the spectral  

density sequence, the limit autocovariance function does not exist, and, 

thus, in the limit, the Wiener-Khinchin theorem does not apply. With 

the autocovariance not defined, one has difficulty working in the t ime 

domain. 

.-) 0. 
I 

There is, however, an  interesting approach to this problem. One 

knows that a random walk has "stationary increments" [Parzen, 19621. 

Assume w # 0 temporarily. One may consider the quantity .e 

Aeo(t) = e ( t t  T )  - e0(t), 
0 

and, thus, 

where the angular brackets denote t ime average, and use has  been 

made of the definition of the antocovariance function, (A-4). Substitution 

of (A-5) into (A-6) yields 

One may, now, consider the limit of (A-7) as w 4 0. This limit is I 

Lim ((Aeo(tp) = 27-r h I T  I. 
I w 4 0  

(A-7) 
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The usual factor of 25r is present because S (w) is defined to be a 

density relative to angular Fourier  frequencies. Equation (A-8) does, in  

fact, give the t rue mean square value of the increment in a random walk 

o r  Brownian Motion [Parzen, 1962; and Cutler and Searle, 19661. 

Some insight may be gained by considering the Taylor s e r i e s  

0 

expansion of (A-5); i. e . ,  

Ro(r )  = rrh 

It is apparent that 

(A- 9) 

the summation on the right of (A-9) vanishes in  the 

limit as o -+ 0. The term -. 17 1 is independent of o as w -+ 0. It is I I I 
apparent that i f  functionals of R (7)  a r e  considered whose form is 

0 
N 

n= 1 

then the l imit  as w -, 0 will always be given by I 

N 
Lim F(%(T)) = - z p n l T n l r r h  

w -+o n= 1 I 

provided only that gpn = 0. With this constraint satisfied, one may 

n= 1 

consider the "effective, stationary (E-S) autocovariance function" of 

One may, therefore,  t r ea t  a random walk a s  a stationary process  

and use the E-S autocovariance functions in the time domain to solve the 

c 

resulting t ime domain problems. One must, however, be certain that 
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the constraint, = 0, is satisfied. A significant and interesting point 

is that 

is the (generalized) Fourier  t ransform of the generalized function I w  I -2 
[Lighthill, 1 9621. It is obvious that E-S autocovariance functions 

do not necessarily satisfy the usual inequality 

41 



A. 2 Extension of Effective Stationarity 

Consider the power spectral  density function 

S(w) = hlwI t j w  1’s (A- 10) 

The autocovariance function, R(T), corresponding to  (A-10) may be 

found using the Wiener-Khinchin theorem and pair 569 of Campbell and 

Foster  [1948]. That is 
17 l*K a- 1 ( W ~  1. 1 )  

(A-1 1) 

where KJX) is the Bessel function of the second kind for imaginary 

argument. Two significant relations a r e  

and 
v t  ak a3 

I (x) =E - . 
(zwak)(k ! ) r ( V  + k t  1) k= 0 

U 

a- 1 
From (A-13) the t e r m  corresponding to k = 0 for V = - and 

2 

x = w  171 is 
I 

cr- 1 

(A- 12) 

Substitution in (A-12) and then (A-11) gives a t e rm in R(T) which is 

(A- 13) 

(A-14) 

c 

42 



0 -  1 If 7 is an integer, then the term in (A-13) for 

C Y - 1  C Y -  1 k = -  a n d v = - -  a lso contributes to the w -independent t e r m  but I 2 
a-1 

with inverted sign. 

of (A-14) a lso vanishes. 
C Y -  1 - (flicker noise and its integrals) must be treated separately. 
2 

However, with 7 being an  integer, the denominator 

Always the special cases  of integer values of 

For  CY = 2 in  (A-14) one obtains, in fact, R (T) = - n h  IT 1 in ES 
agreement with Section A. 1. 

to 

For  CY being an  even integer, (A-14) reduces 

(A- 15) 

which is in  exact agreement with the Fourier  transform of the appropriate 

generalized functions [Lighthill, 19621. 

formula [Whittaker and Watson, 19521 for gamma functions, 

Making uEe of the duplication 

(A-14) may be writ ten in the form 

which is also in  exact agreement with generalized functions. 

(A-16) does not apply for CY being an odd integer, however. 

Equation 

C Y - 1  The special ca ses  of 7 being an integer may be evaluated as the 

limit of the s u m  of the two important t e rms  in the expansion of (A- 11) a s  

- approaches the integer n. CY -1 
2 The f i r s t  t e r m  is just  that given by (A-14). 
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A. 3 Constraints on Effective Stationarity 

Consider a function, +(t), and a second function, $(t), obtained from 

+(t) by the relation 

(A- 18) 

where the set {b , C ] and T a r e  constants. 

culating the mean square of #(t), this can always be expressed in  the 

If one is interested in  cal- 
n n  

form 

(A- 1 9) 
i= 1 

where the se t  {pi ,Yi ]  a r e  obtained from the {b , C ] of (A-18) and it is 

assumed that +(t) is effectively stationary. 
n n  

It has already been shown that, for  

the constraints on {pi ,Yi} a r e  given simply by the relation 

M 

i= 1 
cpi = 0. 

It is a simple matter to show that the condition 

$ b n = O  
n= 1 

for the coefficients [b ,C ] is also sufficient to guarantee cor rec t  results.  n n  
As shown by Barnes [ 19 661, for CY 2 3, the constraints on {b n , Cn} 

become 
N 
c b  = O  

n 
n= 1 
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and 
N 
z b  b ( C e  - C  0. 

n l  n 

Intuitively one would expect these constraints to break down a t  cy 2 5 

since a second 

converge for cy 

become 

and 

for  the {pi,yi] 

difference does satisfy the constraints but fails to 

2 5 (see [Barnes and Allan, 19671). These conditions 
M 

i= 1 

M 

i= 1 

By a n  extension, one would expect that the constraints 

M 

i= 1 

M 

i= 1 

M 

i= 1 

should guarantee effective stationarity to the region a <  7. 

quickly verify that the third finite difference satisfies all of these con- 

ditions. 

One may 

Similarly one could add the condition 

N 

for the {bn,C 1. These resul ts  a r e  compiled in Table 6. n 
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TABLE 6 
COEFFICIENT CONSTRAINTS FOR EFFECTIVE STATIONARITY 

Range for CY 

S+(w) = h Iw 1 -  CY 

C Y <  1 

C Y <  3 

C Y <  5 

a <  7 

- b  C 3 Constraints n n  

N 

None 

(+ is stationary) 

N 
x b  = O  

n n= 1 

N 
x b  = O  n 
n= 1 

N 
z b n b m ( C e - C  n )2 = C 
n<l 

~~ 

N 
z b  = O  

n 
n= 1 

N 

n<P 
N 

{p  iy i] Constraints 

M 

None 

(+ is stationary) 

M 

i= 1 

M 

i= 1 
c p .  1 = 0 

M 

i= 1 

M 

1= 1 
CPi = O  

M 

M 

i= 1 
= o  

C 
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