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I. INTRODUCTION 

The microwave cavity currently used universally for 
Ramsey interrogation in cesium fountain primary frequency 
standards is a cylindrical cavity running in the TE01 mode at 
9.192 GHz [1,2,3].  The design of this type of cavity is 
relatively straightforward, but as fountain frequency standards 
have pushed to the 10-15 level of absolute frequency 
inaccuracy the details of the cavity design have become 
important.  We look at three distinct problems in this paper 
related to the details of the design of the endcaps of the TE01 
cavity.  First, motivated by a paper by Gibble et al., at the 
2002 IEEE Frequency Control Symposium we investigate 
analytically the fields within the cavity near the entrance and 
exit apertures of the cavity [4].  Some hitherto unsuspected 
effects are noted, principally previously unseen 
diffraction-like effects in the field at the aperture.  In the 
second section of the paper we look at the effect of 
mis-centering on the below-cutoff waveguide through which 
atoms enter and leave the Ramsey cavity.  Finally we 
investigate an alternative design for choke structures which 
suppresses the unwanted (TM11) mode which is normally 
degenerate in frequency with the TE01 mode. 

 

II. FIELDS NEAR THE ENDCAPS 

Stimulated both by the PARCS (Primary Reference 
Clock in Space) project [5] and by the report in 2002 by 
Gibble et al. [4] of potentially large frequency shifts caused by 
field reversals in the neighborhood of the input/output 
below-cutoff waveguide structures in fountain Ramsey 
cavities we have developed an analytic solution to the 
microwave fields within a typical TE01 cavity as used in, for 
example NIST-F1 [6].  

The analytic solution of the field within the cavity and 
below waveguide structure is straightforward to calculate [7]. 
Using the notation in Fig 1 as well as 
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the fields within the cavity (region II in Fig. 1) are written in 
terms of Bessel functions as  
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Figure 1. The microwave cavity with the relevant dimensions and features 
labeled. 

The fields in the below-cutoff waveguide (Region I in 
Figure 1) can be written as 
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The fields in region III can be obtained from the fields in 
region I with the substitution of z→-z  and by replacing the 
coefficients An with new coefficients Bn. 

In the case of ideal conductive surfaces the boundary 
conditions on the conductor (where n̂  is the unit normal 
vector to the surface) are as given in [7] 

ˆ ˆ0  and  0.E n B n× = ⋅ =
r r

  
The additional boundary condition which must be 

applied at the surface of the cavity where the below-cutoff 
waveguide enters can be stated as requiring that both Eφ and 
dEφ/dz must be continuous across the boundary between 
region II and regions I and III. 
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Figure 2.  The microwave magnetic field at the mid-plane of the cavity.  The 
field is normalized to unity at the center of the cavity.  The units on the x and 

y axis are meters.  

Applying these boundary conditions as well as symmetry 
conditions determines the expansion coefficients An, Bn, C+, 
C-, Cn, and Dn up to an overall factor (which can be thought of 
as the input microwave power). 

Having now expanded the fields in a normal-mode 
solution we can sum the series involved and plot the fields 
within the cavity and waveguides.  The cavity used in the 
model is 0.06 m in diameter and the length is approximately 
0.022 m.  The actual length is adjusted in the model to give a 
resonant frequency equal to the cesium hyperfine splitting 
(9.19263177 GHz).   
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Figure 3. The microwave magnetic field 1mm above the endcap of the cavity, 

90% of the distance from the center to the endcap.  The  field reversal is 
beginning to be visible at this point. 

In Figure 2 we plot the magnetic field at the mid-plane of 
the cavity.  The field here (far from the input/output 
waveguides) looks essentially like that we would expect from 
the solution of an isolated TE011 mode within the cavity.  
Figure 3 showing the field about 90% of the way to the 
endcap.  This close to the below-cutoff waveguide the 
microwave field is still well behaved albeit beginning to show 
a field reversal. In Figure 4, the field at the endcap, plotted 
only over the input waveguide clearly shows the field 
structure caused by the below-cutoff waveguide.  

 
 

Figure 4. The field at the endcap of the microwave cavity plotted only over 
the below-cutoff waveguide (0<r<0.005m, z=L/2).  The effect of the 

below-cutoff waveguide can be clearly seen as a large field reversal at this 
point.  The diffraction rings can also be seen in the “staircase-like” behavior 

of the field strength. 

An unexpected effect, which we believe is a diffraction 
effect from the sharp edges of the below-cutoff waveguide, 
can be seen in Figures 4 and 5.  The quasi-periodic “wiggles” 
in the field between r=0 and the edge of the below-cutoff 
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waveguide at r = 0.005 m are evident in the field solutions 
both in the cavity and in the below-cutoff waveguide at z = 
L2/ ± ε.  In Figure 5 both of these solutions are overlaid, the 
solution inside the cavity having 300 terms in the expansion 
and the solution inside the below-cutoff waveguide having 50 
terms. 

Figure 5.  The field solutions just inside the below-cutoff waveguide and just 
inside the cavity (z = L/2 ± ε) are overlaid.  The large overshoot of the 

solutions at the edge of the below-cutoff waveguide is a Gibbs phenomenon.  
The “diffraction” pattern caused by the below-cutoff waveguide edge can be 

seen in the four or five wiggles between r = 0 and r = 0.005 m. 

The z component of the microwave magnetic field along 
the z-axis and near the edge of the below-cutoff waveguide is 
shown in Figures 6 and 7.  The on-axis field is well behaved 
and shows no sign of field reversal, while the field near the 
waveguide shows a reversal, as seen in Figure 7.   

Finally, in Figure 8, we show a plot of the microwave 
magnetic field within the cavity showing the penetration of the 
field into the below-cutoff waveguides. 

It should be noted that no effects predicted by the model 
so far lead to a frequency shift.  Reversals in the field lead to a 
small loss of contrast in the Ramsey fringe, not a frequency 
shift.  The model presented here is not yet complete as losses 
in the walls are not taken into account.  Losses lead to 
distributed cavity phase shifts, which can cause frequency 
shifts. 
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Figure 6.  The on-axis (r = 0)  z component of the microwave magnetic field 

plotted as a function of distance from the center of the cavity in the z 
direction.  The small discontinuity in the field at z ~ 0.011 m is a result of the 
previously mentioned Gibbs phenomenon.  The field strength is normalized to 

unity at the center of the cavity, r = 0, z = 0. 
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Figure 7. The z component of the microwave magnetic field plotted as a 
function of distance from the center of the cavity in the z direction at 

r = 0.0045 m (next to the edge of the below-cutoff waveguide).  The small 
discontinuity in the field at z ~ 0.011 m is a result of the previously mentioned 
Gibbs phenomenon.  The field strength is normalized to unity at the center of 

the cavity, r = 0, z = 0. 

High-power microwave tests on atoms in several cesium 
fountain primary standards [1,2,3] lead directly to the 
conclusion that frequency shifts from these effects are, at 
most, in the range of δf/f = 2×10-16, not the δf/f = 10-15 range 
suggested in [4].   

 

III. EXCITATION OF THE TE11 MODE IN THE 
BELOW-CUTOFF WAVEGUIDE DUE TO 

MIS-CENTERING OF THE WAVEGUIDE IN THE 
CAVITY 

The theoretical model presented so far, while powerful 
and general, is quite labor-intensive to use.  We therefore 
adopt a simpler, less general and less precise method to 
evaluate two further endcap effects.  
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Figure 8. The pattern of the magnetic field within the cavity shown in an r-z 

plot.  The units on the axis are meters.  The density of field lines should not be 
taken as an indication of the field strength, as the lines plotted were simply 

chosen for clarity. 
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The first of these two problems concerns the 
below-cutoff waveguides that allow atoms to enter and leave 
the cavity.  These waveguides are nominally centered in the 
cavity, but, due to unavoidable imperfections in the 
construction of the cavity, they are generally slightly 
mis-centered.  If the waveguide is perfectly centered, the TE01 
mode in the cavity excites only the TE01 mode in the 
waveguide.  If on the other hand the waveguide is 
mis-centered the TE01 mode can also excite other modes in the 
below-cutoff waveguide, notably the dominant TE11 mode, 
leading to higher than expected leakage of the cavity field to 
the outside world. 

We estimate the effect of mis-centering by noting that 
the normal modes of a waveguide provide an orthogonal set in 
which to expand an arbitrary field.  If we denote the electric 
field associated with the jth mode of the waveguide by iE

r
 and 

impose the normalization condition ∫ = ijji dAEE δ*rr
 the 

electric field associated with the TE01 and TE11 modes can be 
written as  

' '
'01 01

01 0
1

' '
'11 11

11 1
2 2

ˆ       and    
1.191 2

ˆ cos  
1.504

j
E J

a

jE J
a a

 − ρ ρ ρ
= ϕ  ∗ π  

 ρ ρ ρ
= ϕ ϕ 

∗ π  

r

r
 

where ,n m′ρ is the mth zero of nJ ′  and a1 and a2 are respectively 
the radii of the cavity and below-cutoff waveguide.  If we 
assume that the cavity is mis-centered with respect to the 
below-cutoff waveguide by a distance 1m aρ << the coordinate   
ρ can simply be replaced by cosmρ − ρ ϕ .  We then expand 

0J ′  as  
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The electric field of the TE01 mode in the mis-centered cavity 
is now approximated in the coordinate system of the 
below-cutoff waveguide.  The fractional excitation (FE11) of 
the TE11 mode in this coordinate system is now given by the 
expression 
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where the denominator is required for normalization.  The 

denominator can be evaluated as being ( )
3

2 2
01

1

5
4

a
a

 
′ρ  

 
.  The 

numerator can be written as  

( )
' ' '
01 01 11

1 1 2

'
' 11
1

2

cos
2 1.191 2 1.504

,

                              J cos  d d

m

aperture

j j
a a a

a

 ρ ρ − ρ
ρ − ρ ϕ 

∗ π π 
 
 
  ρ ρ
 ϕ ρ ρ ϕ    

∫  

which evaluates to 
2
1

22
a

a mρ
.  The net result for the fractional 

excitation of the TE11 mode of the below-cutoff waveguide is  
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′ρ
.  In NIST-F1 the relevant dimensions are 

known, and the fractional excitation can be evaluated using 
a1 = 0.03 m, a2 = 0.005 m, 12.5 mmρ ≤ µ (ρ’01 = 3.832).  The 
fractional excitation of the TE11 mode, relative to the TE01 
mode, is therefore about -56 dB (assuming the full 12.5µm 
mis-centering).  The attenuation of the 1 cm diameter 
below-cutoff waveguide is 67 dB/cm at 9.192 GHz for the 
TE01 mode and only 32 dB/cm for the TE11 mode (See the 
appendix for a derivation of this result) .  The below-cutoff  
waveguides in NIST-F1 are 10 cm long giving a theoretical 
attenuation of the cavity field by the TE01 mode of 670 dB, 
while if we assume a mis-centering of the below-cutoff 
waveguide of 12.5µm, the TE11 mode in the below-cutoff 
waveguide attenuates the field within the cavity by only 
376 dB (320 dB + 56 dB).  The TE11 mode is therefore likely 
to be the dominant source of leakage of the field within the 
microwave cavity even with tight construction tolerances. 

 

IV. MODE-FILTER CHOKES FOR THE TM11 MODE 

The TM111 mode is degenerate in frequency with the 
TE011 mode in a perfect cylindrical microwave cavity.  The 
degeneracy occurs as a result of the property of Bessel 

functions that 0
1

( )
( )

dJ x
J x

dx
= − .  The TM111 mode, if excited, 

can cause frequency shifts in the fountain and is normally 
displaced in frequency through the use of mode-filter chokes 
in the endcap(s) of the cavity. 

The operation of the chokes can be roughly understood 
by considering the surface currents on the cavity walls for the 
TE011 and TM111 modes.  The surface currents of the TE011 
mode are azimuthal in nature, running in concentric circles on 
the endcaps and cavity walls.  The TM111 surface currents, on 
the other hand, originate on one endcap, run up the side-wall 
of the cavity and terminate on the other endcap.  A gap 
between the endcap and sidewall of the cavity therefore has a 
minimal effect on the TE mode, while having a much larger 



 

effect on the TM mode.  We now analyze the construction of 
the gap (mode-filter choke) more rigorously. 

A cylindrical microwave cavity can be seen as a length 
Lc of circular waveguide terminated with two ideal 
short-circuit plates (losses are neglected).  Generally speaking 
it is possible to use a transmission-line equivalent circuit for 
each of the modes propagating in a waveguide, so that the 
analysis of a complex structure can be done using impedances, 
voltages and currents instead of EM fields.  In this 
perspective, the same cylindrical cavity can be represented as 
a length of transmission line (representing the resonant mode) 
terminated with two short circuits, as shown in Figure 9, 
where Γ1 and Γ2 are the reflection coefficients. 

 
 

Figure 9. The microwave cavity modeled as a length of transmission-line 
terminated with two short circuits. 

The resonance condition can then be written as  
2

2 1 1c cj k Le−Γ Γ = , 

where the frequency dependence of kc allows the calculation 
of the resonance frequency.  Because the reflection coefficient 
of a short circuit is equal to -1, the resonance frequency for the 
TE01 mode in a circular cavity of length Lc is: 
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is the propagation constant (or wave number) for the TE01  
mode in a circular waveguide.   

The addition to the cavity of a choke in order to decouple 
the TM11 mode from the TE01 mode can be modeled as a 
length of coaxial waveguide (Lchoke) added to one end of the 
cavity.  The standard choke design is simply as shown in 
Figure 10.    In our case the modes of interest in the cavity are 
the TM11 and TE01, which will couple to the equivalent ones in 
the coaxial waveguide and to a number of other modes that 
have similar field patterns across the annular gap.  In order to 
understand the effect of the choke on the cavity modes it is 
necessary to quantitatively evaluate the coupling to the 
different coaxial modes. 

Table 1 lists the cutoff frequencies for the TE and TM 
coaxial modes in the case of a coaxial waveguide with a gap 
of 1 mm (typical of the dimensions used in fountain cavities) 
between the inner and outer conductor. 

   

       
 

 
Figure 10.  A traditional TM mode-filter choke is added to the microwave 

cavity. 

n TEn1 TMn1 
0 74.95 74.816 

1 1.638 74.833 
2 3.290 74.883 
3 4.929 74.966 
4 6.580 75.082 
5 8.203 75.230 
6 9.857 75.410 
7 11.519 75.622 
8 13.156 75.864 
9 14.785 76.135 

10 16.456 76.435  
 

Table 1. The cutoff frequencies of the coaxial waveguide mode filter choke 
(in GHz).  Note that only the low order TE modes are propagating. 

 
The only propagating modes inside the coaxial 

waveguide with a 1mm gap are:  TE11, TE21, TE31, TE41, TE51. 
A quantitative estimate of the coupling strength for all 

the modes is given by the integral of the two modes over the 
annular gap: 
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where i is the mode index in the cavity and j indicates the 
mode in the coaxial waveguide. 

The coupling coefficients calculated as described above 
are listed in Table 2.  The TE01 and TM11 coaxial modes are 
not propagating in the case of the small gap (1 mm), but their 
coupling coefficient is nonzero: the cavity modes will couple 
to the evanescent modes.  The effect of coupling into an 
evanescent mode is a phase shift of the incident field, due to 
the reactive energy stored in the non-propagating mode. The 
coupling coefficients shown in Table 2 are each represented in 
the transmission-line equivalent circuit as a purely imaginary 
shunt impedance (reactance) at the discontinuity between the 
two transmission lines.   

 
Table 2. Coupling coefficients between modes when gap is 1mm.  The TE01 
and TM11 coaxial modes are not propagating with the small gap, so these are 

coupling coefficients into evanescent modes 

The coupling coefficient is the field transmission 
coefficient from the circular waveguide to the coaxial 
waveguide, or equivalently the voltage transmission 
coefficient in the transmission-line equivalent circuit of 
Figure 11. 

 
 

Figure 11. The model used of the junction between the coaxial waveguide 
(mode filter choke) and the cylindrical cavity. 

The general expression for the transmission coefficient is  
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The coupling coefficient calculated with the overlap 
integral doesn’t contain the phase information: it is only the 
modulus of T.  Zov is purely imaginary and is capacitive or 
inductive, depending on the field geometry: capacitive for TM 
(also when coupling into the TE coax) and inductive for TE.  
The two cases when Zcoax is either real or imaginary 
(propagating modes in the coaxial waveguide as opposed to 
evanescent ones) need to be considered separately. 

If Zcoax is real: 

( )222
   

4

  where   

coax circ
ov

coax coax circ

ov ov

Z Z T
X

Z T Z Z

Z jX

= ±
− +

=

, 

while if Zcoax is imaginary: 

( )
2

22 2 2

ov ov

4
  

4

 where Z = jX  and   

circ coax
ov coax circ

coax circ coax

coax coax

Z T X T
X X Z T

X Z T X

Z jX  

− ± −
=

+ −

=

. 

The characteristic impedance of each mode in both 
circular and coaxial waveguides is given in Table 3 (Ohms) 
and the complete equivalent circuits for the cavity modes 
loaded by the choke are shown in Figure 12. 
 

Circ Coax 
TE01 TM11 TE01 TM11 TE11 TE21 TE31 TE41 TE51 
282 282 -j23 j6131 382 402 443 529 777 

 
Table 3.  Impedances of the propagating modes in circular and coaxial (except 
for TE01 and TM11 coax, they are not propagating) for the case with a 1-mm 

gap (inner conductor radius c = 0.029 m) . 

The TE01 mode in the cavity is loaded with the reactive 
characteristic impedance of the evanescent TE01 coaxial mode 
(represented by a capacitor), via the coupling coefficient 
evaluated by the overlap integral. In Figure 12 the coupling 
coefficient is represented by the impedance Zov.   

 

 
 

Figure 12. Transmission-line equivalent circuits for TE01 (top) and TM11 
(bottom) modes inside the cavity, when loaded with a simple choke with a 

1mm-annular gap. 

The TM11 mode in the cavity couples with the TE11 
coaxial propagating mode and with the TM11 coaxial 
evanescent mode.  The two modes are represented by two 
separate loads connected in series.  In fact the 
transmission-line equivalent circuit for multimode waveguides 
is a multiport network, with one port per mode.  
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The resonant condition for the circuits in Figure 12 is: 
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The two modes are loaded differently by the choke.  The 

new resonant frequencies are calculated from the modified 
resonance condition. The differences with respect to the 
resonance of the cavity without a choke (assumed to be 
9.192 GHz) are shown in Table 4.  

 
TE01 TM11 

-11.5 MHz -196 MHz 
 

Table 4. Displacement of the resonance frequency due to the loading by 
simple choke with an annular gap of 1mm. 

These calculated frequency offsets are typical of those 
observed in properly constructed copper cavities used in Cs 
fountain primary standards. 

Because the only propagating mode in the coaxial 
waveguide is the TE11 mode, the effect of its coupling with the 
TM11 mode in the cavity is dependent on the length of the 
choke.  Given at least a certain length of choke 
(  characteristic attenuation lengthchokeL  ), the coupling to 
the evanescent mode is independent of choke length.   
Therefore, the displacement of the TM111 resonance frequency 
is almost independent of the choke length because the 
coupling coefficient between the TM11 mode in the cavity and 
the TM11 coaxial mode is much larger then the one between 
the TM11 cavity mode and TE11 coaxial mode.  The dominant 
effect therefore is given by the coupling with the evanescent 
TM11 coaxial mode. 

 

V. NEW CHOKE: DIAPHRAGM WITH 1 MM GAP AND 
COAXIAL WAVEGUIDE WITH 12 MM INNER 

CONDUCTOR RADIUS. 

In order to allow propagation of the TM11 mode inside 
the coaxial waveguide and to try to improve the coupling with 
the TM11 mode in the cavity, it is necessary to increase the 
gap, reducing the radius of the inner conductor of the coaxial 
waveguide.  However, the simple choke design with such 

increased gap is not usable because will heavily affect the 
TE01 mode in the cavity.  For this reason a thin diaphragm 
with a small annular gap of 1mm is used between the coaxial 
waveguide and the circular waveguide, as shown in Figure 13. 

 
 

 
 

Figure 13.  New design of the choke for the cylindrical cavity using a coaxial 
waveguide with reduced inner conductor radius and a thin diaphragm with a 
smaller annular gap placed between the cavity and the coaxial waveguide. 

While this design works to greatly increase the 
displacement of the TM111 mode in the cavity, unfortunately, 
the TE01 mode in the coaxial waveguide is also propagating.  
This results in a small real impedance being imposed upon the 
TE01 mode in the cavity.  This real impedance implies power 
flow within the cavity with the obvious resulting concerns 
regarding the distributed cavity phase shifts, both transverse 
and longitudinal.  We are continuing to investigate this 
structure and will report results when they become available. 

 

ACKNOWLEDGEMENTS 

We are pleased to acknowledge helpful conversations 
with Andrea DeMarchi, Bill Klipstein, Eric Burt and Tom 
Parker.  John Dick has been especially helpful pointing out the 
cross mode (TM to TE) coupling possibility as well as 
generally elucidating several points.  

 

APPENDIX- ATTENUATION IN BELOW-CUTOFF 
CIRCULAR WAVEGUIDES 

The following result is useful in the evaluation of the 
attenuation of the below-cutoff circular waveguides used in 
the fountain cavities we have been discussing in this paper. 

The electric field in a waveguide can be written 
( )

0
j t kzE E e ω −= .  If the time dependence is eliminated we 

have 0
jkzE E e−= , where 2

0
0

2 1 ( / )ck π= − λ λ
λ

.  Using 

standard notation, λ0 is the free space wavelength, ( o
cλ =
ν

), 

and λc is the cutoff wavelength for the particular mode in 
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question in the waveguide.  In circular waveguide λc can be 
written [7], 

,
,

m,n
,

2
:    

2TM :    , 

m n C
m n

C
m n

a
TE

a

π
λ =

′ρ
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ρ

 

where a is the radius of the waveguide, ρm,n is the mth zero of 
Jn, and ρ’m,n is the mth zero of J’n. 
We therefore have 

( )
1/ 22

0
0

2 1 /

0

c
zjE e

E

π  − − λ λ  λ=  

.If λ0 > λc (beyond cutoff) this can be rearranged as 

( )
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0
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0
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z
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π  − − λ λ  λ= .   

Using the expression for λC in the TE case we can write the 
E/E0 expression above as 

 
( )

1/ 22
, 01 /

0

n m c
z
aE e

E

 ′−ρ − λ λ  = .   

Finally, this can be converted to decibels to give: 
 

[ ]
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λ
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. 

 
The formula for the TM modes can be obtained with the 
substitution of ρn,m for ρ’n,m.  The explicit forms for the low 
order modes are 
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