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By computing the root mean square of the third difference of the fluc- 
tuations of Universal Time for various sample times, a spectral classification 
of the fluctuations can be made. For periods from 0.02 years to  20 years, 
the data indicate a power spectral density for the fluctuations which varies 
as 1 0 )  --a , where 

Based on the spectral classification, some simple and practical methods of 
predicting frequency offsets far coordinated Universal Time are compared 
to  theoretically optimum (linear) prediction. Three methods are con- 
sidered and are applied to  past UT 2 data for comparison. A conclusion 
from the paper is that the frequency offset for the coordinated time scales 
(following present regulations) may be predicted such that no resets of 
epoch are required for roughly 60 per cent of the years for which the pre- 
diction is made. 
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lies in  the range 3 2 2 5. 

INTRODUCTION 

Prior to the year 1956, the definition of the second 
was the fraction 1/86,400 of the mean solar day. Since 
the late 1930’s, however, astronomers have been aware 
of fluctuations in the Earth’s rate of rotation.1J In 
1952 a statistical classilication of these fluctuations was 
presented by E r o ~ w e r . ~  His conclusion was that the 
rate of rotation behaved as an “accumulation of random 
digits,” i.e., a random walk. 

Because of the fluctuations in the Earth’s rate of rota- 
tion, a new dehnition of the unit of time (the second) 
was adopted in 1956. This dehnition is based upon the 
Earth’s orbital motion around the sun and is called 
Ephemeris time (ET). In 1764 an alternate standard for 
measuring the second received international acceptance. 
This standard is the cesium beam atomic clock and gen- 
erates a second of time which does not differ from the 
Ephemeris second within the present limits of measure- 
ment (limitations in the measurement stem from diffi- 
culties in the precise determination of ET). 

Late in the 1950’s, several laboratories began to main- 
tain an epoch of atomic time based upon the cesium 
atom’s frequency. Of significance for this paper are 
two atomic time scales, the A. l  scale of the U. S. Naval 
Observatory4 and the A.3 scale of the International 
Time Bureau (BIH)B in Paris. Regular comparisons 
between these time scales and Universal time (UT, based 
upon the rotntion of the Earth on its exis) are available 
covering the interval from 1956 to the present. As is 
considered below, this allows one to significantly aug- 
ment the ET-UT data by virtue of the high precision 
of the atomic measurements, which allow more frequent 
determination of the U T  epoch. 

Universal time (UT) is significant because many forms 
of navigation depend upon fairly accurate knowledge 
of the Earth’s angu!ar pcsition relative to the sun and 
stars. For this reason all time signals broadcast by sta- 
tions coordinating with the International Time Bureau 
(BIH) in Paris, in accordance with international regu- 
lations, maintain close agreement with UT 2 (mean solar 
time with correcticns for some known pxturbations). 

Present CCIR regulations require someG coordinated 
“time” signals (UTC) to be offset in rate relative to 
the atomic second by integral multiples of 50 parts in 
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lolo. The offset in frequency is announced by the BIH 
in the fall of the year preceding the year in which it 
is to be used. When UT 2 and coordinated “time” 
signals differ in excess of 0.1 second; the coordinated 
“time” signals are reset exact!y one tenth of a second as 
announced by BIH. Thus, each year varioiis observatories 
and laboratories are interested in predicting the Earth’s 
rotational rate for the next year. 

CLASSIFICATION OF UT 2 BEHAVIOR 

The methods of analysis used here may be found in 
the Special Issue of the Proceedings of the IEEE, Vol. 
54, No. 2, February, 1966. In particular, Cutler and 
S e a ~ l e , ~  Vessot, et a1.,* Allan,Q and BarneslO use time 
domain analysis to infer power spectral density. The 
present authors considered it worthwhile to apply some 
of these techniques to Universal time. 

By correcting Universal time (UT) for the migration 
of the Earth’s poles one obtains UT 1. Then by remov- 
ing the remaining yearly periodic fluctuations one ob- 
tains U T  2. Numerous observatories determine UT 2. 
Some of the most extensive daln may be found in the 
publications of the BIH. In particular, data of UT 2 
relative to an atomic time scale may be found in refer- 
ence 5 covering the years 1956.0 to 1965.0 at 10-day 
intervals. The rms third differencelo of these data is 
plotted in Figure 1 as a function of the delay time, T .  

The third difference is given by 

n3v (P(t+3T) - 3 q ( t + 2 ~ )  + 3v(t+T)-- q ( t ) .  

(1)  
Also plotted in Figure 1 is the rms third difference 

of UT-ET as obtained from Brouwer3 for the years 
1820.5 to 1900.5 and from reference 11 for the years 
1901.5 to 1962.5. While UT differs from U T  2, the 
corrections from UT to U T  1 are too small to be re- 
solved in the data for periods longer than one year 
and the U T  1 to UT 2 corrections are periodic at one 
year, which is exactly the sampling rate. While one 
may question the reliability of the ET measurements, 
there is as yet no significant indication that ET differs 
from Atomic time (AT). The precision of determina- 
tion of ET is not nearly as high as for A T 2 ,  but for 
periods of two years or longer the measurement errors 
of ET are not significant for Figure 1,. Thus Figure 1 
may be considered to reflect the fluctuations in UT 2 
relative to a uniform clock. 

The confidence limits indicated by Figure 1 were 
computed according to the number of independent, 
non-overlapping third differences used to calculate the 
rms third difference according to reference 13. The 
limits indicated on Figure 1 are calculated for a 90 per 
cent confidence. The single “best” straight line is not, 
in fact, contained within 90 per cent of the confidence 
intervals shown. This single “best” line has a slope 
of about 1.36. 

The same data of Figure 1 are plotted on Figure 2 
with two straight lines intersecting at about one year. 

It is interesting to note that Brouwer,s using a bit 
more extensive data than the ET-UT data used here, 
concludes that : “The resulting value for the secular 
increase in the length of the day is +0.~00135+0.~00038 
(s = seconds) per century. The principal uncertainty 
in these evaluations is due to the random process which 
causes the amplitude of the fluctuations to increase pro- 
portionally to the power 3/2 of the time . . .” (We 
note that if the rms amplitude of fluctuations increase 
in proportion to the 3/2 power of time, then the rms 
third difference does also.) Although Brouwer’s re- 
marks were based on data with a spacing of one year 
and although a line of slope 3/2 cannot be contained 
within very many confidence intervals of Figure 1, one 
cannot completely rule out the possibility of a 3/2 
power law for the amplitude of the fluctuations for 

Delay T ime,  T (Years) 

Figure 1 - RMS third difference of U T  data. 

times smaller than one year. One is tempted however, 
to draw the lines as indicated in Figure 2. A line of 
slope 1 fits the data very well for times less than one 
year. There are additional reasons, which will be cov- 
ered later, to suspect that for times longer than one 
year a slope of 2 as shown in Figure 2 is not real. 

One may construct a table relating the T dependence 
of the rms third difference of a time series to the fre- 
quency dependence of the power spectral density of that 
series. The first four values of Table I were obtained 
from Vessot, et d.,8 Allan: and Barnes.1O The remaining 
values were obtained by extending their mode of analysis. 
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a 
function, K (  a), is approximated by ( i)r , Assume 
that Q ( t )  is the output of such a filter when white noise 
is the input to the filter. Davenport and R00t17 show 
[their Eq. (11-57)] that the minimum mean square error 
of prediction for (p ( t i -  T )  is given by 

0.001 I I 1 1 I 
0.01 0. I I IO IO0 

Delay Time, T (Years)  

Figure 2 - RMS third difference of UT data. 

Also, it  should be noted that Brouwer3 states that “the ob- 
served fluctuations in the moon’s mean longitude are 
compatible with the hypothesis that the rate of rotation 
of the earth is affected by cumulative random changes.” 
Thus, Brouwer’s model is completely consistent with 
the fifth line of Table 1. 

Table I 
T-dependence of the third difference for power law spectra 

T-Dependence of 
rms Third 

Noise Spectral Type Difference Name of Noise 

- - -- k 3  - T  Flicker Rate 
1 4 3  

4 - 7312 Random Walk Rate 
k - _ _ _  

l W l 4  

- - k 5  - r 2  Flicker Acceleration 
1 ~ 1 5  

~ ~~ ~ 

where oh is a high frequency cutoff. 

A Noise Model 

It  is possible to construct a filter1d-16 whose transfer 

0 

where g ( r l )  is the impulse response function of the 
filter which is processing the white noise (of unit 
power). The impulse response function, g ( r l ) ,  is defined 
as the Fourier transform of the transfer function, 
K(w);  i.e., 

m 
g(7) = - fK(w)e  1 do,. 

2n 
- m  

For the case of a filter with transfer function K(o) = 

, the impulse response function islS 

The minimum mean square error of prediction then 
becomes 

Thus, for a signal, rp(t), whose power spectral den- 
sity (relative to an angular frequency to be consistent 
with references 9 and 10) is given by 

Sp(o) h ) k ( o )  1’ = h \ o )  -01 , a! > 1, ( 3 )  
where h is the input power spectral density (relative 
to o ) ,  the minimum mean square error of prediction 
is expected to be 

E,in2 = ~ 7%) ( l - q , a > l .  - 

r2 ( 4 )  

The factor of Z x  occurs because (3)  is a density rela- 
tive to an angular frequency rather than a cycle fre- 
quency. 

The Prediction Problem 

By virtue of the fact that is not precisely detet- 
mined by the data, it was not possible to determine 
the best method of prediction. Instead, it was considered 
simplest by the authors to predict on the basis of an 
equation of the form 

M 

n = 1  ( 5 )  
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where the coefficients {a,, b n )  are to be determined (1) 
on the basis of available data and (2) “near” optimum 
prediction for that range of which is consistent with 
the previous analysis. (By “Optimum Prediction” one 
means to predict with a minimum resulting mean square 
error.) 

The first sets of {a,, b,,} investigated by the auth- 
ors were constructed with the assumption that the actual 

predicted value, y(t + .), would satisfy an equation in 
which the m-th finite difference is zero. As an example, 
the third difference of the variable x,, is given by 

a 

A3xn = Xn+? -3xncz + 3xn+1 -xn, 
and thus the predicted value would be given by 

;(t+.) = 3y(t)  - 3 y ( t - ~ )  y ( t - 2 7 ) .  ( 6 )  
In general the errors based on the finite difference 

method of prediction are significantly worse than opti- 
mum prediction. Figure 3 shows a plot of the ratio 
of finite difference prediction to optimum prediction for 
various orders of differencing and as a function of (Y. 

Figure 3 was obtained from (4) and (6) and references 
9 and 10 for 1 < 5 3 .  The method of analysis cited 
in the previous references was extended for the range 
3 < a < 7 .  

If one accepts the possibility that, out to periods of 
one year, the Earth’s behavior is dominated by an 101-3 

behavior of (slope 1 in Figure 2), then a second 
difference method is only 20 per cent worse than opti- 
mum (see Figure 3 ) .  

If, however, one accepts Brouwer’s T 3 / 2  dependence, 
one can show that optimum prediction is accomplished 
by a simple continuation of the instantaneous rate. 
(This is exactly analogous to noting that, for a gambler 

Figure 3 - Ratio of 
tion based on finite 
enses to optimum. 

predic- 
differ- 

playing at even odds, the gambler’s total funds are as 
likely to increase as decrease during the next few plays.) 
The instantaneous rate, however, is not exactly measur- 
able, and one logically retreats to a prediction based upon 
an equation of the form 

Assuming that the errors of measurement of y(t) and 

Ip(t-T) are each five the error in ‘3 
( t  + .) arising from the measurement of p(t) and 
Ip(t - T) can be shown to become near to the error 
of optimum prediction at a T value of about 2 weeks 
(15 x lo5 sec.) for T = 1 year. 

If one accepts an 101-5 dependence for the spectral 
density of the fluctuations in the Earth’s angular posi- 
tion, then one finds the variance of the second difference 
of the position does not exist (Figure 3 ) .  This is equi- 
valent to saying that the secular (mean) increase in the 
length of the day is not a measurable quantity. Based 
on the more extensive data in Brouwer’s3 paper and some 
recent results of coral growth,19-23 however, the secular 
increase in the length of the day seems well understood. 
If an Iwl-5 dependence is real, it probably does not ex- 
tend to frequencies much below one cycle per century. 
Munk aild MacDona1dZ4 (their Figure 8.1) indicate 
this behavior stops at about one cycle per 30 years. 
DickeZS has also discussed the long term fluctuations in 
the rotation of the Earth. 

Because of the rather steep slope to the date of Figure 
2 for periods longer than oiie year, a prediction method 
which is a compromise between a pure third difference 
and a pure second difference was also investigated. The 
form of the prediction studied is given by 

1 

* 
Ip( t + T )  zz 2v (  t )  - Ip( t - T )  

.+z [p(t)-21p(t--T) + y(t--2T)]. T2 
( 8 )  
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Prediction Results On the basis of the data presented in Table 11, it ap- 
pears that no one technique is obviously more reliable 

Because the ’‘ Ndval Observatory sup- than the others. Certainly the second-difference method 
and the method based on (7) are simpler than (8), and 
may be preferred for this reason. 

plies the National Bureau of Standards with current 
values of the time difference between A.l  (the U. S .  
Naval Observatory atomic time) and U T  2 ,  “predic- 

, I  

tions” for the past years were computed on the basis 
of a second difference and also on the bases of (7 )  and 
(8) (T = 37) using the A . l  - U T  2 data. In actual prac- 

The predictions for 1968 are -250 x 10-l’ for both the 
second difierence method and on the basis of (7) .  Based 
on (8) one would predict - -3OO x 10-lo for 1368. 

Year 

Table I I  
Prediction Results 

Second Difference Equation 7 Equation 8 (T=37) 
number of number of number of 

(Af/f) x 1010 resets (Af/f) x 1010 resets (Af/f) x 1010 resets 

1958 - 150 - 150 

1959 - 150 - 150 

1960 - 150 - 200 1 

1961 - 150 - 150 

1962 - 100 1 -100 - 

1964 - 250 1 - 200 - 200 

1963 - 150 - 200 - 150 

1965 - 250 - 350 2 - 250 

1966 - 250 1 - 300 - 300 

resets] years 318 31 8 214 

1967 - 250 - 300 - 300 

1 

1 

tice the frequency offset (relative to atomic time scales) 
is announced in the fall of the year preceding the year 
it is used. 

The authors chose to predict the year-end value of 
U T  2 - UTC for the Nth year from early September 
(Nth year) values using one of the prediction schemes. 
Based on this year-end value and the desite to reduce 
this error to zero during the (N + 1)th year, frequency 

offsets,--, computed from each of the simple methods 

were predicted. The results of such calculations for each 
of the three prediction methods are presented in Table I1 
for the p s t  years and for 1967. The frequency offsets were 
held to integral multiples of 50 parts in lo’”, and if the 
UT 2-UTC value exceeded 0.1 seccnd a “reset” is assumed 
to have occurred. While these are the current conditions 
which UTC satisfies, it shoiild be remarked that these con. 
ditions were not actually used during the earlier part of 
the period covered. Thus this table should not be com- 
pared naively to actual past performance although it may 
be considered as an indication of what these prediction 
methods might yield in the future. 

Af 
f 

CONCLUSIONS 

An analysis of recent UT 2 data has shown that 
Brouwer’s 3/2 power law is reasonable for periods 
shorter than one year. That is, even for short periods 
of time, “the observed fluctuations . . . are compatible 
with the hypothesis that the rate of rotation of the 
earth is affected by cumulative random changes” - as 
Brouwer3 commented in regard to times longer than 
a year. Based only on these recent UT 2 data, however, 
a better fit to the data is a flicker noise ( l / f )  law af- 
fecting the rate of rotation of the earth for periods 
shorter than one year. 

Three methods of predicting the offset frequencies 
for Coordinated Universal time (UTC) have been con- 
sidered which are not “far” from an optimum predic- 
tion scheme. These schemes of prediction have been 
applied to past UT 2 data to test their reliability (Table 
11) .  Because all three schemes seem roughly equivalent, 
one is tempted to choose the simplest, i.e., a second-dif- 
ference method of prediction. 
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