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Abstract
We have estimated the relativistic redshift correction due to gravity,
necessary to reference to the geoid the measurements of the new frequency
standards at the National Institute of Standards and Technology (NIST) in
Boulder, Colorado, USA, using a new local survey and various methods and
models. We referenced the frequency offsets computed from different
methods to the same geoid surface, one defined with respect to the current
best estimate of an ideal mean-Earth ellipsoid. The new fractional frequency
results are (1) −1797.61 × 10−16, based on the global gravitational model
EGM96; (2a) −1798.72 × 10−16, based on the regional, high-resolution
geoid model G96SSS; (2b) −1798.49 × 10−16, based on the regional,
high-resolution geoid model G99SSS; and (3) −1798.91 × 10−16, based on
the value for the geopotential number provided in the National Geodetic
Survey’s data sheet for the NIST reference marker. The minus sign implies
that clocks run faster in the laboratory in Boulder than a standard clock
located on the geoid. The values from (2b) and (3) are expected to be the
most accurate and are also independent. Based on these results, we estimate
the frequency shift at the reference point at NIST to be −1798.7 × 10−16,
with an estimated standard uncertainty of ±0.3 × 10−16.

1. Theoretical background

This is a continuation of earlier work [1, 2], where we used
coordinates accurate to about 1 m. Now, using a recent GPS
survey, we have coordinates that should be accurate to 20 cm
or better. In addition, we also used a new regional model of
the geoid available for the continental US in our computations.

With the advent of new primary frequency standards
whose uncertainties approach 1 part in 1015, and the potential
for clocks with smaller uncertainties or greater stabilities, there
is a need for improved estimates of the relativistic redshift.
This is an effect predicted by the theory of relativity as the
sum of a special and a general relativistic effect. The theory
of general relativity predicts that a clock farther away from
the Earth runs faster relative to a clock closer to the Earth.
The effect is proportional to the gravitational potential due
to the Earth, the geopotential. In relativity, the geopotential is
defined by the convention giving the potential a negative value,

approaching zero as a particle moves towards infinity away
from an attracting body. Geodesy uses the sign convention
for geopotentials opposite to that used in relativity theory. In
geodesy, all potentials are positive, so that a higher potential
would generally be closer to the Earth. In this paper we will
use the geodetic convention, in which all geopotentials are
positive.

A second effect in relativity enters, the so-called second-
order Doppler shift of special relativity, in which a standard
clock runs slower as it moves faster, relative to a clock at rest
with the observer. The rotation of the Earth, therefore, gives
rise to a centripetal potential that also changes the clock’s
frequency. We differentiate between the potential due to
gravitation and that due to gravity: the former arises from
the presence of attracting masses only, the latter contains in
addition the centripetal potential due to the Earth’s rotation
[3, section 2-1]. It is the gravity potential that we need to
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consider here, therefore the term ‘gravitational redshift’ is
somewhat misleading and has been avoided herein.

A primary frequency standard that contributes to
international atomic time (TAI) must be corrected to run at
the frequency at which clocks would run on the Earth’s geoid,
a surface of constant gravity potential that approximates mean
sea level in a well-defined way. It is therefore necessary
to determine the difference in gravity potential (W0 − WP),
between the geoid (subscript 0) and the location of a primary
frequency standard (subscript P), in order to correct for this
frequency offset, according to [4]

f0 − fP

f0
= �f

f0
= WP − W0

c2
, (1)

where c denotes the speed of light. Note that if the point P
is above the geoid, we generally have WP < W0, using the
convention in which potentials are positive. Hence, f is
negative in this case, since this clock correction would make
the clock in Boulder run slower, to match the rate of a standard
clock on the geoid.

The geopotential number C = W0 − WP [3, p 56] is
given by

C = W0 − WP =
∫ H=HP

H=0
g · dH, (2)

where g is the magnitude of the gravity acceleration vector, and
dH is the length increment along the positive upward plumb
line. The path-independent line integral in equation (2) starts
from a reference equipotential surface whose gravity potential
is W0 (on which every point has orthometric height equal to
zero) and ends at the station location where W = WP and
H = HP. Although the reference equipotential surface can
be defined unambiguously through a prescribed value of W0,
such a definition has limited practical value for the physical
realization of this surface, since absolute potentials cannot
be measured. In theory, any equipotential surface of the
gravity field is a suitable reference surface for orthometric
heights worldwide. However, the human conception of
‘heights’ and historic practices make it convenient for such a
reference surface (vertical datum) to be ‘close’ to the mean sea
surface (MSS). Historically, the vertical datum of a country
or a set of countries has been realized by prescribing a
certain value to the orthometric height or the geopotential
number of some tide gauge station(s). The geopotential
numbers and orthometric heights of other points could then be
determined using spirit levelling and gravity measurements,
through the evaluation of a discrete counterpart (summation)
of equation (2) [3, chapter 4].

The presence of a quasi-stationary (i.e. non-vanishing
through averaging over long time periods) component
within the dynamic ocean topography (DOT) results in
departures of the MSS from an equipotential surface ranging
geographically between −2.1 m and +1.3 m, approximately.
Due to these departures (and in some cases due to additional
considerations related to mapping applications), different
vertical datums refer to different equipotential surfaces.
Therefore, given a datum-dependent value of C, the
determination of �f /f with respect to a unique equipotential
surface requires the estimation of that datum’s offset from
that unique equipotential surface. A unique equipotential

surface—the geoid—that closely approximates (in some
prescribed fashion) the MSS has to be defined and realized
through the operational development of models [5, 6]. There
exist global geoid models, developed through a combination
of satellite tracking data, surface gravimetry, and satellite
altimetry. Such a state-of-the-art model, complete to degree
and order 360, corresponding to a half-wavelength resolution
of ∼55 km at the equator, is EGM96 [7]. The resolution
of such global models is limited primarily by the available
surface gravimetric data used in their development. Detailed
(i.e. higher-resolution) local or regional geoid models are
developed by incorporating the information contained within
dense gravity and topography data into a global geoid model.
This adds high spatial frequency details to the broader geoid
features represented within a global model. G96SSS [8] and
the updated G99SSS [9] are such regional geoid models for
the US. Global and regional geoid models can also be used to
estimate the geopotential number C, given the geocentric
coordinates of the point P.

We distinguish, therefore, two general approaches for
the computation of C and hence �f /f : one based on spirit
levelling and gravity observations, and another based on the use
of geoid models, either global or regional/local. Each approach
has its own advantages and disadvantages, and its own error
characteristics. It is important, however, to recognize that
each computational method and/or model used may yield a
result that refers to a different equipotential surface. Since the
various reference surfaces may be offset by several decimetres,
estimation of their relative offsets becomes important if one
desires to compare the various results at the level of a decimetre
or less.

It is useful to recall the correspondence between
the approximate magnitude changes of H , C, and
�f /f . Near the Earth’s surface g ≈ 9.8 m s−2, and since
c = 299 792 458 m s−1, a change in H by 1 m implies roughly
a 9.8 m2 s−2 change in C, and therefore a change in �f /f of
−1.1 × 10−16. To support present frequency standards with
uncertainties near ±1 × 10−15 it is sufficient that �f /f be
computed with an error not exceeding ±1×10−16. Therefore,
the total error in an absolute determination of the geopotential
number C, consisting of the error in W0 (absolute) and the error
in W0 − WP (relative), should not exceed ∼±9.8 m2 s−2, or
equivalently, the absolute orthometric height HP of our station
should be determined to better than ±1 m.

2. Computational aspects

In the following paragraphs we discuss the specific
computations involved in the estimation of �f /f , according to
three methods. The first two methods are based on geoid model
information, global and regional respectively, while the third
method is based on spirit levelling and gravity observations.
The first two methods share some long-wavelength errors, but
the third method is independent of the other two.

2.1. Mean-Earth ellipsoid

The concept of a mean-Earth ellipsoid [3, section 2-21] is of
central importance in gravimetric geodesy and in our specific
application. This purely mathematical construct is a rotating
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ellipsoid of revolution (i.e. biaxial), whose surface is also
an equipotential surface of its gravity field. The gravity
potential on its surface is presupposed to equal the gravity
potential on the geoid. Four parameters are necessary and
sufficient to define uniquely its size, shape, rotation, and
gravity field. One may presuppose that these parameters are
numerically equal to the corresponding parameters of the real
Earth. Then, the departures of the geoid from such an ‘ideal’
ellipsoid, called geoid undulations and denoted by N , will
have a vanishing zero-degree term, i.e. their average over the
whole Earth equals zero. Therefore, by suppressing the zero-
degree term in the spherical harmonic expansion of N, one
obtains ‘automatically’ geoid undulations that refer to this
‘ideal’ mean-Earth ellipsoid, without the need to know the
specific scale (semi-major axis) of this ellipsoid. Specification
of the scale and the gravity field of this ‘ideal’ ellipsoid
require numerical specification of its defining parameters.
These values can be determined only from analyses of various
geodetic observations and, therefore, contain random and
possibly systematic errors. Here, we will define this ‘ideal’
mean-Earth ellipsoid, in a tide-free system [10], by adopting
the current best estimates for the values of the following
parameters [11]:

Equatorial radius: a = 6 378 136.46 m,

Flattening: f = 1

298.257 65
,

Geocentric gravitational constant: (3)

GM = 3.986 004 418 × 1014 m3 s−2,

Mean rotational speed: ω = 7 292 115 × 10−11 rad s−1.

We should emphasize here that the mean-Earth ellipsoid
defined by the above four values is only as ‘ideal’ as the current
accuracy of these values allows. These values are constantly
being refined through improved geodetic determinations. GM
is currently determined most accurately from analyses of
laser ranging data acquired on high altitude geodynamic
satellites, and so is f (more precisely the second-degree
zonal gravitational coefficient, J2, from which f can be
derived). ω is deduced most accurately from very long baseline
interferometry. The equatorial radius a is currently determined
best from analyses of satellite radar altimeter data over the
oceans. Jekeli discusses the fundamental concepts involved in
the determination of the best estimate of the equatorial radius
[6]. The adopted defining values of equation (3) imply a value
of the gravity potential on the geoid equal to

W0 = 62 636 856.88 m2 s−2, (4)

with an estimated uncertainty of ±1.0 m2 s−2 [11].
We note that this uncertainty implies a limitation on the

realization of the second. With this uncertainty on the geoid,
the second can be realized to no better than ±1 × 10−17.
Standards can be compared to better than this, however. The
limitation for comparison due to the relativistic redshift is
the uncertainty in determining the offsets for the standards
of the gravity potential at their locations, from a fixed surface
of gravity potential. We will find in this paper an uncertainty
of 3 × 10−17 for standards at NIST, Boulder, due to the offset
of the gravity potential from the current best estimate of the
geoid.

2.2. Reference point

This paper compares gravity potential based on models
with gravity potential based on spirit levelling and gravity
measurements. To accomplish this we used two different
markers at NIST. The US National Geodetic Survey surveyed
three points on the NIST campus in September 2000 [12].
We used one of these, identified as DMA (it was first surveyed
by the Defense Mapping Agency in 1977 using the Transit
satellite system), to obtain geocentric Cartesian coordinates
for use in evaluating models. This point, DMA, is located on
the flat roof above the fourth floor at NIST, Boulder. There
is also a point on the side of the second floor of the building
designated Q407. This point is part of the North American
Vertical Datum 1988 (NAVD88) network of spirit levelling and
gravity measurements. Since most of the frequency standards
at NIST are on the second or third floors, it is more convenient
to evaluate the relativistic redshift at an elevation equal to that
of point Q407 rather than that of the DMA point.

Q407 is approximately 18.6 m distant, horizontally, from
a point directly below the DMA point. We measured the
Q407 point as 9.903 m vertically below the DMA point.
For evaluating the global and regional models, we used the
coordinates of a point 9.903 m below the DMA point. We refer
to this, rather fictitious, point as P in what follows. The change
in gravity potential from point P to Q407 should be small due
to a horizontal shift of about 18.6 m. It would be exactly zero,
of course, if we moved along an equipotential line. Since we
are simply shifting by maintaining the change in coordinate
height as zero, we can at least be certain that the relativistic
redshift at P should agree with the value at the Q407 point to
better than 10−18, i.e. 1 cm in terms of orthometric height.

2.3. Method 1

For method 1 we evaluated the EGM96 global model for the
gravitational potential, i.e. the potential due to the Earth’s
attracting mass. To this we added the centripetal potential.
This sum yields the gravity potential WP given by

WP = V (rP, θP, λP) + �(rP, θP), (5)

where V (rP, θP, λP) is the gravitational potential, �(rP, θP)

the centripetal potential, and (rP, θP, λP) are geocentric radius,
geocentric co-latitude (90˚ minus latitude), and longitude,
respectively, at point P. One has [3, chapter 2]:

V (rP, θP, λP) = GM

rP

[
1 +

∞∑
n=2

(
a

rP

)n n∑
m=−n

C̄nmȲnm(θP, λP)

]
,

(6)
with

Ȳnm(θP, λP) = P̄n|m|(cos θP) ×
{

cos mλP, if m � 0,

sin |m|λP, if m < 0,
(7)

and
�(rP, θP) = 1

2ω2r2
P sin2 θP. (8)

P̄nm(cos θP) is the fully-normalized associated Legendre
function of the first kind [3, sections 1-11, 1-14], of degree n

and order m, and C̄nm are the (unitless) fully-normalized
potential coefficients. The numerical values of P̄nm(cos θP)

68 Metrologia, 40 (2003) 66–73



Relativistic redshift with 3 × 10−17 uncertainty

were evaluated here using (a modification of) the routine
LEGFDN, originally written by Colombo [13, p 131]. EGM96
[7] provides, currently, the most accurate estimate of a set of
C̄nm, complete to degree and order 360.

The geocentric Cartesian coordinates of our reference
point, P, at 9.903 m below the DMA marker for NIST Boulder
in ITRF94 are

XP = −1 288 394.075 m,

YP = −4 721 673.869 m,

ZP = 4 078 630.782 m.

(9)

These coordinates are expected to be accurate to 20 cm or
better.

We converted these coordinates to (rP, θP, λP) and
evaluated equation (6) truncated, of course, to maximum
degree and order 360, and equations (8) and (5). We obtained

WP = 62 620 700.75 m2 s−2, (10)

which implies, due to equations (1) and (4),

�f

f
= −1797.61 × 10−16. (11)

There are two types of errors associated with the use of
EGM96: (a) errors of commission due to the fact that the
coefficients C̄nm are imperfectly known; and (b) errors of
omission due to the truncation to degree 360, of the infinite
series in (6). The commission error of EGM96 has two
components. The first one (long-wavelength component) can
be computed rigorously from the error covariance matrix that
accompanies the part of the model up to degree and order 70.
The second component, corresponding to degrees 71–360, is
only available in terms of a global root mean square (RMS)
estimate that does not account for the specific geographic
location of our station. This estimate can be computed from
the standard deviations of the EGM96 coefficients above
degree 70.

The omission error of EGM96 can be estimated based
on some theoretical model describing the decay of the
gravitational spectrum of the Earth globally. Such a
computation also yields a global RMS value, without
geographic specificity.

Details on the EGM96 geoid error assessment can be
found in [7, sections 7.3.3.1 and 10.3.2]. Based on that
assessment, we estimate the total (commission plus omission)
geoid undulation error of EGM96 to be approximately ±0.6 m,
in an RMS sense over the conterminous USA. To obtain this
estimate we proceeded as follows. Over the conterminous
USA the RMS geoid error obtained from rigorous error
covariance propagation up to degree 70 is ±0.26 m, while
the quadratic summation of the EGM96 coefficient standard
deviations (i.e. neglecting coefficient error correlation) gives
±0.19 m. We used the ratio of these two quantities (∼1.4) to
scale the higher-degree (71–360) commission error, as well as
the omission error beyond degree 360, thereby ‘converting’
these two global RMS estimates to corresponding values that
are more representative of our specific area. We fully recognize
here that this approach is only approximate. Considering
the mountainous terrain of the region around our station

(which is expected to increase, primarily, the omission, but
also the commission error of the model), it is not unreasonable
to estimate the EGM96 undulation error at our location, P, to
be between ±0.6 m and ±1.0 m. Pavlis et al [14] reported
an evaluation of EGM96 using independent data. Over
5168 benchmarks distributed over the conterminous USA,
the standard deviation of the differences between the EGM96
geoid undulation estimates and independent estimates obtained
from GPS positioning and spirit levelling is approximately
±0.40 m, which verifies that our present error assessment is
not unreasonable (it may actually be slightly pessimistic). This
EGM96 geoid error estimate for our site implies that the error
of the �f /f value given in (11) is not expected to exceed
±1 × 10−16.

2.4. Method 2

A significant reduction of the omission error encountered with
EGM96 can be effected through the use of a detailed regional
geoid model. We have used the coordinates obtained from
the new survey both with the 2′ × 2′ gravimetric geoid model
G96SSS [8] (which we also used in [2] along with the old
survey coordinates), and the updated G99SSS [9] model. We
proceeded as follows.

1. We first computed the geoid undulations implied by
EGM96 (to degree 360) at the 2′ × 2′ grid nodes of G96SSS,
using [15]

NEGM96(θP, λP) = GM

rPγP

360∑
n=2

(
a

rP

)n

×
n∑

m=−n

C̄∗
nmȲnm(θP, λP) +

�gB

γ̄
H. (12)

In equation (12), γP is normal gravity at P, γ̄ is an average value
of normal gravity between the projections of P on the ellipsoid
and telluroid, �gB is the Bouguer gravity anomaly, and C̄∗

nm

denote the potential coefficient remainders after the even zonal
reference coefficients of the ellipsoidal (normal) field are
subtracted from C̄nm. A detailed discussion of the underlying
theory and the details of the numerical implementation of
equation (12) can be found in [15]. Notice that the geoid
undulations from (12) refer to our current best estimate of the
ideal mean-Earth ellipsoid.

2. Let us denote as xx either 96 or 99, for the two
detailed regional geoid models. We subtracted the GxxSSS
geoid undulations, NGxxSSS, exactly as these are given on
the distributed CD, from the undulations computed from
equation (12). The average value of these differences over
the domain of GxxSSS provides an estimate of the shift that is
required in order to reference the NGxxSSS values to an ideal
mean-Earth ellipsoid. For both G96SSS and G99SSS, we
found

NGxxSSS(ideal) = NGxxSSS + 0.40 m. (13)

3. From the geocentric Cartesian coordinates of P, we
computed its geodetic coordinates with respect to an ellipsoid
defined by the (a, f ) values given in equation (3). This yields

ϕP = 39˚59′42.861′′,

λP = 254˚44′14.541′′,

hP = 1634.421 m.

(14)
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Therefore the orthometric height HP, as implied by the
geocentric positioning data (hP) and the NGxxSSS(ideal)
value, is

HP(ideal) = hP − NGxxSSS(ideal). (15)

The evaluation of equation (15) requires NGxxSSS(ideal) at
the point P. This value was obtained using bicubic spline
interpolation of the grids on which the GxxSSS values are
given, 2′ × 2′ for G96SSS and 1′ × 1′ for G99SSS.

4. From HP(ideal) we computed the geopotential number
of P using Helmert’s equation [3, equation (4-26)]:

C = HP(ideal)[gP + 0.0424HP(ideal)], (16)

where C is in g.p.u. (1 g.p.u. = 10 m2 s−2), HP(ideal) in
km, and gP (the value of gravity acceleration at P) is in
Gal (1 Gal = 10−2 m s−2). gP = 9.796 022 m s−2, a value
obtained from the National Geodetic Survey’s (NGS) data
sheet for the NIST reference marker. The approximations
involved in equation (16) introduce errors of only a few
centimetres [3, p 169]. More accurate formulations in place
of equation (16) (which also take into account the terrain
correction) are possible [3, p 169]; however, such formulations
were not implemented here.

2.4.1. Method 2a. Using G96SSS, the model we used
previously in [2], we now obtained with the new coordinates

C = 16 166.08 m2 s−2, (17a)

which yields, from equation (1),

�f

f
= −1798.72 × 10−16. (18a)

Unlike EGM96, the GxxSSS regional geoid models
are not accompanied by propagated error estimates. Their
accuracy has been assessed only through comparisons with
independent geoid undulation estimates obtained from GPS
positioning and levelling observations [8, 9]. Based on this
uncertainty assessment, we estimate the error in NG96SSS to
be approximately 0.20 m. Considering also a 0.20 m error in
the ellipsoidal height hP; this implies an error for the �f /f

value given in (18a) of 0.31 × 10−16.

2.4.2. Method 2b. Using the new geoid model G99SSS, we
now obtained with the new coordinates:

C = 16 164.01 m2 s−2, (17b)

which, from equation (1), yields

�f

f
= −1798.49 × 10−16. (18b)

From comparisons with independent geoid undulation
estimates obtained from GPS positioning and levelling
observations [9] we estimate the error in NG99SSS to be
approximately 0.18 m. Considering the 0.20 m error in the
ellipsoidal height hP, this implies an error for the �f /f

value given in (18b) of 0.30 × 10−16.

2.5. Method 3

The �f /f values given in equations (11), (18a) and (18b)
were computed based on a global model and the two regional
geoid models, respectively. We turn now to the �f /f

computation from spirit levelling and gravity measurements,
as shown in equation (2). We performed this computation as
follows.

1. From the NGS data sheet for our reference marker
we obtained its dynamic height [3, p 163] value H

dyn
P =

1649.034 m. This value is related to the geopotential number
of P by [3, equation (4-9)]:

H
dyn
P = C

γ0
, (19)

where γ0 = 9.806 199 m s−2 is the value of normal gravity
on the GRS80 reference ellipsoid, at ϕ = 45˚ (this value was
taken from the NGS data sheet, exact to the digits given there).
From equation (19) we therefore computed

CNAVD88 = 16 170.76 m2 s−2, (20)

where the subscript ‘NAVD88’ emphasizes the fact that this
value refers to the equipotential surface that passes through
the origin point (Father Point/Rimouski, located in Quebec) of
the North American Vertical Datum 1988 [16].

To estimate the offset between the NAVD88 reference
equipotential surface and the ‘ideal’ geoid surface, we
proceeded, in principle, as described in [17]. From NGS
[Milbert, Private communication, 1998] we have available
a set of 5168 GPS/levelling points distributed (not evenly)
over the conterminous USA. The geodetic coordinates and the
NAVD88 orthometric heights of these points are given. The
Cartesian coordinates were obtained from GPS positioning
and are given with respect to the ITRF94(1996.0) reference
frame. From these Cartesian coordinates, the geodetic
coordinates (ϕ, λ, h) have been computed with respect to the
GRS80 reference ellipsoid and were provided to us. For our
computation, however, we need h to be defined with respect to
the ‘ideal’ values of (a, f )given in equation (3). We performed
this conversion using [18, equation (64)]:

h(ideal) = h(GRS80) − w�a +
a(1 − f )

w
sin2 ϕ�f,

w = (1 − e2 sin2 ϕ)1/2,

(21)

where

�a = 6 378 136.46 m − 6 378 137 m,

�f = 1

298.257 65
− 1

298.257 222 101
.

(22)

Using equation (12) we computed the EGM96-implied geoid
undulations, NEGM96, at the locations of these 5168 points,
with respect to an ideal mean-Earth ellipsoid, in the tide-free
system. We then formed the differences

d = h(ideal) − HNAVD88 − NEGM96. (23)

2. The mean value of d over the 5168 points provides an
estimate of the offset between the NAVD88 reference surface
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and the ‘ideal’ geoid surface. For reasons explained in [15],
we computed this mean value in three ways:

using all 5168 points,

⇒ d̄1 = −0.448 m;

using 2067 points whose distance is not less than 25 km
(thinned set),

⇒ d̄2 = −0.477 m;

using 438 points of the thinned set where H < 100 m

⇒ d̄3 = −0.235 m.

Rapp [15, p 286] discusses the reason for the value d̄3

to be considered more reliable than the other two. On the
other hand, d̄3 is computed on the basis of only a subset of
the total number of available points. Estimating the ‘best’
value of d̄ depends on the ‘relative weights’ that one is willing
to assign to these three estimates. We adopted the value
d̄ = −0.300 m as our current ‘best’ estimate of the offset
between the NAVD88 reference equipotential surface and the
geoid surface. The minus sign implies that the equipotential
surface passing through the origin of NAVD88 is below the
geoid surface that is realized through the EGM96 model,
when the latter is referenced to our current best estimate of
a mean-Earth ellipsoid. Smith and Milbert report a value of
d̄ = −0.314 m with an uncertainty of ±0.156 m [8]. Their
value is based on comparisons over 2951 GPS/levelling points
over the conterminous USA and agrees very well with our
estimate. We should also mention that in the above analysis
the permanent tide effect was consistently accounted for. All
three quantities in equation (23) were expressed in the tide-free
system.

3. The offset d̄ can now be input to equation (16), in the
place of HP(ideal), to estimate the correction dC necessary to
convert CNAVD88 to C(ideal). We find

dC = −2.94 m2 s−2 ⇒ C(ideal) = 16 167.82 m2 s−2,

(24)

which implies

�f

f
= −1798.91 × 10−16. (25)

Errors in the estimate of �f /f given in (25) arise from
errors in the NAVD88 dynamic height value provided in the
NGS data sheet for our reference marker, and errors in our
estimation of the NAVD88 datum offset. The NGS data sheet
for our reference marker contained no error estimates, other
than the designation that ‘first order, class II’ levelling was
performed to determine our station’s height. Zilkoski et al [16]
discuss a comparison of NAVD88 heights with corresponding
independent estimates from Canadian levelling observations
over the USA–Canada border. Over 14 points the maximum
difference found was 0.11 m. This value does not necessarily
apply to our station; nevertheless (and in lieu of more precise
information) a reasonable estimate of our station’s dynamic
height error may be about ±0.15 m. Considering an error
of 0.20 m in our estimate of the NAVD88 datum’s offset, we
conclude that the �f /f value given in (25) is probably accurate
to 0.28 × 10−16.

Table 1.

Redshift Uncertainty
Method parts in 10−16 parts in 10−16

(1) EGM96 −1797.61 0.70
(2a) G96SSS −1798.72 0.31
(2b) G99SSS −1798.49 0.30
(3) Levelling/gravity −1798.91 0.28

3. Combined redshift estimate

The results from the three methods are summarized in table 1.
Method (3) is independent of the others. We accept

G99SSS as an update to G96SSS and use only the results
from methods (2b) and (3) to determine our final result. These
differ by 0.42×10−16, while our estimated errors from table 1
imply a 0.41 × 10−16 standard uncertainty for this difference.
Averaging methods (2b) and (3) to evaluate �f /f , we estimate
its value and uncertainty for our reference marker to be

(−1798.70 ± 0.3) × 10−16. (26)

We note that the uncertainty here is larger than our
previous estimate of 0.2×10−16. We consider this uncertainty
estimate to be perhaps more realistic.

We should mention that we have not accounted here for
luni-solar tidal effects. At this level of accuracy the effects
of (at least) the semi-diurnal lunar tide M2 (and possibly of
other constituents) must be considered. One should, therefore,
interpret our �f /f result as an average value over multiples of
the periods of the main tidal constituents. In practice, however,
there may be a number of different periods with components
at this level. Water table variations and barometric pressure
may also be significant.

Loading effects involve the deformation of the crust and
the shifting of equipotential surfaces due to time-varying loads
(e.g. due to ocean tides, atmospheric mass redistribution,
etc). Ocean loading effects for inland stations away from the
coastline (such as the NIST reference point) are not expected
to exceed a few millimetres in magnitude.

4. Summary and future prospects

Based on our work, it appears that the existing measurements
and models of the Earth’s gravity field may not support
estimates of the relativistic redshift correction to better than
the 10−17 level for frequency standards on the Earth. Since this
number contributes to the error budget of a primary frequency
standard in an RMS sense, this implies that a primary frequency
standard in an Earth-bound laboratory will have difficulty
contributing to TAI at better than the 10−16 level. In the
next decade it seems reasonable to expect frequency standards
to reach accuracies challenging our current accuracy in the
determination of the redshift correction. It may be important to
establish standard ways of computing the relativistic redshift,
so that standards are effectively compared using the same
geoid.

There is some discussion in the timing community about
putting primary frequency standards in space. The advantage is
that it would be easier to compare frequency among terrestrial
labs. One disadvantage is that it would be difficult if not
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impossible to service the standard. Most laboratory standards,
to date, have required, or at least benefited from, having
researchers available to work with the standards. There
are experiments in progress that will launch cold-caesium
standards with state-of-the-art accuracies on the International
Space Station (ISS). Two of these are the European project,
Atomic Clock Ensembles in Space (ACES) [19], and the US
project, Primary Atomic Reference Clocks in Space (PARCS)
[20]. We expect it to be easier to determine the gravity potential
on the ISS or other Earth orbiters, because of the distance from
the Earth. The higher spatial frequencies in the geopotential
attenuate as one moves away from the Earth.

Currently, two geopotential mapping missions are
expected to support a significant advance in the knowledge
of the Earth’s geopotential: NASA’s Gravity Recovery
And Climate Experiment (GRACE) [21], and ESA’s
Gravity Field and Steady-State Ocean Circulation (GOCE)
missions [22, 23]. GRACE was launched in March 2002,
and promises to deliver centimetre-level geoid undulation
accuracy with a half-wavelength resolution of 200 km to
300 km. GOCE (scheduled for launch in about 2006) is
expected to improve the resolution even further, allowing
centimetre-level geoid undulation accuracy down to ∼80 km
resolution. The global geopotential models expected from
these missions, in combination with locally available detailed
surface gravity and topography data, may permit point
geoid undulation determination approaching centimetre-level
accuracy. In addition, radar altimeter data from satellites
such as TOPEX/Poseidon and its follow-on Jason-1 [24],
in combination with the global geopotential models from
GRACE and GOCE, should permit improvements in the
determination of the equatorial radius of the mean-Earth
ellipsoid, which directly affects the accuracy of W0. These
advances may permit determination of �f /f accurate to a
few parts in 1018.

The GRACE and GOCE missions will also probably
improve the accuracy with which TAI can be transferred
to astronomical timescales. Since the IAU resolution B1.9
(2000), the rate of terrestrial time (TT), the astronomical
timescale on the geoid, is a defined offset from the Earth-
centred astronomical timescale, TCG. This offset defines a
geoid relative to the gravity potential at the Earth’s centre.
Operationally, one removes estimated frequency offsets from
TAI then identifies that corrected rate with TT. This process
equates whatever de facto geoid TAI is referenced to with
the geoid defined by the IAU resolution. Now, TAI is an
operational timescale. Also, the value of any potential cannot
be measured, but is measurable only as a difference from
one place or time to another. Hence, there is some error
in identifying the geoid to which TAI operationally refers,
with the defined equipotential surface that references TT. Any
inaccuracy in this identification must pass into the transfer from
TAI to astronomical measurements.

The GRACE, and later the GOCE missions, in conjunction
with precise satellite altimetry data, are expected to have a
direct impact on this problem, since

(a) they will allow a better determination and realization of the
geoid, through better estimation of DOT (the separation
between the marine geoid and the sea surface). This would
permit a more accurate determination of the rate offset
between TT and TCG.

(b) GRACE will permit certain temporal geoid variations
to be monitored, which appears to be one of the main
considerations relevant to the definition and realization
of TT.

On the other side, development of frequency standards
accurate to 10−17 or better may provide one possibility for the
verification and error calibration of geopotential differences
estimated from data acquired (in part) from the GRACE
and GOCE missions. This could be attempted following
ideas such as those proposed originally by Bjerhammar [4].
In addition, frequency standards of such high accuracy, located
on different continents, provide an alternative technique well
recognized among geodesists for connecting different vertical
datum points. While there is promise for standards of such
accuracies, methods for transferring such time and frequency
measurements appear to be lacking. The current best time
transfer methods appear to be at the level of 100 ps to 200 ps
stability, or about (1–2) × 10−15 frequency transfers at 1
day [25–28]. In conclusion, it appears that technology
advances in the development of frequency standards and
advances in gravity field determination over the next few years
are expected to benefit both disciplines in complementary
ways.
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