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ABSTRACT†

 
We show that the frequency bias caused by distributed 
cavity phase has a strong dependence on microwave 
power.  We also show that frequency biases associated 
with microwave leakage have distinct signatures in their 
dependence on microwave power and the physical 
location of the leakage interaction with the atom. 
 

1. INTRODUCTION 
 
The subject of frequency shifts in atomic frequency 
standards caused either by distributed cavity phase or 
microwave leakage goes back to the earliest days of the 
thermal beam standards [1,2], and has been the subject 
of continuing theoretical and experimental work over 
the last fifty years. [3-8].  Laser-cooled fountain 
frequency standards pose problems with respect to both 
distributed cavity phase and microwave leakage 
different from those associated with thermal beam 
standards.  This is due both to the very different 
microwave structure used in fountains as well as the low 
center-of-mass velocity and very narrow velocity 
distribution, which allows operation at significantly 
elevated microwave power in fountain standards. 
We discuss the dependence on microwave power of the 
frequency biases induced in an atomic fountain by the 
distributed cavity phase (DCP) and microwave leakage.  
The entire discussion takes place within the limit of 
small detuning because the velocity of the atoms, 
typically a maximum of 3m/s, results in a maximum 
Doppler shift of only 100 Hz. 
The analysis of the phase of the microwave field within 
the typically TE011, microwave cavities used in cold-
atom fountain frequency standards has been the subject  
of a large body of work.  DeMarchi provided the 
seminal contributions of proving a correspondence 
between the phase and power-flows within the 
microwave cavity, identifying the preferred cavity 
configuration and modeling the phase of the microwave 
field within the cavity [9-11].  Three-dimensional 
analyses of the microwave field within the cavity have 
been completed by several authors [12-16].  In many of 

these studies large phase excursions are predicted.  At 
least one author has used these phase excursions to 
predict frequency shifts in the 16f 10f

δ −� range as a 

result of distributed cavity phase [14], larger than the 
current value assigned in the error budget of many 
operational fountain type primary frequency standards.  
We note that the theory presented here allows one to test 
that prediction. 
We begin by briefly reviewing the properties of the 
microwave field and within a resonant TE011 cavity.  We 
then solve the Schrödinger equation for a two-level 
atom in the case where the field within the microwave 
cavity has both real and imaginary parts, which is the 
case required to understand both the distributed cavity 
phase frequency shift and the microwave leakage 
frequency shift.  We then examine the dependence on 
microwave field amplitude of the frequency bias caused 
either by distributed cavity phase or microwave leakage. 
 

2. MICROWAVE CAVITIES AND PHASE 
 
The typical microwave cavity used in cesium (and 
rubidium) fountain frequency standards is a cylindrical 
cavity resonating in the TE011 mode at the hyperfine 
frequency of the atom, 9.193 GHz in the case of cesium.  
See Fig. 1.  The “z-axis” of the cavity is aligned with 
the gradient of the gravitational potential and atoms 
enter and leave the cavity via below-cutoff waveguides.  
This cavity has the crucial property of allowing 
relatively large diameter (2ra ~ 1cm at ν0 = 9.2 GHz.) 
cylindrical waveguides for atoms to enter and leave the 
cavity without unduly influencing the TE011 mode of the 
cavity and thereby causing large phase gradients in the 
microwave field [10].  To lowest order the field within 
the cavity is describable as purely TE ( ZE 0≡ ) and all 
field components are derivable from the longitudinal 
magnetic field Hz(x,y) [17].  Under these assumptions 
and using a trivial extention of the notation of DeMarchi 
in [11], the longitudinal field can be written as 
 ( ) ( ) ( ) ( )i x,y

Z ˆH x, y, z H x, y e f z z,ϕ= (1) 
 

58



 

d 
rC 

raa 

 
Figure 1.  A schematic diagram of  the TE011 microwave cavity used in 
most cesium fountain frequency standards. 

 
where  is the distributed cavity phase under 
discussion here.  The expression for the real part of the 
field within the cavity is given (with a change to 
cylindrical coordinates 

(x, yϕ )

,  and zρ φ ) to lowest order by   

 ( ) 0,1
Z 0 0

c

p zH , , z H J sin
2 r

ρπ πρ φ
′⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
,

d
(2) 

where Jn is the nth Bessel function and n,mp′  is defined as 

the mth solution of 
( )ndJ x

0
dx

= , rc is the radius of the 

cavity, d is the height of the cavity, and 0
2

Hπ is the 

field amplitude at the center of the cavity (see Fig. 1 and 
[17]).  The cavity phase is defined by the relation 

 
( )
( )

Z1

Z

Im H
tan ,

Re H
ϕ −

⎛ ⎞
≡ ⎜⎜

⎝ ⎠
⎟⎟  (3) 

where the real part of H is approximated by Eq (2) and 
the imaginary part is, roughly, approximated by 

 ( )
2 4 2

0
Z

c c

H z 1Im H 1 cos 4 .
2Q r r d 2
π ρ ρ φ

⎡ ⎤
⎥

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢⎜ ⎟= + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

(4) 

Here Q is the quality factor of the cavity.  The second 
term in Eq. (4) comes from power flow to the walls 
from the standing mode of the field, and the third term 
comes from power flow associated with the four-feed 
structure of the particular cavity investigated here [12].  

The terms proportional to z and 
dcr

ρ are negligible for a 

symmetric, well constructed cavity and are not included 
here.  The overall cavity phase has been set equal to 
zero at the geometric center of the cavity. 
Several things can be seen by inspection of the previous 
equations.  First, the phase of the microwave field 
within the cavity is independent of microwave power 
(as it should be).  The effect on the atom of the 
imaginary part of Hz is, however, unlikely to be 
independent of microwave power.  Second, the 
microwave phase can become relatively large when the 
real part of Hz is sufficiently small, or equivalently, the 

Rabi frequency of the atom is sufficiently small.  What 
is ultimately of interest is not the value of the phase 
angle of the microwave field, but rather the value of the 
phase angle imposed on the atomic wave function, and 
any resulting frequency biases.  In order to quantify the 
effect of the imaginary part of the microwave field upon 
the atom, we now obtain a solution to the time-
dependent Schrödinger equation as the atoms pass 
through a cavity with fields described by Eq. (2) & (4). 
 
3. SCHRÖDINGER EQUATION AND RAMSEY 

LINESHAPES 
 
 We extensively employ the theoretical framework 
developed by Shirley [18-20] and present here the 
extensions required to handle both the real and 
imaginary phases of microwave field. 
The Hamiltonian for the system can be written as (cf. 
(7) of [20]) 
 

 (5) 

a

b

2bcos t 2b sin t
,

2bcos t 2b sin t
ω ω

ω ω ω
′+⎛ ⎞

= ⎜ ⎟′+⎝ ⎠
=H�

ω

bwhere a and ω ω= =  are respectively the energies of the 
upper and lower states.  The interaction Rabi frequency 
for the real part of the microwave field is given by 

( )B Z2b g Re H ,µ= =  where µB is the Bohr magneton, g 
the Landé g-factor and HZ the microwave magnetic field 
parallel to the quantization axis imposed by the external 
c-field.  A similar expression applies for 

,  b′ ( )B Z2b g Im H ,µ′ = =  the Rabi frequency due to 
the imaginary part of the microwave field.  Both 
( ) ( )b t  and b t′ are time-dependent, owing to the atoms 

motion in the cavity.  We also define 0 02
Bg

b H
µ

≡
=

.   

In the rotating wave approximation, the Hamiltonian in 
1.5 is written 

 (6) 
( )

( )
i t

a
i t

b

b ib e
.

b ib e

ω

ω

ω
ω

−⎛ ⎞′+
= ⎜ ⎟⎜ ⎟′−⎝ ⎠
=H

Note the sign change in ( )b t′  in the off-diagonal 
couplings.  This comes about because the rotating wave 
approximation selects one exponential from sin tω in 
one coupling and the other exponential in the other 
coupling (Compare to (7) and (8) in [20]).  Using the 
“phase factored” solutions, α and β, (cf (9 & 10) of 
[20]) gives us, finally, the Schrödinger equation for the 
system, 

 
b ibdi .

b ibdt
α α
β β

′−∆ +⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟′− ∆⎝ ⎠ ⎝ ⎠⎝ ⎠

= = (7) 

With the initial condition  then α 
is the probability amplitude that the system remains in 
its initial state and β the probability amplitude that the 

( ) ( )0 1 and 0 0α β= =
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Microwave Excitation (units are b τ=π/2)

system changes state.  ∆ is half the detuning δω  from 

the atomic resonance ω0: ( )0
1 =
2
ω ω∆ = −  

0 a, where 
2
δω

bω ω ω= − is the hyperfine splitting of the 

atom.  ∆, b, and b′ are all real, possibly time-dependent, 
quantities.   
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We have given a solution to (7), valid through first 
order in ∆ and b′ , under the assumption that the 
detuning is small compared to the Rabi frequency, in 
[21].  We quote here only the final results. 
Using our solutions mentioned above and assuming that 
the real part of the excitation is the same for both 
Ramsey pulses leads to a transition probability of 

( ) ( )
( )

2
2 1 00

R
1 2 0

csc bsin 2b
P 1 cos T sin

2 sec b

ε ε ττ
δω δω

η η τ

⎡
RT .

⎧ ⎫− +⎪ ⎪⎢= + + ⎨ ⎬⎢ +⎪ ⎪⎩ ⎭⎣

dt

⎤
⎥
⎥
⎦

 (8) 

The term , that is, is the average value 

of during the excitation time τ, which amounts to 

( )0
0

b b t
τ

τ = ∫ 0b

( )b t

4
π  at optimum power, and 1,2 1,2 and ε η  are 

proportional to the imaginary part of the microwave 
field .  The transition probability, P, is clearly a 
normal Ramsey fringe (the 

b′
Rcos Tδω term) plus an 

underlying fringe of small amplitude and 
/ 2π displacement (the Rsin Tδω term).  The latter 

asymmetrically distorts the Ramsey curve and leads to a 
frequency bias.  The frequency bias is proportional to 
the difference between the transition probabilities PL 
and PR on the left and right sides of the central Ramsey 
fringe at equal detunings.  This difference is given by  

( ) ( ) ( )
2 2 1 2 1

L R 0
0 0

P P sin 2b
sin b cos b
ε ε η η

τ
τ

⎡ − +
− = +⎢ ⎥

⎢ ⎥⎣ ⎦
,

τ
⎤

 (9) 

where PL,R is the probability given by (8) on the left and 
right sides of the central Ramsey fringe respectively 
(that is with ,2 RT

πδω = ∓ respectively).  Eq (9) is 

plotted below in Fig 2.  The complicated nature of the 
power dependence of the frequency bias associated with 
distributed cavity phase is immediately apparent in Fig. 
2.  This signature should allow measurement of the 
frequency bias associated with distributed cavity phase, 
or at least allow the placing of an upper limit on the 
effect. 

0

Figure 2.  The distortion of the Ramsey fringe plotted caused by 
distributed cavity phase with respect to the microwave excitation 
(number of 2π pulses). The distortion is proportional to the 
frequency bias and the data shown here are normalized to the shift at 
optimum power (one 2π pulse). 

 
4. MICROWAVE LEAKAGE 

 
We can use the Hamiltonian, Eq. (6), also to investigate  
microwave leakage, except that in this case both 

and b b′  are presumably small.  We divide our 
analysis into three cases: leakage before the two 
Ramsey interactions, leakage between the Ramsey 
pulses, and leakage after the Ramsey interactions.  
Because the state-selection mechanism in NIST-F1 and 
IEN-CSF1 destroys any microwave coherence and 
projects the atoms into a pure F=3 state we can ignore 
the case of leakage before the first Ramsey interaction.  
We note however that the solution to the case of leakage 
before the first Ramsey interaction can be obtained from 
the case of leakage after the second Ramsey interaction 
by the substitution of for .t t−    
 Some general results can be obtained [22]: 
 

1. Microwave leakage in phase (the b term) with 
the field in the Ramsey cavity does not cause a 
frequency shift. 

2. Microwave leakage in quadrature phase (the 
b′ term) does not cause a frequency shift if it 
is applied symmetrically with respect to the 
center of the Ramsey interaction at TR/2. 

3. Microwave leakage in quadrature phase 
applied asymmetrically with respect to TR/2 
excites a Ramsey fringe shifted with respect to 
the central fringe (a ( )sin RTδω term) much like 
that in Eq. (8), which can cause a frequency 
bias. 

We investigate the power dependence of these 
frequency biases next.  Full solutions to the Schrödinger 
Equation for all three leakage cases are given in [22].  
The various specific cases of microwave leakage are 
examined below. 
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Figure 3.  The modeled  frequency shift induced by leakage above the 
Ramsey cavity in NIST-F1 and IEN-CSF1.  The solid curve is the case 
where the leakage amplitude is constant while the field in the Ramsey 
cavity is increased.  The broken curve is the case where the leakage 
field amplitude is proportional to the amplitude of the field within the 
Ramsey cavity.  The microwave leakage power of each curve was been 
chosen for convenience and has no particular significance. 

 
5. MICROWAVE LEAKAGE BETWEEN THE 

TWO RAMSEY PULSES  
 
The dependence of the frequency bias on the amplitude 
of the microwave field in the Ramsey cavity is shown in 
Fig 3.  It is immediately apparent that the frequency bias 
caused by microwave leakage is zero at integer 
multiples of the optimum excitation amplitude, 

0
(2 1)  , n=0,1,2...2

nb πτ +=  .  A measurement of the 

residual frequency bias can be obtained with some 
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Figure 4.  The frequency bias from microwave leakage above the 
Ramsey cavity can be measured in a “leveraged” fashion by 
operating well away from optimum microwave power in the Ramsey 
cavity.  Assuming that the normal operating conditions keep the 
microwave power within 0.1 dB of optimum, a leverage of about 30 
can be obtained by operating 3 dB above or below optimum instead. 

leverage by measuring well away from optimum power, 
as illustrated in Fig. 4.  In NIST-F1 the microwave 
power is set to within ± 0.1 dB of optimum, denoted by 
the dotted lines in Fig. 4.  The frequency shift induced 
by microwave leakage at ± 3 dB from optimum 

excitation is some 30 times greater than the shift 
expected within 0.1 dB of optimum.  The measurement 
at ± 3 dB therefore gives a “leverage” of 30 over the 
standard operating conditions, at least for the specific 
case of leakage above the Ramsey cavity. 
 

6. MICROWAVE LEAKAGE AFTER THE 
RAMSEY INTERACTION 

 
 In the case of both NIST-F1 and IEN-CSF1 this is the 
most likely location for microwave leakage to interact 
with cesium atoms.  The power dependence of this shift 
is shown in Fig. 5.  The behavior of this shift is distinct 
from that caused by leakage above the Ramsey cavity in 
that its frequency with respect to the Rabi frequency is 
half that of the case of leakage above the Ramsey 
cavity.  This signature can be used to identify the source 
of a frequency bias as being caused by leakage either 
above or below the Ramsey cavity.  Unfortunately this 
shift is difficult to distinguish from the frequency shift 
caused by distributed cavity phase, as shown in Fig 6.  
Various approaches to separate these two effects are 
discussed in [22]. 

Ramsey Pulses (units of b0τ=π/2)
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Figure 5.  The modeled  frequency bias induced by leakage below the 
Ramsey cavity. The solid curve is the case where the leakage 
amplitude is constant while the field in the Ramsey cavity is increased.  
The broken curve is the case where the leakage field amplitude is 
proportional to the amplitude of the field within the Ramsey cavity.  In 
both cases the microwave power level has been chosen purely for 
convenience and has no particular significance. 

 
 

7. DISCUSSION  
 
 The frequency biases caused by distributed cavity 
phase and microwave leakage have distinct signatures 
when measured as a function of the amplitude of the 
microwave excitation in the Ramsey cavity.  The 
various shifts can be measured and either “fixed” by 
eliminating the source of the leakage (best), or perhaps 
calibrated and corrected.   
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Microwave Excitation (units are b0τ=π/2)
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Figure 6.  A comparison of the power dependence of the shift caused 
by microwave leakage (dotted curve) and the shift caused by 
microwave leakage below the Ramsey cavity (solid curve) as a 
function of the microwave excitation of the atoms in the Ramsey 
cavity. 

It has been assumed here that the leakage terms must be 
treated in the small detuning limit.  Various other 
approaches such as using the nonresonant AC Stark 
shift have been applied to the case of microwave 
leakage in a cesium fountain [23].  We hold that these 
cases are not valid approximations in a cesium fountain; 
the Doppler shift caused by atomic motion is, at 100 Hz 
maximum, much too small to be considered within the 
framework of an off-resonant AC Stark shift.  The 
frequency shift caused by microwave leakage in a 
fountain depends on the amplitude of the microwave 
field and not on the power (square of the amplitude).   
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