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The effect of sion- frequency modulation of the excitiug radiation on the Ranisey line shape observed in 
an atomic b e s n  experimenr is formulated theoiericslly. I t  is shon-n that the presence of second harmonic 
in the modulation can introduce mensurable frequency shifts1 whether observed directly or r i t h  a servo 
system. 

1. INTRODUCTION 

attempting to build a clock based on the cesium 

to lock a crystal oscillator to the peak of the Ramsey 
line shape. The exciting radiation is frequency modu- 
lated a t  a slow rate: such that the instantaneous fre- 
quency sweeps across the center of the Ramsey line. 
The detector output then contains a component a t  the 
modulation frequency which vanishes when the escita- 
tion frequency coincides with a maximum (or minimum) 
of the Ramsey pattern. 

A closer analysis of this situation shows that the 
concept of sweeping the excitation frequency across the 
line shape is physically erroneous unless the rate of 
sweep is extremely slow. If the frequency changes 
slightly during the time an atom is between the two 
oscillating field regions, the atom sees a phase shift 
upon entering the second oscillating field region. Such 
phase shifts produce quite different line s1iapes.l As the 
apparent phase shift oscillates with the modulation, the 
line shape oscillates among its various forms for the 
corresponding phase shifts. For sinusoidal modulation 
the line shape has a time dependence which is readily 
Fourier analyzed into components at  multiples of the 
modulation frequency. The servo system looks only at  
the fundamental component of this series, adjusting 
the excitation frequency to minimize the amplitude of 
this component. Calculations indicate that this com- 
ponent vanishes at  the Bohr frequency in the case of 
pure siiiusoidal modulation. However, if harmonics are 
present in the modulation, the fundamental component 
may vanish a t  a slightly different frequency. 

,4n approximate analysis is carried out to determine 
the effect on the Ramsey line shape of a slow, but other- 
wise arbitrary phase modulation. The results are applied 
t o  pure sine-wave modulation and then 1-0 modulation 
including a small amount of second harmonic. 

I" resonance frequency, a servo system is often used 

Reference should be made t o  Sec. 2 of that paper for the 
formulation and notation used. In the derivation of the 
Rabi line shape let us replace coswt by cos[wt+4(t)]. 
Carrying out the same procedure as in reference 2 nre 
find the same expression for H o ,  except that A has been 
replaced by 

This depends on time, but we now make the assumption 
that the change in 4 during the oscillating field region 
transit time 7 is negligible compared with the Rabi 
linemidth. (In a typical case A+/c is the order of 
to  lo+.) In the oscillating field regions we then treat 
4 as constant, that  is, 4(to+7)=8,(t0). 

For Ramsey excitation we take the time dependence 
of 4 into full account in the interim between the two 
oscillating field regions. In  the first oscillating field 
region we use in the LT matrix 

in the second, 

In between, A T  is replaced by AT+$?$, where 
64= (b (to+- T )  -4  (io) is the apparent phase' shift for an 
atom entering a t  time to and traversing the apparatus 
in time T, Combining the transformation matrices as 
in Sec. 4 of reference 2 the transition amplitude of the 
Ramsey pattern becomes 

p= eiihT+f6m) ao(41)80(4.?)+e-i(*Tt:"iiPo(Al)LY~(A.?). 
Written out in full this expression becomes somewhat 
unwieldy, Over the central peal; of the Ramsey pattern, 
however, 4<<c whenever T<<T or l<<L. To first order 
in A and 8, 

$ I 2 =  4 s h ' k T (  l+[cos&lT- l(A,, c) sin2AT t a n c ~ ]  

A' [w+ 4 ( t )  - wa]/' 2. 

Ai= (io), 

A,=A++$(to+T). 

X cos@- [sin24T+2(4,'c) cos24T tancr] 
Xsindgj- (c-l sin24T tancr)bw cos64 

- (c-l cos2ilT tancr)o"w sin&$), 

DEPENDENCE where 6w=$[$( to)+- i ( to+T)] .  Kote that unless (b2 
terms are included the transition probability depends 
on 4 only through the apparent phase shift Sgj and the 
average frequencv deyiation 60. These depend on par- 

2 .  ANALYSIS FOR ARBITRARY PHASE 

The derivation of the line shape for unmodulated 
excitation has been discussed in a previous paper.2 

I 

ticle velocities through T ,  and on lnborarory time 
through to. 

If v-e observe the line shape over an eatended period 

S. F. R " q  -1foZecirliLr Bmur (Oxford L-nirermy Press, 

J H. Shi:iey, J. :\pp1. Ph? s. 34, 783 ,1963), ?receding articie. 
Sen  Tork, 1936). p. 131. 
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of time, we see ! 0 j averaged over the entrance times 
of the atoms Lo. Let angular parentheses denote an 
average over to. The peak of the Ramsey pattern oc- 
curs at  A,,,, the root of (aT,’d4)jPl2=0. To the same 
approximarion that \ p \ was witten 

tan2Ar,,T 

(sin64jf (Aresic) ( cos6+)+~-~(6w Cos64)i tancr 

(cost+)- [a (Ares/’~) sin64+cr1(6w sin6+)] tancr 
- _ -  

If (sin64) and (6w cos@) both mnish! A,,,=O and there 
is no shift. If (sinb+)#O, we have, neglecting terms of 
order l/’cT = 0 (Z/L)! 

tan2Ar,,T= - (sind4j/ (cos;+), 
or for a small shift: 

Ureu-un= - T-’((siiiG+)/(cosG+)). 

3. SIMPLE FREQUENCY MODULATION 

Let us now consider the ideal case of pure sine-Jvave 
modulation 

6+= - 2(bl/:w,,) sin(+wJ’) 
Xsin(w,,fo++w,,T+S1j = 641 sinhVl, 

M7e expand sin84 and cos64 in Fourier series in W,, ob- 
taining Bessel functions with argument 6dl as 
coefficientss : 

- b1 cos(+w,,,T) siii(w,t0++u.,T+6~) = a w l  sinTVl. 

sin@= 2J1 sinT/iil+2Ja sin3W1+ . . ~ 

cost$ = Jo+ 2 J2 sin2W1+ 2.T4 sin4TV1+ . . . . 

Nom- (simzTVl)=O, so (sin&$)= (6w cos6+)=0 and no 
shift in the peak of the average line shape is expected. 

We can go further and write out the Fourier expan- 
sion of (pI2: 

a 
cos24T-2- sin2AT tancr 

c 

6 0 1  
- Jo- sin2A.T tancr 

G 

1 sin2AT tancr cosT;f’l 

A 
2J2 cos2A.T-2- sin2AT tancr +[ i G 

See ,  for example. H a d 6  S. Black, Aiioduliliion Theor? (D. Van 
Kostrand Company, Inc., Princeton. Ten- Jersel-. 1 9 3 ) :  p. 188, 
or any ix-ork on Ressel functions. 

We see that the constant term and the coefficients of 
ex-en harmonics are even functions of 4. ’They have 
maxima (or minima) at 1=0. The coefficients of the 
odd harmonics are odd functions of 1, vanishing at 
A=O. Thus a sen-o system which looks a t  the first 
harmonic and adjusts A to minimize the amplitude, 
seeks the desired resonance frequency. This is also true 
for modulation a t  several incommensurable frequencies, 
since they do not interfere with each other. For com- 
mensurable frequencies the situation is different. 

4. EFFECT OF SECOND HARMONIC IN 
THE MODULATION 

We take 

4= ( b ~ / w m . )  cos(o7J+61)+ (b3/2~~L) cos(2wd+62) 

and use the abbreviated notation 

o”+= 641 sinTV1+6+2 sinW2, 
6w= 6w l  sinT.Til+6w2 sinTq-2, 

64); = - 2 (b,/kw,) sin ($ha,, T) , 
where 

6wk= - b k  cos(+kw,T), 
and 

Wt= (k~,to+$kw,,T+Gk), 

For simplicity we consider 64?<<1, with ~ 3 4 ~  arbitrary 
and keep only first-order terms in &b2. 

sin&$= 2.T1 sinW1+2.T3 sin3T.lr1 
- - 6 + J 2  sin(2TV1-lX72)--6+2Jo sinTV2. . . , 

 COS^+= Jo+2JF cos2W,--Gc$,J1 cos(W1- JTTJ 
-64?.73 CoS(3TV1-FTr2)+~ . .. 

The argument of all Bessel functions is 

(sin&) = 64J2 sin (26 - 6 2) + 0, 

so a shift in the peak of the time-average line shape is 
expected, and will be approximately given by 

tan2Ar,,T= o”qj,(J?i.J1:) sin(2?i1-862j. 

Keglecting terms n-hich r i l l  be of order t,’L 

I @ \ ? = *  sin2cr(l+cos24T cos8+-sin2AT sin&$) 

The first harmonic of the detector output is then pro- 
portional to 

6d?[J1 COS ( T , V -  TT’s)+ Ja COS (3Ti-i- I T - ? ) ]  
X cosZA.T+2J1 sinTT-1 sin2A.T. 

The mechanics of the servo system inool~~e filtering out 
this frequency and feeding it into a phase detector. The 
output of the phase derecior is proporrional TO the time 
average of the product of the input signal and a’refer- 
eiice signal of the same frequency. Let rhe reference 
a ipa l  be propordona1 t o  siiiiTT-lfB). Then the phase 
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deiector output is proportional to  

60?[J1 sin(261-862f8)- J :  ~in(26~-8~-8]] 
Xco;21T+-2J1 LOSS i in?lT.  

This is the correction signal to control the escimtion 
frequency. The servo adjusts the excitation frequency 
50 that the correction signal vanishes. This occurs \&en 

xan3,,,T= - )&?C (1 - J 8  J1) sin(2al- 6,) 
+ tan8 (l+Ja/JI) cos (281- SJ]. 

Thus the servo locks onto a frequency shifted from the 
Bohr frequency. The magnitude of the shift is in general 
d i j e m z t  from the shift observed in the time-average 
line shape. It depends on the magnitude and relatire 
phases of the modulating frequencies, and on the phase 
of the reference signal for the phase detector. 

An analysis of the power spectrum of the modulated 
signal considered in this section shovrs an asymmetry 
proportional to sin(2?il-&). If the relative phases of 
the modulating frequencies are such as to give a sym- 
metric power spectrum and the relative phase of the 
reference signal vanishes, there will be no shift. On the 
other hand, for S=x/2,  the shift can be sizeable (about 
lop9 for cesium), so that  it is desirable to observe the 
“in phase” component of the detector signal as well as 
to have symmetric power spectra in order to keep the 
shifts small. For 8c1=O1, 6+2=010-3, S=o,  T=010-’, 

(ores-wo),/wo= 2A/wo=O(6r#Q/2woT) =010-” 

for cesium. This estimate s h o w  that the shift due to 
second harmonic in the modulation can be appreciable 
unless the amplitude of the second harmonic is kept 
very small. (Shifts due to the second harmonic have 
been observed and the dependence on the amplitudes 
and relative phases plotted by the National Company 
in their research on cesium beam frequency standards.4 
Vnfortunately they did not present their theoretical 
work on the problem.) 

The inclusion of higher harmonics only complicates 
the analysis. However, the odd harmonics alone do not 

Interim Development Report for Atomic BeAm Frequency 
Standard, 4-25-57 to 7-27-57, National Company, Inc., Maiden, 
Massachusetts (1957). 

produLe any shifts. The general formula for the shifx is 
always a sum of products of even and odd harmonics. 

5. EFFECT O F  VELOCITY DISTRIBUTION 

In the preceding analysis no mention has been made 
of the relocity distribution and, in fact. no attempt has 
been made to  average over velocities. K e  note that not 
only t a n 2 l T  and sin’cr depend on velocity, but also 
6a1 and 6 9 2 ,  hence all Bessel functions, also 801, Bwz, and 
0 (to compensate for T dependence in W1). Ramsey’s 
tables (reference 1, p. 123) do not include integrals of 
the form 

e-dy3 sin - J ,  a sin- dy. l ($) ( 1) 
Qualizatively the results of this paper should not be 

changed appreciably by a velocity average from what 
they are using a single median velocity. If more than a 
rough value for the size of the shift were desired a nu- 
merical averaging would have to be performed t o  find 
a numerical magnitude for the shift. But because of the 
velocity distribution it is impossible to eliminate the 
shift simply by adjusting 8=0  or 641 such that J1=Je, 
since these could hold only for a single velocity. HOT\-- 
ever, since the sign of the shift can reverse, there must 
still exist conditions for which the shift seen by the 
servo, or the shift in the time-average line shape (but 
not both) vanishes. It would be difficult to compute 
these conditions theoretically. especially since they will 
depend sensitively on the power le~7el of the excitation. 
But it should be possible by trying for a symmetric 
power spectrum and S=O to reduce the shift by one or 
two orders of magnitude below the estimate made in 
Sec. 4. 

A change in excitation power level (3) changes the 
velocity for which the transition probability is a maxi- 
mum, hence changes the relative effectiveness of the 
velocity components of the beam. Any velocity- 
dependent shift such as the one found in Sec. 4 then 
exhibits a marked and complex dependence on power 
level, and it is difficult to separate such shifts according 
to their causes. 


