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The efiect of slow frequency modulation of the exciting radiation on the Ramsey line shape observed in
an atomic beam experiment is formulated theoretically. It is shown that the presence of second harmonic
in the modulation can introduce measurable frequency shifts, whether observed directly or with a servo

system.

1. INTRODUCTION

N attempting to build a clock based on the cesium
resonance frequency, a servo svstem Is often used
to lock a crystal oscillator to the peak of the Ramsey
line shape. The exciting radiation is frequency modu-
lated at a slow rate, such that the instantaneous ire-
quency sweeps across the center of the Ramsey line.
The detector output then contains a component at the
modulation frequency which vanishes when the excita-
tion frequency coincides with a maximum (or minimum)
of the Ramsey pattern.

A doser analysis of this situation shows that the
concept of sweeping the excitation frequency across the
line shape is physically erroneous unless the rate of
sweep is extremely slow. If the frequency changes
slightly during the time an atom is between the two
oscillating field regions, the atom sees a phase shift
upon entering the second oscillating field region. Such
phase shifts produce quite different line shapes.? As the
apparent phase shift oscillates with the modulation, the
line shape oscillates among its various forms for the
corresponding phase shifts. For sinusoidal modulation
the line shape has a time dependence which is readily
Fourier analyzed into components at multiples of the
modulation frequency. The servo system looks only at
the fundamental component of this series, adjusting
the excitation frequency to minimize the amplitude of
this component. Calculations indicate that this com-
ponent vanishes at the Bohr frequency in the case of
pure sinusoidal modulation. However, if harmonics are
present in the modulation, the fundamental component
may vanish at a slightly different frequency.

An approximate analysis 1s carried out to determine
the effect on the Ramsey line shape of a slow, but other-
wise arbitrary phase modulation. The results are applied
to pure sine-wave modulation and then to modulation
including a small amount of second harmonic.

2. ANALYSIS FOR ARBITRARY PHASE
DEPENDENCE

The derivation of the line shape for unmodulated
excitation has been discussed in a previous paper.?

IN. F. Ramsey, Molecular Beams (Oxford University Press,
New York, 1936), p. 131.
2J. H. Shirley, J. Appl. Phys. 34, 783 (1963), preceding article.

Reference should be made to Sec. 2 of that paper for the
formulation and notation used. In the derivation of the
Rabi line shape let us replace coswt by cos[wi+@(2)].
Carrying out the same procedure as in reference 2 we
find the same expression for H,, except that A has been
replaced by

A =Tot+¢(D)—wi /2.

This depends on time, but we now make the assumption
that the change in ¢ during the oscillating field region
transit time 7 is negligible compared with the Rabi
linewidth. (In a typical case Ad/c is the order of 10—
to 107%.) In the oscillating field regions we then treat
¢ as constant, that is, ¢(tp+7) = (Z0).

For Ramsey excitation we take the time dependence
of ¢ into full account in the interim between the two
oscillating field regions. In the first oscillating field
region we use in the U matrix

Ar=A+1¢(lo),
in the second,
Ap=A+3¢ (ot T).

In between, AT is replaced by AT+%5¢, where
so= (ip+T)—¢ (o) is the apparent phase shift for an
atom entering at time 4, and traversing the apparatus
In time 7. Combining the transformation matrices as
in Sec. 4 of reference 2 the transition amplitude of the
Ramsey pattern becomes

B= e AT (A1)Bo(As) e ATTH98 (M) Ao (As).

Written out in full this expression becomes somewhat
unwieldy. Over the central peak of the Ramsey pattern,
however, A<l¢ whenever 7T or I<KL. To first order
in A and ¢

1812=% sin®2c7 {14 [cos2AT—2(A/¢) sin2AT tancr
X cosbp—[sin2AT+2(A/¢c) cos2AT taner ]
Ksindp— (¢t sin2AT tancr)dw cosde
— (¢! cos2AT taner)dw sinde},
where sw=3%[¢(t0)+o(e+T)]. Note that unless ¢*
terms are included the transition probability depends
on ¢ only through the apparent phase shift 8¢ and the
average frequency deviation dw. These depend on par-
ticle wvelocities through 7, and on laboratory time
through #.
If we observe the line shape gver an extended period
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of time, we see |§8|* averaged over the entrance times
of the atoms #. Let angular parentheses denote an
average over #. The peak of the Ramsey pattern oc-
curs at A, the root of (d/dA);812=0. To the same
approximation that |82 was written

tan2Are "
(sindg )+ 2 (Aves/c){c080p)+c 6w cosde) ]| tancr
(c088¢)— [ 2 (Ares/) sindg—+c (b sindg)] tancr

If (sindg) and (6w cosdp) both vanish, Are=0 and there
is no shift. If (sindg)=0, we have, neglecting terms of
order 1/¢T=0(l/L),

tan24... 7= — (sinde )/ (cosie),
or for a small shift:

Gres— wo=—7"2((sindg)/ (cosse)).

3. SIMPLE FREQUENCY MODULATION

Let us now consider the ideal case of pure sine-wave
modulation

d=(bi/wn) cos(wni+8,).
Then

b= —2(b/wy) sin (3w, T)

X sin (lelo—{—%wan—i'al) = 6(]51 sinWl,
bo=—b; c08 Fw,T) sitn(wnbotLwnT+6) = 6w, sinW,
We expand sinép and coség in Fourler series in Wy, ob-
taining Bessel functions with argument 6¢; as
coefficients®:

sindgp =27, sinlW 14275 sin3W 1+ - -,
cosbp=J o427 sin2W -+ 27, sindW ;- - -.
Now (sinnlV1)=0, so (sind¢)= (6w cosép)=0 and no
shift in the peak of the average line shape is expected.

We can go further and write out the Fourier expan-
sion of |3]2:

A
B12=% sinQZm—{ lil—!—]o<c052AT» 2—sin2AT tancr)
C

5(:)1 A
— J1~]+[— 2]1<Sin2AT+ 2— cos2AT tanc-r>

4 4

5@1 3
—Jo—sin2AT tanm-J sinfl
c

5(4)1 )
+ [ —Js sin2AT tancr] cosW
4

A
- [2]2<C052A T—2—

sin2AT tanm—)} sin2W,

5031 ‘(
+l:(,f1—J3)— cos2AT tanm—] cos2W 4 - - -,

¢ I

_# See, for example, Harold S. Black, Afodulation Theorv (D. Van
Nostrand Company, Inc., Princeton, New Jerser, 1933}, p. 188,
or any work on Bessel functions.
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We see that the constant term and the coefficients of
even harmonics are even functions of A. They have
maxima (or minima) at A=0. The coefficients of the
odd harmonics are odd functions of A, vanishing at
A=0. Thus a servo system which looks at the first
harmonic and adjusts A to minimize the amplitude,
seeks the desired resonance frequency. This is also true
for modulation at several incommensurable frequencies,
since they do not interfere with each other. For com-
mensurable frequencies the situation is different.

4. EFFECT OF SECOND HARMONIC IN
THE MODULATION

We take
= (b1/wm) 08 (wni+861)+ (bs/2wm) cOS(2ewomt+5s)
and use the abbreviated notation
8p="~0¢1 sinW ;-+6¢s sinW s,
Sw= 8wy SINW |-+ 8w sin? s,
where
bpr=—2(bs/kwm) sin (SkonT),

Swp=— by cos(2kw,T),

and
W= (kosmiot+Fkw T+05).

For simplicity we consider §¢s<X1, with é¢, arbitrary
and keep only first-order terms in 6¢s.

sindg =27 sinW-+2.7; sin31
*5(}32]2 Sin (2II’1-M72>_5¢)2]0 SiHT/VQ' ty,
cosdp=J o+ 2T cos2W1—b¢poT 1 cos(W1— W)
—8¢paT 5 cos(BW 1 — W)+ - -.
The argument of all Bessel functions is é¢;.
(sin6¢>= 5¢)2J9 Sin (251— 53) 7_’507
s0 a shift in the peak of the time-average line shape is
expected, and will be approximately given by
I&HZArestoﬂtﬁg(]g/’]l:) Sin (251—52)
Neglecting terms which will be of order £/L
1812=1 sin%+ (14cos2AT cosbp—sin2AT sinég).

The first harmonic of the detector output is then pro-
portional to

dpal T 1 cos (W1 — W o)+ T 5 cos{(3W,— )]
X cos2AT+27, sinl7; sin2A7.

The mechanics of the servo system involve filtering cut
this frequency and feeding it into a phase detector. The
output of the phase detector is proportional to the time
average of the product of the input signal and a refer-
ence signal of the same frequency. Let the reference
signal be proportienal to sin(T7;+6). Then the phase
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detector output is proportional to”

5(..7’)2[]1 Sin (251— 52"}"9) _— Js sin (251—53’—9)]
X cos2AT+H2T; cosf sin2AT,

This 1s the correction signal to control the excitation
frequency. The servo adjusts the excitation frequency
so that the correction signal vanishes. This occurs when

tan2 A T= —18¢.[ (1— 73/ J1) sin(26,—352)
+tan6(1—i—]3/]1) COS<251—‘52)].

Thus the servo locks onto a frequency shifted from the
Bohr frequency. The magnitude of the shift is in general
different from the shift observed in the time-average
line shape. It depends on the magnitude and relative
phases of the modulating frequencies, and on the phase
of the reference signal for the phase detector.

An analysis of the power spectrum of the modulated
signal considered in this section shows an asymmetry
proportional to sin(26;—5.). If the relative phases of
the modulating frequencies are such as to give a sym-
metric power spectrum and if the relative phase of the
reference signal vanishes, there will be no shift. On the
other hand, for #=x/2, the shift can be sizeable (about
107® for cesium), so that it is desirable to observe the
“in phase” component of the detector signal as well as
to have symmetric power spectra in order to keep the
shifts small. For §¢1=01, §¢=010"2, =0, T=010"2,

(wres*w())/w(): 2A/w0= 0 <5¢2/2w0T) =010~

for cesium. This estimate shows that the shift due to
second harmonic in the modulation can be appreciable
unless the amplitude of the second harmonic is kept
very small. (Shifts due to the second harmonic have
been observed and the dependence on the amplitudes
and relative phases plotted by the National Company
in their research on cesium beam frequency standards.*
Unfortunately they did not present their theoretical
work on the problem.)

The inclusion of higher harmonics only complicates
the analysis. However, the odd harmonics alone do not

4 Interim Development Report for Atomic Beam Frequency

Standard, 4-28-57 to 7-27-37, National Company, Inc., Malden,
Massachusetts (1957).
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produce any shifts. The general formula for the shift is
alwayvs a sum of products of even and odd harmonics.

5. EFFECT OF VELOCITY DISTRIBUTION

In the preceding analvsis no mention has been made
of the velocity distribution and, in fact, no atterapt has
been made to average over velocities. We note that not
only tan2A7 and sin%r depend on velocity, but also
d¢1 and 8¢, hence all Bessel functions, also 6w, dwe, and
6 (to compensate for T dependence in 17y}, Ramsey’s
tables (reference 1, p. 423) do not include integrals of

the form
“’ x b
/ ey sin(—)] n(a sin—)dy.
0 Y ¥

Qualitatively the results of this paper should not be
changed appreciably by a velocity average from what
they are using a single median velocity. If more than a
rough value for the size of the shift were desired a nu-
merical averaging would have to be performed to find
a numerical magnitude for the shift. But because of the
velocity distribution it is impossible to eliminate the
shift simply by adjusting §=0 or 8¢, such that J;=7;,
since these could hold only for a single velocity. How-
ever, since the sign of the shift can reverse, there must
still exist conditions for which the shiit seen by the
servo, or the shift in the time-average line shape (but
not both) vanishes. It would be difficult to compute
these conditions theoretically, especially since they will
depend sensitively on the power level of the excitation.
But it should be possible by trying for a symmetric
power spectrum and =0 to reduce the shift by one or
two orders of magnitude below the estimate made in
Sec. 4.

A change in excitation power level (c?) changes the
velocity for which the transition probability is a maxi-
mum, hence changes the relative effectiveness of the
velocity components of the beam. Any velocity-
dependent shift such as the one found in Sec. 4 then
exhibits a marked and complex dependence on power
level, and it is difficult to separate such shifts according
to their causes.




