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11. EFFECTS OF LONG-TERM STABILITY ON
THE DEFINITION AND MEASUREMENT
OF SHORT-TERM STABILITY

J. A. BARNES AND D. W. ALLAN

National Bureau of Standards
Boulder, Colorado

Several authors have reported the measurement of a ‘“flicker noise’’ spectrum for the frequency
fluctuations, below a few cycles per second, of good quartz crystal oscillators. Experimental work
carried out at the National Bureau of Standards at Boulder is in good agreement with these results.

. The influence of this longer term type of noise turns out to be of considerable importance in
the definition and measurement of shorter term noise, since averages of this short-term noise
normally cover a total averaging time well into the flicker noise region. A mathematical formalism
which satisfactorily avoids convergence difficulties has been developed around a set of physically
meaningful quantitics. Some theoretically reasonable definitions of short- and long-term stability

are given.

It has been established by many people that
quartz crystal oscillators are frequency-modulated
by a “flicker” or 1/w type of noise which extends
to at least as low a frequency as 1 eycle per year
and probably cven lower. Because the frequency
emitted by any physically realizable device is
bounded, this flicker noise -behavior nmust cut off
at some low, nonzero frequency e.

It is possible to construct some measure of
frequency stability (x ) as the time average of a
function x () of the frequeney. This funetion may
or may -not depend eritically on the cutoff fre-
quency e. Thus, it might be that, if one measures
the average value of x (&) for some finite time T,
this average value (x )r will begin to approach
{x ) only after 7T is several times larger than 1/e.
Such a stability measure is thus said to be “cutoff-
dependent” and is an inconvenient -measure of
frequency stability, since averaging times in
excess of several years may be required to obtain
a reasonable approximation to (x).

It is apparent that a necessary condition (not a
suflicient condition) on any cutoff independent
stability measure (x) is that (x) cxists in the
limit ¢—0. One can show that such quantities as
the variance of frequency fluctuations around a
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uniform drift of frequency are, in fact, cutoff-
dependent and hence not a very useful measure of
frequency stability. :

Some measures of frequency stability which are
nol cutoff-dependent and have direct use in
various applications are: (1) variance of fre-
quency fluctuation for finite sampling and averag-
ing times, and (2) the variance of the nth finite
difference of the phasc for n2>2.

GENERAL PROBLEM

As stated, it has becn cstablished that quartz
crystal oscillators are frequency-modulated by a
“flicker” or 1/w type of noisc spectrum. It even
has been. shown that this flicker-noise type of
spectrum extends to 1 cycle per year and probably
even lower. While this spectral region is not in
the realm of “short-term” frequency fluctuations,
it does have a very profound influence on their
definition and measurement.

This can be seen by considering a crystal
oscillator whose frequeney fluctnations € from
a nominal value have a (power) spectral density
given by

Go(w) =g(w) + (/| w ), (1)

“




where g(w) predominates for the higher values
of w and thus gives rise to the “short-term’ fre-
quency fluctuations. The second term on the right
is the flicker noise term. The total mean square
of the instantancous frequency fluctuation ((2)*)
is then given by

(@*=2[ Ga(w) do,  €20. @)

Since any physical device must cmit a finite
frequency, @ must be bounded; and thus the
integral in Equation 2 must exist. This requires
that ¢>0 in order to insure the existence of

/ (h/} @) do.
From the preceding comments, it is apparent
that this “cutofl” frequency ¢ is not known but
is certainly less than 1 cycle per year. Thus, any
meaningful measure of frequency stability should,
in effect, be cutofi-independent; otherwise, aver-
aging times exceeding several years must be
employed.
It is possible to consider some function x(¢)
obtained from the frequency (or phase) of the
oscillator:

x() =X[5® ] (3)
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The expectation value of x(t) is then given by
T2 :
)=timr=[ (0 a @)
Tom -T2

In principle, it is possible to obtain the Fourier
transform of Equation 3 and substitute this in

-the integral of Equation 4. In this situation, the

only quantities x(¢) which have physical signifi-
cance (in the sense of being easily measurable)
are quantities which do not depend critically on
¢ as e—0. In other words, lim..s* (x ) must exist
for meaningful quantities. Table 11-1 shows
several functions of the frequency which do not
exist as ¢—0*. Physically, this can be pictured
as follows: One can mecasure the quantity

/2
=T [ x() ds (5)
. -1

for some given time T, then extend the averaging
time to NT and obtain (x)~r. If the sequence
{(x)vr} is considered, one might find that

~ lim { (x )NT;""“-

N-+

For any finite N and T, the quantity (x)wr
certainly may exist. In the limit, however, the

‘quantity may or may not exist.

TABLE 11-1.—Culoff-Dependent Quantities

Name

Expression

Auto-covariance function of the
phase fluctuations

Auto-covariance function of the
frequency fluctuations

Standard deviation of the

frequency fluctuations lim{ Y i

T-oo0

»T/2
imT | g()e(t+r) dt

T ~T/s

T/2
lim 71 [ aq, Ni+r, 1) d,

To “-T)2

where fi(t, 7) =[o(t-+4r) —o(t—4r)

T

:’[mz, 2T dt-[ 71 [ a7 dl]-’}

—Ti2

1
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MEANINGFUL QUANTITIES

The method of (power) speetral densities is o
powerful and often meaningful way of encom-
passing a broad range of measurements. It cer-
tainly has application to the case of flicker noise
(Reference 1). Occasionally, however, the quanti-
tics ‘of physical iuterest are not simply related
to the spectrum or the spectrum containg more

information than is needed. Thus, other measures -

of frequency stability have been devised. Two
additional methods are considered here.

RMS FREQUENCY FLUCTUATIONS
As was stated in Table 11-1, the quantity
of(r) = llm

/”[¢(t+r) ¢(t)]
r-.m -T2

A (#E0) ] ©

is cutoff-dependent. However, if one does not
pass to the limit T— e« but specifies T and 7,
the integral most certainly cxists even in the
limit ¢—0. Thus, onc measure of frequency sta-
bility is the function

[¢(t+.r) ~¢(t_) ]? dt

T

T/2
of(r. T) = T/

-T/2

_[T-l / i

-T/2 T

(¢(z+r) —¢(t)) dt] )

which unfortunately depends on two parameters
rand T.

THE METHOD OF FINITE DIFFERENCES

It is of value here to digress from short-term
stahility and consider how quartz erystal oscil-
lators are used in clock systems—a problem in
long-term  stability. Typically, an oscillator is
used as sort of a “fly wheel” in a clock system
between regular calibrations with a frequency
standard. Thus, one measures an average fre-
quency Q during some interval (-3 to i+ 37, say.
One prediets, then, that (on the average) the
total phase accumulated by the oscillator Ad in

TanLe 11-2.—Finite Phase Differcnces

Variable Definition

n on ¢(bo+nr)

A¢n ¢n+l —n ¢'l+l —¢s

A2¢n A¢n+l - A¢n ¢n+2 - 2¢n+l + ¢n

A8¢" A2¢n+l - A2¢n ¢n+3 - 3¢n+2 +3¢n+l -

the larger interval t—37 to (+3 T is given by
t—3r) —o(t+3
¢(t—17) —o( +2T)] (8)

AP~ T = T[

T

While this may be true ‘“on the average,” the
frequency fluctuations of the oscillator cause some
error §&, given by

§b=A48—T%,
8b=¢(t+3T) —p(t—3T)
—(T/n)[o(t+3r) —o(t—3r)] (9)

If one now sets T=3r and defines the variable
¢» defined on the discrete range of the integer n
by the relation

dn=¢(lo+nr)

-and if onc writes t=4+437 in Equation 9, §¢

can be written in the simpler form
| =%y, (10)

where Al¢, is the third finite difference of the
variable ¢, (see Table 11-2). Thus the precision
of an oscillator used in this system is related to
the quantity

((88)2) = ((4%,)?), (11)

which certainly must exist if the clock is any
good at all.

Indced, if one considers Equatlon 10 in the
case of flicker noise (Reference 2), not only is
A%, a stationary function, but the correlation
with A%, for £>3 is so small that the con-
vergence of the quantity

N
N—IZ (A%,)?

- for large N is essentially that of a random un-
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corrclated variable. Similarly one finds in general
that A*¢, is a stationary, cutofl-independent fune-
tion for k>2.

CONCLUSIONS

It is of value now to tie these types of frequency
stability together by applying cach method to
the same theoretical model of an oscillator; in
particular, consider an oscillator whose fre-
quency is modulated by a flicker noise. Also, let
the system generate an essentially “white noise
over its bandpass. Since this noise will appear to
be half AM and half FM, the spectral densities
of frequency and phase will appear as indicated
in Figure 11-1. On the basis of this model, the
graphs of Figure 11-2 were obtained.

It is interesting to note that the effects of
flicker noisc on the variance of frequency fluctua-
tions depend on the total averaging time (see
Equation 7). Thus, if one were to let N=T/7=2
(the smallest possible number for a variance),
the oscillator would ‘“‘appear” better than for
any other V. However, one should take the en-
semble average of many variances for N=2 to
obtain an acceptably precisc figure for the
variance.

The asymptotes of the curve showing the
varance of the second difference differ from the
asymptotes of the frequency: curve by a function
of N and a factor of +% For this specialized casc
the three numbers k, k, and Aw serve as a complete

.measure of frequency stability instead of giving

values of a continuous function, such as spectral
distribution or variance of the nth finite dif-

ference. For the variance of the frequency fluetua-
tious, one has a stability measure which is a
function of twe continuous variables. It also is
worth noting that this model, in fact, fits very
well a broad class of commercially available
oscillators.

One is led to the conclusion that there are some
commonly quoted measures of frequency sta-
bility which are very impractical. The auto-
covariance function of phase and frequency and
the total rms frequency fluctuations are not useful
concepts in the definition of frequency stability,
since it is very difficult to obtain them experi-
mentally. While the rms frequency fluctuations
for specified sample and averaging times is a
meaningful quantity, it is very inconvenient to
have a stability measure be a function of two
variables. Thus, it is suggested that the more
meaningful concepts are (power) spectral densi-
ties of phase and frequency fluctuations and the
variances of the second and higher finite dif-
ferences of the phase.

With the difficulty of defining an rms fre-
quency, one sees also the difficulty of measuring
the true (power) spectral density of the output
voltage of an oscillator. Indeed, as one makes his
analyzer narrower in bandwidth and takes longer
to sweep the line, the spectrum looks worse and
worse.
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