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ABSTRACT 
This paper presents tabulated factors for 
calculating confidence intervals for the square 
root of the Modified Allan Variance and the 
related Time Variance when the analysis uses 
full overlapping of the data. Confidence 
intervals are determined by multiplying factors 
fiom the appropriate table times sample 
deviations. These factors have been 
calculated fiom the equivalent degrees of 
fieedom (edt) for the five common power law 
noise types. Closed form expressions for 
calculating the edffor these variances and 
noise types have only recently become 
available for fully overlapped data analysis. 
We compute the edfusing two different closed 
form expressions as well as simulations to 
ensure correctness of the results. We also 
show the relative advantage of using the 
modified Allan variance instead of the Allan 
variance to evaluate frequency or time 
stability in the presence of white phase 
modulated noise. 

INTRODUCTION 
The focus of this paper is the discussion and 
presentation of factors for determining 
confidence intervals for the Modified Allan 
Variance (MVAR) [ 11 and the related Time 
Variance (TVAR) [2]. Like the Allan 
Variance (AVAR) [3], these variances have 
become standard tools for analyzing high- 
performance signal sources, signal processing 
devices, and measurement systems. AVAR, 
MVAR, and TVAR have been adopted by the 
IEEE and the ITU for characterizing such 
systems. This is because dominant noise 
processes in those systems have nonwhite 
spectra sometimes called colored noise. The 
standard sample variance typically is 

dependent on the data length for nonwhite 
noise types and is not defined in the limit as 
the data length approaches infinity. Hence, 
the standard sample variance is not 
satisfactory for characterizing the fiequency or 
time stability of high-performance frequency 
sources and associated equipment. 

Five power law noise types are commonly 
found in such equipment: white phase noise 
modulation (I'm, flicker PM, random walk 
PM, flicker fiequency modulation (FM), and 
random walk FM. The spectra associated with 
these noise types obey power laws in the sense 
that the spectrum of a measurement of time 
offset x(t) dominated by one of these noise 
types is of the form 

S,(f) = 9 f P ,  (1) 

where p = 0, -1, -2, -3, -4, respectively, for the 
five noise types. We may also consider the 
spectrum of the fiequency offset y(t), the 
derivative of x(t), which would be of the form 

s p  = h P ,  (2) 

where a = +2, + I ,  0, - 1, -2, respectively, for 
the five noise types. A random walk 
modulation of phase is the same as a white 
noise modulation of frequency. 

Each of the three variances, AVAR, MVAR, 
and TVAR, has a different dependence on 
averaging time t for the five different noise 
types. For a given noise type, each variance 
has a power-law dependence t. This is 
illustrated in Figure 1. Thus, using these 
variances it is possible to measure the 
dominant noise type for different averaging 
times, if the spectrum is a sum of power-law 
spectra. 

'Contribution of U. S. Government, not subject to copynght. 
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Figure 1 Illustration of the three variances, the Allan, Modified Allan, and Time Variances, and their 
relation to the power spectrum. 
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Figure 2 The ratio of the Modified Allan Variance to the Allan Variance as a function of the number 
of samples in the estimate for different noise types and bandwidths. 



There is an advantage to using MVAR over 
AVAR in the presence of white PM, since 
MVAR falls off faster for white PM than 
AVAR. Figure 2 shows the ratio of MVAR to 
AVAR. We see that for white PM the ratio 
drops with a constant slope, unlike for the other 
noise types. This allows MVAR to measure the 
levels of flicker PM, white FM, flicker FM and 
random walk FM in the presence of white PM 
for shorter values of t than AVAR. Though 
this advantage is reduced somewhat because the 
confidence intervals are larger for MVAR than 
for AVAR, MVAR still provides an 
improvement over AVAR. Additionally, 
MVAR can distinguish between white and 
flicker PM, whereas AVAR cannot. TVAR has 
all the same advantages as MVAR, the only 
difference being its power law dependence on t 
as indicated in Figure 1 and its level. Often 
white PM comes fiom a Werent part of the 
system being measured than other noise types. 
Thus it is valuable to be able to average down 
white PM optimally to characterize the other 
noise types. 

COMPUTATION OF CONFIDENCE 
INTERVALS 
If s2 denotes the usual sample variance of n 
independent and identically distributed 
Gaussian measurements (i.e., white noise) with 
actual variance d, then it is well-known that 

5 3  

0 2  
u - --v. (3) 

has a chi-square distribution with v = n- 1 
degrees of M o m  [4]. In the classical 
situation, the degrees of fieedom associated 
with d, are integer values depending only on 
the number of measurements, and exact 
confidence limits on the measurement variance 
are easily calculated using percentiles of the 
appropriate chi-square distribution. For 
example, figure 3 shows the chi-square 
distribution with 10 degrees of freedom, and 
also depicts the percentiles a and b that are 
needed to calculate a uncertainty bounds on d 
at the p = 0.95 confidence level !?om a 
particular s2 based on 1 1 Gaussian 
measurements. 

a b 

Figure 3 Finding the 95% confidence limits 
under the chi-squared distribution with 10 
degrees of fieedom. 

A 95% confidence interval is obtained as 
follows. First the probability 0.95 that U of 
equation (3) lies between a and b. This 
condition is equivalent to the following: 

V 0 2  v - < - < -  
(I 

(4) 

While the lower and upper bounds in the final 
inequality are confidence limits on the actual 
sample variance, note that the coddence 
factors v h  and v/a needed in the calculations 
are indepent of the actual data. They give the 
magnitude of the confidenoe interval as a 
function of the number of points used to 
compute the variance. Hence we can compute 
these confidence factors for each noise type and 
various data lengths. The factors 1-vh and v/a- 
1 give the multipliers for the magnitude of the 
lower and upper confidence intervals, 
respectively, and these values are presented at 
the end of this for each of the five noise types 
and for varous data lengths. We also use these 
values to characterize the relative merits of 
AVAR and MVAR for estimating noise 
processes in the presence of white PM. 

Since the common time and fiequency stability 
measures (AVAR, MVAR, TVAR) are 
calculated fiom data arising fiom non-white 
noise processes, the confidence limit procedure 
outlined above is an approximate method [5]. 
The method is based on approximating the 



distribution of U in (3) with the chi-square 
distribution with degrees of freedom 

where u2 represents the appropriate stability 
measure (e.g., MVAR), s2 represents its 
corresponding estimator, and Var(s') is the 
expected variance of the s2 estimators. The 
quantity v here is called the equivalent degrees 
of freedom, edf, since it need not be 
integer-valued. Equations for the edf of MVAR 
and TVAR have only recently been published in 
closed form [6], and other papers have been 
submitted for publication [7],[8]. 

We generated tables of the factors 1 - v h  and 
vla- 1 by computing the edf using two Werent 
formulas and verified the theoretical results by 
simulating corresponding noise processes. Both 
theoretical solutions express MVAR as a 
function of the discrete autocorrelation function, 
and evaluate (5) for autocorrelation functions 
associated with respective noise types. One 
method uses the conventional definition of 
MVAR as a variance of second differences of 
averages, whereas the other technique uses an 
equivalent definition of MVAR in terms of third 
differences [9]. While the definition of MVAR 
is equivalent in the two formulations, the 
autocorrelation functions differ, so the 
numerical solutions for calculating the edf differ 
as well. The two methods agreed in all results. 

SIMULATION 
To check the theory we simulated power-law 
noise series and calculated estimated edfs by 
substituting appropriate estimates of o2 and 
Var(s2) in (5). We generated data consistent 
with a model of white PM using a random 
number generator, computed cumulative sums 
of the data sequence to simulate white FM, then 
again computed cumulative sums to simulate 
random walk FM. We used the Barnes-Jarvis 
filter [ 1 O],[ 1 11 to simulate flicker PM. then 
computed cumulative sums to simulate flicker 
FM. Series lengths N appearing in tables at the 
end of this paper were generated in each case. 

For each noise type and series length N, we 
generated 10,000 time series and computed 
MVAR for each series. For every set of 10,000 
MVAR estimates, corresponding sample mean 
and sample variance of the 10,000 obverved 
values of MVAR were substituted, respectively, 

for dand Var(sz) in equation (9, thereby 
producing an estimated value of the edf, v . 
Escmated values of the edf. from the simulation 
agreed with the numerically computed values 
within a few percent for white PM, white FM, 
and random walk FM noises. For flicker noise, 
the match was not as close for small values of 
m, where t=m't,. This is consistent with 
recent publications showing that the effects of 
discrete sampling, as reflected for example in 
the autocorrelation function, produce different 
effects than the output of the Barnes-Jarvis filter 
[61. 

The edffrom the two theoretical methods and 
from simulation are presented in Table 1 for 
N=1025 and for white PM (whpm) and flicker 
PM (flpm) noise, respectively. The table 
illustrates the agreement. 

Table 1 
Comparison of Degrees of Freedom 

From Three Methods 
N = 1025 

Theoretical Methods 
m uhpm flpn 
1 526.4 589.9 
2 477.4 497.0 
4 298.7 263.1 
8 158.2 128.4 

16 78.96 62.33 
32 38.15 29.85 
64 17.62 13.73 

128 7.40 5.74 
256 2.85 2.07 

Simulation 
uhpn flpm 

527.66 630.38 
493.24 496.87 
294.80 257.91 
156.68 126.50 
80.94 61.84 
38.80 29.96 
17.69 13.69 
7.29 5.71 
2.73 2.07 

USE OF OVERLAPPING ESTIMATES 
There are two common methods for the 
estimation of the three variances, AVAR, 
MVAR, and TVAR. One method uses l l l y  
overlapping and the other nonoverlapping time 
intervals. We will explain the meaning of these 
terms, then discuss their relative advantages. 
To understand the potential for overlapping 
estimates we will use the definitions of AVAR, 
MVAR, and TVAR, and use another common 
notation for them, ozY(t), mod.uzY(t), and 
a2,(t), respectively. 

Theoretically we can define these variances 
independent of sampling. Suppose there is a 
time-difference signal, x(t). between two clocks. 
Then, at least conceptually, for AVAR we 
would apply an operator which finds one-half 
the ensemble average of the mean second 
difference squared. For MVAR the operator 
would extract one-half the ensemble average of 
the square of the time averaged second- 
differences. This process is illustrated in Figure 
4. TVAR is simply t2-WAR/3. Thus, 
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2r2 
a2,(r) = -( ( A 2 . x ) 2  ), 

mod .a2,(t) = -( 1 (A2rF'r )(q 
2r2 
1 

( ~ ~ ~ ( 7 )  = -( 6 (A2.?)? ) 
Here, A*, is the second difference operator over 
the interval r. < ... > is the infinite ensemble 
average, and X' is generated from x by 
averaging over an interval of length r. 

For computing estimates of these variances, we 
assume stationarity of the second dif€erence of 
the data and compute time averages of the 
square of the second differences. In forming the 
second differences in AVAR, as well as the x 
in MVAR and TVAR, we can choose where to 
start the next second dSerence relative to the 
last one. This allows the option of overlapping 
the second differences. Figure 4 illustrates a 
second difference starting with The next 
second difference can begin from a point either 
ro or r increased from this one. Equations (7) 
and (8) below give the computational 
definitions. 

If there are N data points with an even spacing 
of ro, then the variances are functions of 
~=m'r,,. Suppose we have sampled our time 
difference signal x(t) with a time series {%}. 
Then the estimates of AVAR, MVAR, and 
TVAR using fully overlapping samples would 
be computed as in equation (7) below. 

The computational equations for estimates of 
AVAR, MVAR, and TVAR using 
nonoverlapping samples take the form in 
equation (8) below where [A] is the greatest 
integer less than A. 

The difference between the fully overlapping 
and non-overlapping estimates is in how the 
summation parameter n increases. Either we 
would increase by the minimum spacing, or by 
m intervals. The latter means that we would use 
different data for intervals of length T included 
in each second difference. Figure 5 plots the 
ratio of the confidence factors for the use of 
non-overlapping over fully overlapping samples 
for the Allan Variance. The table shows that 
the use of fully overlapping estimates is better 
primarily for noise types of white and flicker 
PM. 

AVAR and MVAR are standard tools for the 
characterization of frequency standards and 
me&"ent systems. Often we measure the 
fkequency stability between frequency standards 
through measurement systems whose noise may 
exceed the performance of the standards in 
short-term. The noise types of measurement 
systems are typically white and flicker PM, 
whereas the noise types of the frequency 
standards are often white, flicker and random 
walk FM. If the noise type of the measurement 
system is white PM, we can average it down 
faster to potentially determine the performance 
of hquency standards if we use MVAR instead 
of AVAR. This is because the ratio of the 
Modified Allan Deviation over the Allan 
Deviation for white PM is proportional to T-", 
where 5 is the averaging time, the Modified 
Allan Deviation (MDEV) is the square root of 
MVAR, and the Allan Deviation (ADEV) is the 
square root of AVAR. Figure 2 shows a plot of 
the ratio of MVAR over AVAR for different 
noise types and bandwidths. Note that flicker 
PM is bandwidth dependent. This Figure shows 
that the advantage of using W A R  is primarily 
in the case of white PM. Flicker PM shows 
some advantage, though the loss of confidence, 
as discussed below, destroys any improvement 
of WAR over AVAR in this case. 

We illustrate the advantage of MVAR over 
AVAR in Table 3 for the case of a data set of 
length N=1025 dominated by a white PM noise, 
using a confidence interval for a probability of 
68%. This advantage should be understood as 
the combination of two effects. MVAR has an 
advantage over AVAR because it drops faster 
for white PM, but it loses some of that 
advantage because the confidence intervals for 
W A R  are poorer than for'AVAR. The 
advantage of MVAR over AVAR due to its 
faster averaging of white PM is presented for 
our particular example as the ratio of the 
deviations, ADEV over MDEV, in column 2 of 
Table 3. The advantage of AVAR over MVAR 
is due to its smaller confidence intervals. We 
define a(ADEV) and a(MDEV) as the root- 
mean-square of the upper and lower confidence 
intervals for ADEV and MDEV respectively, 
using a probability of 0.68. Thus, a(ADEV) 
and a(MDEV) are the equivalent of standard 
deviations around ADEV and MDEV 
respectively. The ratio of a(ADEV) over 
a (MDEV) is shown in column 3 of Table 3, 
illustrating the advantage of using AVAR. The 
advantage of MVAR over AVAR is presented 
in column 4. This is the ratio of column 2 over 
column 3. 

ADVANTAGES OF W A R  OVER AVAR 
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Table 3 
Comparison of AVAR and MVAR 

Noise Type = White PM 
Confidence = 68%, Data Length = 1025 

m ADEV a(ADEV) column2 
MDEV a(MDEV) column3 

1 1 .oo 1 .oo 
2 1.41 1.09 
4 2.00 1.33 
8 2.83 1.83 
16 4.00 2.59 
32 5.66 3.78 
64 8.00 6.02 
128 11.31 10.24 
256 16.00 35.08 

1 .oo 
1.30 
1.51 
1.54 
1.55 
1 S O  
1.33 
1.10 
0.46 
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Figure 4 An illustration of the computation of the Modified Allan Variance. 

Advantage of Full vs. No Overlap for the 5 Noise Types 
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Figure 5 Ratio of the confidence factors for the Allan Variance of data with N= 1025 points using no 
overlapping data divided by factors using full overlapping data. The factors are larger k g  no 
overlapping data leading to poorer confidence limits for the use of no overlap primarily for white 
and flicker PM. 



TABLES OF CONFIDENCE LIMITS 
Tables 4-8 give confidence limits for each of 
the five noise types respectively: white PM, 
flicker PM, white FM (the same as random 
walk PM), flicker FM, and random walk FM. 
In each table we consider cases for data 
lengthsN= 5,9, 17,33,65, 129,257,513, and 
1025. We cover the possible values of m as a 
power of 2, where the averaging time is 
't=m"tW Thus m is the number of the 
minimum intervals between data for the 
averaging time. Column 3 of each table lists 
the degrees of freedom from theoretical 
derivations. Columns 4 and 5 list the lower 
and upper confidence limits for 68% 
probability, respectively. Columns 6 and 7 list 
the same for 95% probability. The values we 
present in the tables for the lower limits are 
1 .O minus the factor needed to multiply times 
the sample deviation to give the lower limit 
value as a percent. For the upper h i t s  we 
present the multiplicative factor minus 1 .O. 
Thus we give the percent change from the 
sample deviation to give the lower and upper 
limits corresponding to the given probability. 
That is, if A and B are the factors such that 
A-s is the upper limit and B-s is the lower limit 
for probability p, then the values we present 
are a, for the lower limit and a, for the upper 
limit where 

u, = 1.0 - A, 
0, = B - 1.0. (9) 

CONCLUSIONS 
MVAR shows benefits over AVAR when the 
dominant noise type is white PM. In 
particular, MVAR averages down the white 
PM faster than AVAR, revealing other noise 
types for shorter 't values. Even though the 
confidence is generally poorer for MVAR than 
for AVAR. the advantage in averaging white 
PM still prevails, though its main benefit 
occurs for 't values more toward the middle of 
the range from the minimum data spacing to 
the maximum allowable. In addition, while 
the use of hlly overlapping samples always 
improves the degrees of freedom in estimating 
AVAR, MVAR, and WAR, the improvement 
is best for noise types of white and flicker PM. 
For white, flicker, and random walk FM, the 
advantage in the use of hlly overlapping 
samples is insi&icant. 
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N 
5 
9 
9 
17 
17 
17 
33 
33 
33 
33 
65 
65 
65 
65 
65 
129 
12 9 
129 
129 
129 
12 9 
257 
257 
257 
257 
257 
257 
257 
513 
513 
5 13 
513 
5 13 
513 
513 
5 13 
1025 
102 5 
102 5 
102 5 
1025 
1025 
1025 
102 5 
102 5 

m 
1 
1 
2 
1 
2 
4 
1 
2 
4 
8 
1 
2 
4 
8 
16 
1 
2 
4 
8 
16 
32 
1 
2 
4 
8 
16 
32 
64 
1 
2 
4 
8 
16 
32 
64 
128 

1 
2 
4 
8 
16 
32 
64 
12 8 
256 

Table 4 
White PM Confidence Factors 

for MDEV and TDBV 
Confidence factors times sample deviations 

give magnitudes of 
lower and upper confidence intervals 

edf 
1.862 
3.885 
2.636 
7.988 
6.216 
2.951 
16.21 
13.66 
7.293 
3.011 
32.67 
28.61 
16.64 
7.508 
2.970 
65.58 
58.53 
35.43 
17.49 
7.488 
2.920 
131.3 
118.4 
73.04 
37.57 
17.64 
7.444 
2.885 
263.1 
238.1 
148.3 
77.76 
38.07 
17.64 
7.414 
2.864 
526.4 
477.4 
298.7 
158.2 
78.96 
38.15 
17.62 
7.396 
2.854 

for 68%-kd 95% probabilities 

lower 68% upper 68% 
26.50% 
22.20% 
24.57% 
17.70% 
19.24% 
23.90% 
13.67% 
14.59% 
18.25% 
23.78% 
10.32% 
10.90% 
13.53% 
18.07% 
23.86% 
7.656% 
8.046% 
9.974% 
13.27% 
18.09% 
23.96% 
5.607% 
5.879% 
7.300% 
9.731% 
13.23% 
18.13% 
24.04% 
4.066% 
4.261% 
5.305% 
7.101% 
9.677% 
13.23% 
18.15% 
24.08% 
2.928% 
3.068% 
3.831% 
5.150% 
7.053% 
9.669% 
13.24% 
18.17% 

152.4% 
69.42% 
101.8% 
38.29% 
46.49% 
90.54% 
23.32% 
26.14% 
41.03% 
88.71% 
14.99% 
16.25% 
22.92% 
40.13% 
89.95% 
9.956% 
10.63% 
14.27% 
22.18% 
40.21% 
91.52% 
6.748% 
7.146% 
9.363% 
13.78% 
22.06% 
40.39% 
92.66% 
4.634% 
4.889% 
6.315% 
9.037% 
'13.67% 
22.06% 
40.52% 
93.36% 
3.212% 
3.381% 
4.331% 
6.097% 
8.959% 
13.66% 
22.08% 
40.59% 

24.10% 93.70% 

lower 95% upper 95% 
48.73% 606.7% 
40.42% 
44.82% 
32.47% 
35.17% 
43.54% 
25.40% 
27.02% 
33.44% 
43.31% 
19.42% 
20.47% 
25.16% 
33.13% 
43.47% 
14.57% 
15.29% 
18.80% 
24.70% 
33.16% 
43.66% 
10.77% 
11.28% 
13.92% 
18.36% 
24.62% 
33.22% 
43.80% 
7.863% 
8.232% 
10.20% 
13.55% 
18.26% 
24.62% 
33.26% 
43.88% 
5.693% 
5.960% 
7.416% 
9.910% 
13.46% 
18.25% 
24.63% 
33.29% 
43.92% 

194.1% 
330.4% 
91.70% 
116.1% 
279.3% 
51.69% 
58.81% 
99.64% 
271.4% 
31.84% 
34.74% 
50.70% 
97.00% 
276.8% 
20.61% 
22.07% 
30.20% 
48.89% 
97.24% 
283.6% 
13.75% 
14.59% 
19.32% 
29.09% 
48.59% 
97.77% 
288.6% 
9.342% 
9.867% 
12.84% 
18.62% 
28.84% 
48.59% 
98.13% 
291.7% 
6.430% 
6.773% 
8.718% 
12.38% 
18.45% 
28.81% 
48.63% 
98.35% 
293.2% 



N 
5 
9 
9 
17 
17 
17 
33 
33 
33 
33 
65 
65 
65 
65 
65 
129 
129 
129 
12 9 
129 
129 
257 
257 
257 
257 
257 
257 
257 
513 
513 
513 
513 
513 
513 
513 
5 13 
1025 
1025 
1025 
1025 
1025 
1025 
1025 
1025 
1025 

m 
1 
1 
2 
1 
2 
4 
1 
2 
4 
8 
1 
2 
4 
8 
16 
1 
2 
4 
8 
16 
32 
1 
2 
4 
8 
16 
32 
64 
1 
2 
4 
8 
16 
32 
64 
128 

1 
2 
4 
8 
16 
32 
64 
128 
256 

Table 5 
Flicker PM Confidence Factors 

for MDEV and TDEV 
Confidence factors times sample deviations 

give magnitudes of 
lower and upper confidence intervals 

for 68%-kd 95% probabilities 

edf 
2.020 
4.300 
2.676 
8.903 
6.427 
2.560 
18.12 
14.18 
6.394 
2.362 
36.56 
29.74 
14.63 
6.066 
2.223 
73.45 
60.89 
31.18 
14.17 
5.882 
2.145 
147.2 
123.2 
64.31 
30.48 
13.90 
5.796 
2.104 
294.8 
247.8 
130.6 
63.12 
30.03 
13.78 
5.757 
2.084 
589.9 
497 

263.1 
128.4 
62.33 
29.85 
13.73 
5.740 
2.073 

26.08% 
21.56% 
24.49% 
17.04% 
19.03% 
24.75% 
13.09% 
14.39% 
19.06% 
25.21% 
9.844% 
10.73% 
14.22% 
19.39% 
25.55% 
7.282% 
7.909% 
10.52% 
14.39% 
19.59% 
25.75% 
5.323% 
5.774% 
7.722% 
10.62% 
14.49% 
19.68% 
25.86% 
3.855% 
4.182% 
5.622% 
7.785% 
10.68% 
14.54% 
19.72% 
25.91% 
2.773% 
3.010% 
4.066% 
5.666% 
7.828% 
10.71% 
14.56% 
19.74% 
25.94% 

l o w e r  68% upper 68% 
137.8% 
63.35% 
100.2% 
35.33% 
45.27% 
105.1% 
21.68% 
25.49% 
45.45% 
114.8% 
14.01% 
15.87% 
24.96% 
47.40% 
123.1% 
9.333% 
10.39% 
15.42% 
25.50% 
48.59% 
128.3% 
6.341% 
6.991% 
10.07% 
15.64% 
25.84% 
49.18% 
131.2% 
4.362% 
4.785% 
6.771% 
10.18% 
15.78% 
25.99% 
49.45% 
132.7% 
3.026% 
3.310% 
4.634% 
6.834% 
10.25% 
15.84% 
26.05% 
49.57% 
133.6% 

47.82% 
39.27% 
44.65% 
31.33% 
34.81% 
45.15% 
24.38% 
26.66% 
34.86% 
46.06% 
18.56% 
20.16% 
26.37% 
35.44% 
46.75% 
13.88% 
15.04% 
19.78% 
26.67% 
35.78% 
47.15% 
10.24% 
11.08% 
14.69% 
19.96% 
26.86% 
35.94% 
47.37% 
7.461% 
8.083% 
10.80% 
14.81% 
20.08% 
26.94% 
36.02% 
47.47% 
5.395% 
5.849% 
7.863% 
10.88% 
14.89% 
20.13% 
26.97% 
36.05% 
47.53% 

l o w e r  95% upper 95% 
518.7% 
172.0% 
322.9% 
83.34% 
112.3% 
345.8% 
47.65% 
57.15% 
112.9% 
393.9% 
29.60% 
33.86% 
55.81% 
118.9% 
436.7% 
19.26% 
21.55% 
32.82% 
57.18% 
122.6% 
465.0% 
12.89% 
14.26% 
20.85% 
33.32% 
58.03% 
124.5% 
481.4% 
8.780% 
9.653% 
13.79% 
21.09% 
33.64% 
58.41% 
125.3% 
489.8% 
6.052% 
6.629% 
9.342% 
13.93% 
21.25% 
33.78% 
58.58% 
125.7% 
494.5% 



N 
5 
9 
9 
17 
17 
17 
33 
33 
33 
33 
65 
65 
65 
65 
65 
129 
12 9 
129 
129 
129 
129 
257 
257 
257 
257 
257 
257 
257 
513 
5 13 
513 
5 13 
5 13 
513 
513 
513 
1025 
1025 
1025 
1025 
1025 
1025 
1025 
1025 
1025 

m 
1 
1 
2 
1 
2 
4 
1 
2 
4 
8 
1 
2 
4 
8 
16 
1 
2 
4 
8 
16 
32 
1 
2 
4 
8 
16 
32 
64 
1 
2 
4 
8 
16 
32 
64 
128 
1 
2 
4 
8 
16 
32 
64 
128 
256 

Table 6 
White FM Confidence Factors for 

MDEV and TDEV 
Confidence factors times sample deviations 

give magnitudes of 
lower and upper confidence intervals 

for 68% and 95% probabilities 

edf 
2.250 
4.900 
2.703 
10.23 
6.618 
2.356 
20.89 
14.67 
6.096 
2.097 
42.22 
30.82 
14.01 
5.759 
1.951 
84.89 
63.14 
29.89 
13.52 
5.612 
1.875 
170.2 
127.8 
61.69 
29.11 
13.32 
5.545 
1.836 
340.9 
257.1 
125.3 
60.31 
28.82 
13.24 
5.513 
1.817 
682.2 
515.7 
252.5 
122.7 
59.85 
28.72 
13.21 
5.498 
1.807 

25.49% 
20.73% 
24.43% 
16.23% 
18.85% 
25.23% 
12.38% 
14.20% 
19.36% 
25.88% 
9.262% 
10.57% 
14.45% 
19.72% 
26.26% 
6.829% 
7.784% 
10.71% 
14.65% 
19.88% 
26.47% 
4.979% 
5.678% 
7.864% 
10.82% 
14.73% 
19.96% 
26.57% 
3.600% 
4.110% 
5.729% 
7.942% 
10.87% 
14.76% 
19.99% 
26.63% 
2.586% 
2.957% 
4.145% 
5.784% 
7.968% 
10.88% 
14.77% 
20.01% 
26.65% 

Lower 68% upper 68% 
121.4% 
56.55% 
99.17% 
31.96% 
44.24% 
115.2% 
19.78% 
24.92% 
47.22% 
131.8% 
12.86% 
15.53% 
25.70% 
49.43% 
143.8% 
8.601% 
10.17% 
15.82% 
26.33% 
50.49% 
151.1% 
5.859% 
6.852% 
10.31% 
16.08% 
26.60% 
50.99% 
155.2% 
4.038% 
4.692% 
6.927% 
10.45% 
16.18% 
26.70% 
51.23% 
157.2% 
2.805% 
3.247% 
4.737% 
7.007% 
10.49% 
16.22% 
26.75% 
51.35% 
158.4% 

46.61% 
37.80% 
44.54% 
29.90% 
34.49% 
46.09% 
23.11% 
26.34% 
35.39% 
47.40% 
17.51% 
19.88% 
26.78% 
36.01% 
48.21% 
13.04% 
14.81% 
20.12% 
27.12% 
36.30% 
48.65% 
9.589% 
10.90% 
14.95% 
20.33% 
27.27% 
36.43% 
48.89% 
6.976% 
7.947% 

, 11.00% 
15.10% 
20.41% 
27.33% 
36.49% 
49.00% 
5.036% 
5.748% 
8.013% 
11.10% 
15.15% 
20.44% 
27.35% 
36.52% 
49.06% 

lower 95% upper 95% 
427.6% 
148.5% 
318.0% 
74.08% 
109.2% 
395.6% 
43.06% 
55.70% 
118.3% 
484.3% 
27.01% 
33.07% 
57.68% 
125.3% 
553.9% 
17.68% 
21.08% 
33.75% 
59.28% 
128.6% 
598.4% 
11.88% 
13.96% 
21.38% 
34.34% 
59.96% 
130.2% 
623.9% 
8.116% 
9.460% 
14.12% 
21.68% 
34.57% 
60.24% 
131.0% 
637.2% 
5.604% 
6.500% 
9.554% 
14.29% 
21.78% 
34.65% 
60.35% 
131.4% 
644.3% 



N 
5 
9 
9 
17 
17 
17 
33 
33 
33 
33 
65 
65 
65 
65 
65 
129 
129 
129 
129 
129 
129 
257 
257 
257 
257 
257 
257 
257 
513 
513 
513 
513 
5 13 
5 13 
513 
513 
1025 
1025 
1025 
1025 
1025 
1025 
1025 
1025 
1025 

m 
1 
1 
2 
1 
2 
4 
1 
2 
4 
8 
1 
2 
4 
8 
16 
1 
2 
4 
8 
16 
32 
1 
2 
4 
8 
16 
32 
64 
1 
2 
4 
8 
16 
32 
64 
128 
1 
2 
4 
8 
16 
32 
64 
128 
256 

Table 7 
Flicker FM Confidence Factors for 

MDEV and TDEV 
Confidence factors times sample deviations 

give magnitudes of 
lower and upper confidence intervals 

for 68% and 95% probabilities 

ed f 
2.606 
5.843 
2.615 
12.33 
6.656 
2.086 
25.29 
14.85 
5.883 
1.814 
51.23 
31.27 
13.61 
5.563 
1.683 
103.1 
64.12 
29.10 
13.14 
5.426 
1.619 
206.9 
129.8 
60.11 
28.37 
12.97 
5.363 
1.587 
414.4 
261.3 
122.1 
58.83 
28.13 
12.90 
5.333 
1.571 
829.4 
524.1 
246.2 
119.8 
58.46 
28.04 
12.87 
5.318 
1.564 

24.64% 
19.63% 
24.62% 
15.16% 
18.82% 
25.90% 
11.46% 
14.14% 
19.58% 
26.63% 
8.525% 
10.51% 
14.61% 
19.94% 
27.00% 
6.259% 
7.732% 
10.82% 
14.80% 
20.09% 
27.18% 
4.549% 
5.638% 
7.953% 
10.94% 
14.88% 
20.17% 
27.27% 
3.282% 
4.079% 
5.797% 
8.028% 
10.98% 
14.91% 
20.20% 
27.32% 
2.354% 
2.935% 
4.195% 
5.848% 
8.050% 
10.99% 
14.92% 
20.22% 
27.34% 

lower 68% upper 68% 
103.1% 
48.86% 
102.7% 
28.04% 
44.04% 
132.6% 
17.54% 
24.72% 
48.59% 
157.6% 
11.48% 
15.39% 
26.21% 
50.85% 
173.8% 
7.716% 
10.08% 
16.09% 
26.84% 
51.91% 
183.2% 
5.272% 
6.793% 
10.47% 
16.34% 
27.08% 
52.41% 
188.3% 
3.642% 
4.651% 
7.026% 
10.60% 
16.42% 
27.18% 
52.66% 
190.9% 
2.534% 
3.219% 
4.802% 
7.100% 
10.63% 
16.46% 
27.23% 
52.78% 
192.1% 

lower 95% upper 9 5 %  
44.95% 
35.85% 
44.91% 
28.02% 
34.43% 
47.46% 
21.48% 
26.22% 
35.78% 
49.02% 
16.16% 
19.76% 
27.06% 
36.39% 
49.85% 
11.98% 
14.71% 
20.33% 
27.40% 
36.67% 
50.28% 
8.777% 
10.83% 
15.12% 
20.54% 
27.53% 
36.80% 
50.50% 
6.369% 
7.888% 
11.12% 
15.26% 
20.60% 
27.58% 
36.86% 
50.61% 
4.589% 
5.704% 
8.107% 
11.22% 
15.30% 
20.63% 
27.60% 
36.89% 
50.66% 

336.3% 
123.5% 
334.5% 
63.69% 
108.6% 
488.9% 
37.74% 
55.19% 
122.6% 
639.3% 
23.95% 
32.76% 
58.97% 
129.8% 
747.6% 
15.79% 
20.89% 
34.35% 
60.60% 
133.2% 
813.7% 
10.66% 
13.84% 
21.72% 
34.94% 
61.21% 
134.8% 
850.9% 
7.306% 
9.377% 
14.33% 
22.00% 
35.14% 
61.47% 
135.6% 
870.7% 
5.056% 
6.445% 
9.687% 
14.49% 
22.09% 
35.21% 
61.58% 
136.0% 
879.7% 



Table 8 
Random Walk FM Confidence Factors for MDEV and TDEV 

Confidence factors times samplideviations give 
magnitudes of lower and upper codidence intervals 

for 68% and 95% probabilities 

N 
5 
9 
9 
17 
17 
17 
33 
33 
33 
33 
65 
65 
65 
65 
65 
129 
129 
129 
129 
129 
129 
257 
257 
257 
257 
257 
257 
257 
513 
513 
513 
5 13 
513 
513 
513 
513 
1025 
1025 
1025 
1025 
1025 
1025 
1025 
1025 
1025 

m 
1 
1 
2 
1 
2 
4 
1 
2 
4 
8 
1 
2 
4 
8 
16 
1 
2 
4 
8 
16 
32 
1 
2 
4 
8 
16 
32 
64 
1 
2 
4 
8 
16 
32 
64 
128 
1 
2 
4 
8 
16 
32 
64 
128 
256 

ed f 
3 
7 

2.067 
15 

5.492 
1.603 

31 
12.41 
4.677 
1.429 

63 
26.26 
10.98 
4.400 
1.353 
12 7 

53.96 
23.61 
10.57 
4.285 
1.318 
255 

109.4 
48.89 
22.93 
10.42 
4.233 
1.301 
511 

220.2 
99.44 
47.67 
22.72 
10.36 
4.208 
1.292 
1023 

441.8 
200.5 
97.16 
47.34 
22.65 
10.33 
4.196 
1.288 

23.80% 
18.50% 
25.95% 
14.08% 
20.02% 
27.23% 
10.55% 
15.12% 
21.03% 
27.73% 
7.791% 
11.29% 
15.82% 
21.41% 
27.94% 
5.694% 
8.336% 
11.79% 
16.04% 
21.58% 
28.04% 
4.126% 
6.093% 
8.699% 
11.93% 
16.12% 
21.66% 
28.09% 
2.970% 
4.419% 
6.361% 
8.794% 
11.97% 
16.15% 
21.70% 
28.11% 
2.128% 
3.183% 
4.616% 
6.428% 
8.820% 
11.98% 
16.17% 
21.71% 
28.12% 

lower 68% upper 68% 
89.04% 
42.35% 
134.0% 
24.55% 
51.39% 
185.7% 
15.48% 
27.91% 
58.85% 
218.6% 
10.19% 
17.14% 
30.40% 
62.07% 
237.3% 
6.875% 
11.14% 
18.31% 
31.22% 
63.54% 
247.0% 
4.713% 
7.466% 
11.80% 
18.65% 
31.54% 
64.24% 
252.0% 
3.262% 
5.098% 
7.872% 
11.97% 
18.76% 
31.67% 
64.58% 
254.8% 
2.273% 
3.521% 
5.362% 
7.975% 
12.02% 
18.80% 
31.74% 
64.74% 
256.0% 

lower 95% 
43.35% 
33.88% 
47.57% 
26.13% 
36.54% 
50.39% 
19.83% 
27.96% 
38.33% 
51.64% 
14.82% 
21.17% 
29.18% 
39.01% 
52.22% 
10.93% 
15.82% 
22.06% 
29.56% 
39.31% 
52.50% 
7.977% 
11.68% 
16.48% 
22.30% 
29.71% 
39.45% 
52.64% 
5.773% 
8.531% 
12.18% 
16.66% 
22.38% 
29.77% 
39.51% 
52.72% 
4.151% 
6.181% 
8.903% 
12.30% 
16.70% 
22.41% 
29.80% 
39.55% 
52.75% 

upper 95% 
272.9% 
103.5% 
497.2% 
54.77% 
131.5% 
832.0% 
32.95% 
63.37% 
156.3% 
1090. % 
21.11% 
36.80% 
69.89% 
167.5% 
1252. % 
14.01% 
23.19% 
39.56% 
72.10% 
172.7% 
1341. % 
9.503% 
15.26% 
24.65% 
40.36% 
72.96% 
175.2% 
1388. % 
6.532% 
10.30% 
16.13% 
25.04% 
40.62% 
73.31% 
176.4% 
1415. % 
4.530% 
7.060% 
10.85% 
16.34% 
25.14% 
40.70% 
73.48% 
177.0% 
1427. % 


