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Abstract

The characterization of oscillators and
clocks in terms of frequency fluctuations as a
function of averaging time, o _(T) is now well
understood and documented, H¥wever, a need still
exists to describe a time deviation measure x(t)
We show the dependence of such a deviation
measure and the error of prediction of this
measure on practical measurement constraints, on
systematic characteristics, as well as
on © (7). We develop models which allow clock
charfcterization from insufficient data. For ex-
ample, when statistically significant data are
constrained to the short term region it is still
possible to extrapolate into the long term.

Finally, we summarize the state-of-the-art
of clocks and oscillators in terms of x and show
the obvious importance of these measures to
properly choosing, measuring, specifying, or using
clocks and oscillators for position location or
navigation applications.

Introduction

With the exception of line of sight ranging
techniques, today's precise navigation relies on
the availability of accurate time. The navigator
typically either receives precise time informa-
tion via radio signal or even has his reference
clock on board his vehicle. Modern navigation
systems such as Loran-C or the Global Positioning
System (GPS) are or will be based on atomic clocks
of very high performance at the location of the
origin of the navigational signal. These origins
may be ground stations or even satellites circling
the earth. For a system like GPS, position informa-
tion is extracted from time information. In
navigation, positioning accuracy of three meters
requires a time accuracy of ten nano-
seconds. As a result, systems designers and
navigators need to know the characteristics of
clocks to be used in their systems in terms of
time deviation. Due to noise limitations and
physical parameter changes, clocks cannot keep
time arbitrarily well. In fact, all clocks show
a time deviation with elapsed time, In other
words, after a number of clocks are all synchro-
nized with each other and then left alone, each
individual cTock accumulates a different time
reading compared to the other clocks. This
deviation of the individual clock readings
generally increases with time.

The time deviation ultimately leads the systems
engineer to require resynchronization of the
clocks., The time needed between resynchroniza-
tion to achieve a certain time accuracy that
meets the systems requirements depends, of course,
on the quality of the clock. The main driving
force behind having clocks of extreme performance,
(excellent time keepina ability) is a desire to
have as large a resynchronization interval as pos-
sible. This requirement for large resynchroniza-
tion intervals and excellent clock performance
has to do with system needs for reliability for cost
reduction, and for subsystem autonomy, in case of com-
plete or partial communications breakdown in the system.

In this paper we shall first define the
terms needed to describe clocks, then analyze the
effect of time deviation and its proper specific-
ation in relation to the clocks, describe the
confidence of such a characterization, continue
to describe the use of clock models to predict
time deviation for times longer than practically
available from calibration or measurement intervals
and, finally, give a summary of state-of-the-art
clocks characterized in their time prediction error.
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Fig. 1

Describing and Measuring the Freguency Stability
of Clocks

The typical clock functions as a precision
oscillator with a very stable sinusoidal voltage
output with a frequency viand a period of oscil-
lation T, which is the reciprocal of the fre-
quency,V1 = 1/7, as illustrated in Fig. 1. The
goal is to measure the frequency and/or the fre-
quency stability of the sinusoid. The voltage
out of the oscillator may be modeled by £q. (1).
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V] = Vp sin (2ﬂv]t) (1)

Of course, one sees that the period of this oscil-
Tation is the number of seconds per cycle or the
inverse of the frequency in cycles per second.
Naturally, fluctuations in frequency correspond
to fluctuations in the period. Almost all fre-
quency measurements, with very few exceptions,
are measurements of phase or of period fluctua-
tions in an oscillator, even though the frequency
may be the readout. As an example, most frequency
counters sense the zero {or near zero) crossings
of the sinusoidal voltage, which is the point at
which the voltage is most sensitive to phase fluc-
tuations.

One must also realize that most fre-
quency measurements invalve two oscillators. In
some instances, the oscillator is in the counter.
Sometimes one oscillator may be sufficiently
better than the other that the fluctuations mea-
sured may be considered essentially those of the
latter. However, in general, because frequency
measurements are almost always dual, it is useful to
define: @)

v {t) = v

ne = 5 (2)

Y
o]

as the fractional frequency deviation of one
oscillator, vl(t), with respect to a reference

oscfilator Vg divided by the reference frequency
Vo. Note, that yl(t) is a dimensionless quantity.

From y(t) we obtain the time deviation,x(t),
of an oscillator over a period of time, t, by:

y{t") dt” (3)

One may also note that x(t) = ¢(t)/2ﬂv°, where

#(t) is the phase deviation of the oscillator under
test with respect to the reference oscillator.
Since it is impossible to measure instantaneous
frequency, any frequency or fractional frequency
measurement always involves some sample time,

some time window through which the oscillators are
observed; a picosecond, a second, or a day may be
used, but there is always some sample time.

When determining a fractional frequency, y(t), in
fact what is being measured is the time fluctua-
tion between some time, t, and a later time,

t + 1. The difference in these two time readings
divided by v gives the average fractional frequency
over that period:

y (t,t) = MTL_XQ) (4)

Tau, T, may be called the sample time or averaging
time; e.g., it may be determined by the gate time

In many cases, one samples a number of

cycles of an oscillation during the gate time of
a counter; after the gate time has elapsed,
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the counter latches the value of the number of
cycles so that it can be read out, printed or
stored, This results in a delay time before the
counter arms and starts again on the next cycle
of the oscillation. During the delay time, infor-
mation is lost. We call this delay "dead time,"
and in certain instances the measurement result
depends on the dead time. However, if the sample
time is long compared to the dead time it makes
E;%t]e difference in the result for most cases.

In reality, of course, the sinusoidal output
of an oscillator is not pure; but it contains
noise fluctuations as well. Frequency stability
is defined by the sample variance:

N N
ot £ =y t}j1<y1.f-—;- @m) (5)

where y. denotes the ith fractional frequency
measure&ent of duration T, ¢ denotes an infin-
ite time average, N is the number of frequency
readings used in the sample variance, with repe-
tition interval T ,and f;, is the bandwidth of the
measurement system. Some noise processes contain
increasing fractions of the total noise power at
lower Fourier frequencies; e.g., for flicker of
frequency noise the above variance approaches
infinity as Nsw, This together with the practical
difficulty to obtain experimentally large values
of N, led to the convention of always using a
particular value of N. In recent years, frequency
stability has become almost universally understood
as meaning the square root of the two-sample
variance, i.e., defined as in Eq. (5} for

N=2, T=T:

5% (7) = <Z1_”_2-_{1)>

For a finite,discrete data set o {(t) can be well
approximated by: Y

M-

1
y(©) ’[204-1) Z (Y349 - yi)z}

(6)

1/2

(7)

Q

where M is the total number of measurements, each
of duration T ; o (1) is convergent for all

noise processes commonly found in osciilators. It
should be noted that even for Eq.(6) f_ may be

an important parameter and should always be
noted. Fig. 2 depicts three different measurement
systems which may be used to determine oy(r).

Very often it is useful to resort to a tech-
nique illustrated in Fig, 3. The frequencies of
the oscillator under test and the reference
oscillator are both multiplied to higher frequen-
cies, e.q., into the GHz region, before the beat
frequency is obtained and then analyzed. This
has the effect of an expansion of the time
deviation by the freauency multiplication
factor. This relaxes considerably the demand on
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the beat-frequency analysis equipment but intro-
duces the multipliers as additional noise sources.
This frequency multiplication technique is useful
for measurements in the frequency domain as well
as in the time domain. Commercial equipment based
on this technique is on the market.

Measurement and interpretation of clock per-
formance are most commonly done using o (t). A
double logarithmic plot typical for mgst precise
time and frequency standards is shown in Fig. 4.
The first part (1) of this plot can be character-
ized by a reduction in the frequency fluctuation
o (1), with increasing averaging time. This

" Haracteristic is determined by the noise

processes present in the standard. The second
part (II) is called the flicker of frequency
floor, which depicts an independence of o_(T) from
the averaging time. This flicker floor

level depends on the particular frequency
standards and is not fully understood in its phy-
sical basis, but relates to fluctuations in the
value of critical, frequency determining para-
meters of the standards. The last section (III)
of the curve is characterized by a deteriora-

tion of O _(T) with increasing averaging time.

The precige function of (III) can usually not be
determined very accurately because of the

Tong measurement times needed in order to obtain
statistical confidence, Also, the clock perform-
ance in this region is often not stable during the
life of the standard and is subject to environ-
mental influences.

For our purposes it is most important to
note that o (1) is a statistical parameter des-
cribing the’ frequency fluctuations of clocks and
oscillators. Being a statistical parameter, its
principle usefulness lies in the area of large
amounts of data, and it becomes increasingly less
useful in cases of insufficient data., For example,
if the total available measurement time in an
experiment to characterize clock performance is
one day, a determination of 0 (r = 1 day) is
an obvious impossibility. In fact, there will be
no adequate statistical confidence down to sampling
times of T = 0.1 day (compare the more extensive
coverage of this subject later). Equally
important to the problem of insufficient data on
the value of the use of o {T) is the presence of
systematic effects on frequency or time deviation,
It is generally an inefficient use of data,
if a systematic effect is described and displayed
using a statistical variable such as o (7).
Often, the most important systematic e¥fect which
should be subtracted from the data before the
data are analyzed in a statistical sense is
linear frequency drift D (see below).

General Model of Time or Phase . Deviation
For most precise CIOCKs and oscillators one

may write as a useful description of the time
deviation:

x(t) = xg +yg t 4% Dt + elt) (8)

where the first three coefficients are model
parameters: t=0 signifies the instant of synchro-




nization, Xq is an estimate of the synchronization
error at t=0, Yy is an estimate of the fractional

frequency offset error at t=0 and D is the estimate
of the fractiona] freguency drift £(t) is taken
as the residual (usually random) fluctuation
around the quadratic model given by the 1st

three terms. If e(t) = 0, and the first three
coefficients were know exactly, then one could
predict the time deviation, x(t),exactly;i.e.,the
time deviation error would be zero,In practice,
for a non-ideal model, there will be uncertain-
ties associated with each coefficient which will
directly impact ones ability to predict x(t).

The coefficients y, and D may usually best
be determined by fitting a Tinear least squares
fit to the frequency (derivative of Eq. (8)).

y(t) = yg + Dt + &(t) (9)

or for discrete data (i=1,2,3,...M)

y, = yp+ 0ic + 2l) (10)
For a Targe number M of data points, the confi-
dence on determining the first two coefficients y

and D for classical statistics (white frequency

noise) is: \[5' Cy
0

25
Mt

C =
Yoo /m

where s is the standard deviation of the y; around

the linear fit, For non-classical statistics,

e.g., for both flicker and random walk frequency noise,

2 N
C, = = 0
Yoo /10 an

and CD =

oy(O.]T) and CD = VT

{See Appendix A for further details). Clearly,
one can generally decrease the confidence inter-
vals by increasing the data length, T = M,

In what follows we assume that optimum or near
optimum- time prediction algorithms are being
employed by the user. As the topic of optimum
prediction has been treated elsewhere we give only
a cursory discussion of it in Appendix B along
with some useful references for the interested
reader. Optimum time prediction is a very important
and non-trivial problem for state-of-the-art
clocks, so we highly encourage the reader to
pursue this topic if there is any doubt as to what
he is using. [B1-B6].

Optimum prediction is the attempt to
minimize the time prediction errorx )
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tet us define the root mean square time pye-
diction error of a clock as:

~ 1
(i) - x(E))2) (12)
where ;(t, 1} is the time error predicted for tne
clock at time t, having predicted from t—Tp_

i(rp) =

It is reasonable to assume that each of the terms
in €q. (8) is independent, in which case, Eq. (12)
yields:

- ] ¥

2 .2 4 ) p2o_n 2
X (Tp) = [xa + CyO T *7 0 W + <€ (Tp)> ] (13)
where <F2(Tp)>is the mean square random time pre-

diction error. Now, if the linear coefficients,
Yo and D, have been subtracted from the data, then

one easily realizes that o (1) is only dependent on

the noise fluctuation. Furthermore, the random
squared time prediction error for optimum predic-
tjon is given by:

2 = 2
(e (rp)> (kt, 0,{t)) )
where k is weakly dependent on the type of noise
and on the ratio of the prediction interval <t

to the total data length T = Mt, and k (see Appendix
C) is usually near unity. Combining_equations (13)
and (14), we have as a general equation for the

time prediction error:

X
X (x)) = Tp[(;%)z # €2+ (G K ()] (15)

(14)

Yo 4
Combining with equation (11) gives:

X T
X (1) =rp£(;%)2 # 0.40,7(r,) + 0.30,2(r ) (P2

+ kzoyzhp)]’f (16)

where Tp <7 and Ty

sampling time still giving sufficient confidgnce in
the result. For Eq. (16) and all the following
discussion we have chosen 1, = 0.1T which is equi-
valent to a 30% (1¢) confidénce interval; i.e.,

(1 +0.3)

is the upoer Timit of a useful

a (1) () (17)
¥ actual meas

Equation (16) is not critically dependent on the
assumption 4 <7 and as T approaches T one

=0
Y

stiil obtains good estimates for the prediction
error x(rp).

Characterization of Clocks from Insufficient Data
R'systems designer for navigation systems as

well as the clock designer is very often faced by

the same predicament: Predicting or assuring the

time keeping performance of a clock well beyond the

range of avajlable test data. Examples are: a)

time deviation is to be predicted out to




one day but the system on]g allows the acquisition
of clock data out to 7= 10~ seconds, or b) a
specification may read that a2 clock should not
exceed a time error of x = 1 nanosecond at

T = 10 days. [t is unrealistic to expect from

the test facility or even from the clock

designer to have statistically significant data
for more than 1= 1 day. We believe that the
solution to this predicament is the use of clock
models in connection with the actual data. In
other words, if insufficient data are available
we use, based on the available data, a clock
model to put an upper boundary on the prediction
error for time periods which may significant-
ly exceed the available data length, Which clock
model to use is, of course, an important question.
We propose to use a worst 1ikely clock model. For
the purpose of further discussion we define a
sampling time T{ which is the sampling time

for which cy(TL)iS still available with
reasonable confidence. We suggest as before

TL = 0.17 {see Eq. (17) ).  In other

words, the o (1) plot as measured on a particu-
lar clock is’considered valid with adequate
statistical confidence out to 1 = T - For the

region where Tpis larger than T @

c¢lock model is used to predict time dispersion.
Because of the absence of suitable data beyond
TL our choice of a suitable clock model is based

on a wide variety of experiments for several

different kinds of clocks. For Tp > T

the main contribution to the time deviation
will usually be the uncertainty in Fhe
frequency Cy , in the drift coefficient CD’

0
and in the random fluctuations {typical worst
case is random walk of frequency; o (t) ~ 1 /2

around a linear regression on the frequency).
One may show (See Appendix D)that the time
prediction error due to these contribution is:

- T R T 1/2
X (x,) = 1, 0,(1)[0.4+0.3 () + 1.5 %1 (18)
for Tp >TL

Very often we will have the case of a specifica-
tion at some long time T _, and the question of

what value for Oy(T) is required to fulfill this
specification when Tp is much larger than T or

T. For example, we can calculate from Eq. (18)
for the GPS-1ike requirements of x(rp) = 10 nano-

seconds at T = 106 seconds, for T = 105
seconds (approximately one day}, and T = 10
o, T) =25 10718,

ss, that
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Now it should be clearly stated that in
addition to the abave description of causes for
time dispersion, one must be aware that environ-
mental parameter changes may directly affect the
frequency and time of a clock. These environ-
mental parameters may include temperature,
magnetic field, pressure, shock, etc. As each
clock may have a different dependence for any
one of these parameters from another clock, it is
incumbent upon the user to determine these and
to properly account for them; i.e., each user's
environment may be unique.

Summary of the Performance of State-of-the-art

Clocks
In Fig. 5 and Fig. 6 we are depicting the
stability performance in terms of cy(r) of

currently available state-of-the-art standards.
This includes rubidium, quartz crystal, cesium and
hydrogen standards. This figure is taken from
reference 2], In Fig. 7 and Fig. 8 we are
depicting respectively the time prediction error
%{t_) of these standards taking 7, as the value

of t at the right end of the solid line for the
Oy(T) plot for each clock.
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Fig. 5, Frequency stability of commercially
available frequency standards (clocks)

Cs = cesium beam Rb = rubidium gas cell,
Xx~tal = quartz crystal oscillator, and

H = hydrogen maser (active); H is avail-
able by special acquisition.

Fig. 6. Some of the best frequency stability
performance for laboratory constructed fre-
quency standards: Dual-X-tal = quartz crystal
oscillator frequency locked to a special
quartz crystal resonator, Cs = primary
cesium beam frequency standard, H =

hydrogen maser, Rb = rubidium (1ab).

Fig. 7 and 8. The rms prediction error for

the data shown in Figs. 5 and 6, respectivel

using Eq. (16) and (18) and assuming a data {ength
T= 101L, where T is the maximum T values

in Figs. (5) and (6) (Solid line) for which
statistically significant data are available.
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Summar

s precision clocks are being used more and
more for accurate navigation (determining position
and velocity), an important need has arisen for
having a measure of the time deviation x(t), of
these clocks, since time and distance are directly
related, This time deviation can be predicted only
within some uncertainty, the time prediction error
x(rp). Since both of these measures, the time de-

viation and the time prediction error, are extreme-
1y important to accurate navigation as well as to
other important fields, we have developed these
measures based on reasonable models of clock be-
havior, Furthermore we have constrained these mea-
sures to be dependent only on commonly available
measurement data.

Specifically, one may write for the model of
the time deviation of a clock

2, e(t).

x(t) = xg*tyg t+ %-D t (19)
The coefficients for the first three terms are
based on the systematic characteristics of a clock
and its measurement system: an estimate of the
synchronization error, the normalized frequency
offset, and ‘the normalized frequency drift. The
synchronization error -- though very important --
almost always has its major contribution from the
measurement system and may be assumed zero intrin-
sic to a clock as was done in Fig, {7) and (8).

The last term represents the usually random time
fluctuations around the quadratic and will signifi-
cantly influence one's ability to determine the
systematic coefficients as will also the total data
length, T, The random frequency fluctuations are
well characterized by a cy(T) versus T analysis,

The root mean square uncertainty {the predic-
tion error x(t. )} with which one can predict the

time deviation x(t), from a time t-rp is given by

X(Tp) =

T [(iQ)2+0 (< )<?.4 + 0,3 (Z$)2 + ko (1 )]% (20)
pript Y L yop

for Tp < L

where we have chosen T = 0.17, and k (see Appen-

dix C) is a coefficient near unity. The initial
synchronization error, Xg though not intrinsic to

the clock, can be extremely important in any appli-
cation, It is incumbent on the user to estimate
and include this error from his measurement system,
etc. For example, the curves shown in Fig, (7)

and (8), would be significantly different by just
Xy = 1 ns,

Proper modeling allows one to estimate error
even with limited data (Tp > TL). In this case,

£q. (20) is still valid, however, the last term
changes into
IR T
2 2 2
K o, (Tp)e;;;?z> 1.5 9% (1)) ¥§ (21)




0,17 implies a 30% (o) confi-

dence interval, if the above eqations are used,
Using Eq. (20) and (21) thus allows one to estimate
the predictive error of a clock for essentially all
values of interest to the design engineer,

The choice of T =
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Appendix A: Confidence on the Coefficients
for a Linear Regression

Given the equation:

y(i) =y, + D + qr+ 2E(D) (A1)

for i = 1,2,3,...M and assuming white frequency
noise, the standard error of the regression co-

eff1c1ents may be_shown respectively to be

[see refs. Al, A2]:
- 2M+1)
Cy0 - / H-1) (A2)
= %% for M large,
and CD'= VTQ CRU. (A3)
s J-jiJl_
= —— for M large,
M\}=
i 2 18 Va2
where s = E (yT.) - IT(Z _yi> (A4)
i=1

i=1

Note, s is the standard deviation with 2 degrees
of freedom removed.

For non-classical statistics Eq. (A2) must be
modified appropriately. To account for cases
where either flicker or random walk frequency
noise is a good model consider the following:
Take as the maximum v value T,= 0.17 for a

reasonable confidence interval (~ 30%) for Oy(TL).

For white frequency noise,

o (r =s,0 (T) = s/vM, and
y )= 0/ s, therefore 2 s//M

=2 oy(rL) /Y10 = Cyo. In addition to

being valid for classical white frequency
noise Gy(TL) will be appropriately statistically

responsive to flicker and random walk frequency
noise--Eq. {11).




Appendix B: Optimum Time Prediction

What is optimum prediction depends on the assumed
models for the clocks as well as on what is being
minimized. There are several references which
deal with this problem [B1, B2, B3, B4, B5, B6].

At this point we would caution the reader that it
is possible to over-model the data and end up
with a prediction routine that may be near opti-
mum as compared to a simulated process for pre-
diction times much shorter than the data length
but may be very bad for times of the order of or
Tonger than the data length. We would suggest
using prediction algorithms which are not cri-
tically model or data-length dependent, even
though they may not be as near optimum as would
be given by a simulated model. Real oscillators
never ideally fit the models, and it is important
for algorithms not to be sensitive to departures
from the models.

Appendix C: Dependence of Time Dispersion
on Noise Type and Data Length

Fora Gi(r) ~ " diagram, u typically takes on

values as shown in Table C1 for most precision
oscillators. The constant k in the text (equations
14, 15, 16, and 20} is slightly u and T/Ip dependent,

as can be seen from the table; T/t, is the number of
samples going into the two-sample variance and is
assumed here to be equal to 10 or more. If the actual
value of k is used in the above equations,then

it will account for the upper 1o confidence limit
resulting from the noise type and the data length
[see refs. B7, B8).

Table C1
N Name k= k(u,7/7,)
—_— P
T
-2 White or flicker 733—(1 + /-—E)
phase noise T
-1 White frequency noise 1+ .87‘/;E

T
0 Flicker frequency noise ngq? (1 + .77\/’#)

1+ .YSV/;R

Appendix D: Random Walk Frequency
Prediction Errors

+1  Randem Walk freg. noise

For the case where the random frequency fluctuations
are characterized by a model around a linear regres-
sion which is random walk, the optimum time-predic-
tion error is given by:
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Y = . 01
X(Tp) T oy(Tp) (D1}
Now if = > 1 & oy(TL) is the stability for

the longest sample time for which we have reason-
able confidence, then

T3/2
— _'p
X(Tp) ;T77 Uy(TL) (D2)
L
and considering the upper confidence interval
- Tp )
= 1,2 £ . D3
x(rp) 1.24 TR/TL Oy(TL' (D3)

Equation (D3) when squared is the last term in
equation (18). The first two terms in equation (18)
are the same as in equation (16).




Addendum to paper "Time Deviation and Time Prediction Error for
Clock Specification, Characterization, and Application,”
authored by David W. Allan and Helmut Hellwig [1].
(Revised 5 March 1981)

David W. Allan

The above cited paper develops a method of estimating a clock's rms time
error aver a prediction interval, Ip [1]. The model assumed for the time
departure of the clock is:

X(t) = x(0) + y(0)-t + 3 D+t2 + e(t), (1)

where x(o0) and y(o0) are the synchronization and syntonization errors, respectively,
at t = 0, D is the modelable frequency drift, and e(t) is the random residual
time fluctuations for the clock. Given a data set of length T for the clock,

a oy(r) vs. T analysis can be performed to characterize the levels and kinds

of noise processes which model the clock behavior. In the development, the
Tongest sample time t (denoted tL) for which significant statistical confidence

is available is T = 0.1 T. It is further assumed that optimum time prediction
techniques will be used for estimating time from the clock.

Long-term data from clocks are often hard to come by. Because of this,
the authors of the above cited paper have employed reasonable and conservative
models which are applicable to essentially all precision clocks for sample
times, t, larger than T - Using the above models and assumptions, the authors
developed two equations for the rms time error of prediction i(tp)--one for

tp <7 and one for 1 The above approach and insights provided an oppor-

>
p L
tunity for a vendor to meet a long-term user rms time error specification

without having extensive long-term data as heretofore would have been necessary.




However, equations (16) and (18) in the above cited paper give different

values for i(tp) in the vicinity of t_ = T This is true because the last

p
term in equation (18) is the asymptotic limit for tp > 1. It is useful,
therefore, to combine the two equations into one general equation, which
retains the proper asymptotic limit and is statistically valid for all tp of

the order of the data length, T, and shorter:

L
- _ a2 b2 0 2 }_E H .EB Y
x(tp) = tp {§?;2 + $; + 1.4c% + oy (IL) 0.4 + 1.5 N + 0.003 T, R (2)

with p = +1 for Ip <1 and where a, b, and ¢ are the values of oy(r = 1s) for
each of the independent noise processes: white or flicker phase noise (~1-1),
white freguency noise (~t_%), and flicker frequency noise (~r°), respectively.
The value of p is usually taken to be 1 as is argued in the cited paper, i.e.,
conservative model (random walk of frequency). In some cases, it may be
argued that the value for uy should be different from +1 for % > 1 as will be
explained below.

Hence, if p = 1, all that is needed is the estimates of the noise levels
from a oy(t) diagram in order to calculate an estimated rms time error of
prediction for any tp < T. Taking oyz(t) as being chi-squared distributed and
the actual rms error from the clock as being normally distributed, the confi-
dence that the error will actually be less than calculated by i(rp << tL) is

about 68% (~1o) for Ip << T - For t the coefficient 1.5 for the middle

p~ L
term in square bracket of the equation gives a confidence of the estimate for
oyz(rL) of 90%, 86.5%, and 82% for white frequency noise, flicker frequency
noise, and random walk frequency noise, respectively. In the range of t_~ T,

P
it is difficult to quantify the probabilities, but be it sufficient to say




that because of the conservative model assumption of random walk frequency for

tp > T (u = +1), the actual clock errors should be well within lo (68%) of a
normal distribution [2].

Though the above equation is conservative and statistically sound for
Tp < T, it should be carefully noted that it does not address questions of
clock lifetime, of failure mechanisms, or of some systematic deviations such
as strong periodic fluctuations, and abnormal environmental influences. These
effects along with asynchronization effects and measurement system purturbations
must be considered separately for each clock.

In general, combining the above, the i(rp) equation -- assuming normal
clock behavior over the prediction interval tp of interest -- will give
conservative (at least lo) estimates of time prediction errors for all tp up
to and of the order of T. Even when rp is much Tlarger than T, reasonable
estimates may be obtained provided that there is a logical reason for extrapol-
ating cy(r). Even though statistical confidence is lost as tp gets much larger
than the data length, T, equation (2) is designed to still give conservative
upper limit (lo) estimates of a clock's performance capability with p = 1.

It is worth noting that there is a way of estimating p from the data.
This may be useful in the case of a long data run where obtaining data is very
costly, it may be well worth while considering the following.

The proper value of py is determined from the dependence of oyz(t) on 1
for 1t > T i.e., Oy2(t > tL) ~ M. Although one cannot with confidence
obtain this directly from the data of length T = 1OtL, there is a good statis-

tical estimation method conveniently available; i.e., the bias function

B.(N, p) = <02(N, t)> / cyz(r), where the numerator is the expectation value




of the squared standard deviation taken over N values [3], and is given by:

N(NH-1)

B1(N, M) =
2(N-1)(2M-1)

(3)

In our current case if 1 = T then N = 10 and p may be simply approximated by

the following:

B1(N=10, )
per ——— )

In other words one can determine the standard deviation of the 10 adjacent
frequency values, each of them sampled for T, square it and divide by 5 oyz(rL)
for a simplified estimate of p (exact for p = 1). Table 1 lists some useful

values for the transcendental equation (3):

Table 1

B, (N=10,u) |18.3]13.9]10.6]8.2]6.4]5.0}4.0|3.2]2.6]2.2]1.8} 1.6} 1.4] 1.2} 1.1] 1.0
¥ 2 1.8} 1.61.411.2]1.0}0.8]0.6]0.4]0.2]0.0[-0.2}-0.4]-0.6}-0.8}-1.0
. |
flicker walk random walk flicker white
frequency frequency frequency frequency

The approximation given in (4), though exact for p = 1, gives conservative
results for p greater than or less than p = 1. B;(N,u) can take on values
less than 1 for certain noise processes, but those are not of interest in this
context as the term associated with the uncertainty in the frequency drift

will predominate. It is recommended that if B;(N=10,p) < 1.8 (flicker frequency




noise), then the value of p should be 0, because of the ubiquitous nature of
flicker noise and the lack of statistical information to confirm performance
better than that. It may be shown that B{(N,u) is a good measure of the low
Fourier frequency components in the data [3,4].

Equation (2) has been developed as a tractable method of arriving at
conservative estimates of the rms time error of prediction for a large range
of values of the prediction time tp. The equation is designed so that the
input parameters are easily obtainable. It should thus find usefulness for
not only systems engineers, but also for the users and the manufacturers, and
hopefully will provide a communication bases between these groups.

I wish to thank Dr. James A. Barnes, Dr. Samuel R. Stein, and Dr. Fred L.
Walls for very stimulating suggestions and comments to this report. In addition,
I wish to thank Mr. Charles Gray of Martin-Marietta who stimulated the above
work. During a careful reading of the above cited paper, he found some depar-

tures from equations (16) and (18) in figure (7) of that paper for Cs and H.
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Tables (2), (3), and (4) below are the values for the parameters used in equation (2)
to generate the results shown in figures (1), (2), and (3) respectively, for the rms time
prediction error.

Table 2
(Normal Performance)
Clock oy(tL) T a b c M
Cs (commercial) 1 x 10-13 106s 0 4.8 x 10-11 1 x 10-13 1
Cs (high perf) 4 x 10-14 108s 0 6.3 x 10-12 4 x 10-14 1
Rb 3 x 10-12 105s 0 4.7 x 10-12 3 x 10-13 1
H (active) 1 x 10-14 10%s 1 x 10-12 0 1 x 10-14 1
Table 3
(Best Performance)

Clock oy(rL) T a b c M
NBS-4 8.1 x 10-15 4 days 0 2 x 10-12 6.6 x 10-15 0
NBS-6 1 x 10-14 1.5 x 10%s 0 1 x 10-12 1 x10-1%¢ 1
H (passive) 5 x 10-15 1.2 x 105s 0 1.7 x 10-12 0 0
H (active)* 2  x 10-15 0.7 x 10%s 1.7 x 10-13 3.5 x 10-14 0 1

*These values are taken directly from a oy(t) plot supplied privately to me by Dr. Robert
F. C. Vessot for one of his VLG-11 masers assuming equal contributions of the two measured.

Table 4
(GPS Clocks)
Clock oy(tL) T a b c v
GPS Spec 2 x 10-13  105%s 0 5 x 10-11t 2 x10-13% 1
GPS Spec 2 x 10-13  10°s 0 5 x 10-1t 2 x10-13 0
Rb (100 day) 2 x 10-13 10 days 0 9.7 x 10-12 1.2 x 10-13 1
FTS 1 x 10-13 10 days 0 1.7 x 10-11 1  x 10-13 1
H (passive) small 1.2 x 10-14 4 days 0 1.7 x 10-12 1.2 x 10-1¢ 0
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