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ABSTRACT 

In experiments on N atoms initially prepared in uncorrelated states, the precision of a 
transition frequency measurement (limited only by the quantum fluctuations in the 
measurement) improves as N-". We show that the precision of a frequency measurement 
can improve as N ' ,  if the atoms are prepared in particular quantum mechanically 
correlated states; These correlated states can be interpreted as squeezed spin states in 
analogy with the squeezing that has been discussed with reference to the electromagnetic 
field. We discuss states which provide the maximum possible precision in a transition 
frequency measurement and briefly describe possible methods for generating correlated 
states. 

1. Spin Squeezing and Ramsey Spectroscopy 

In this manuscript we consider the spectroscopy of N two-level atoms, where 
transitions are driven by classical radiation and detected by measuring changes in the 
state populations. We assume that the relaxation of the atomic states can be neglected. 
The use of correlated states to improve the signal-to-noise ratio in this type of 
spectroscopy has been discussed recently under the subject of spin squeezing.'" In 
particular, Refs. 1 and 2 discuss spin squeezing for the Ramsey technique of separated 
oscillatory fields (SOF). After reviewing this discussion below, we discuss in Sec. 2 the 
best squeezed spin states for N=2 atoms. In Sec. 3 we give a state that can be used in 
Ramsey spectroscopy to provide a frequency imprecision of (NT)-' where T is the time 
of a single measurement. From a time-energy uncertainty relation, we show that this is 
the best precision possible. Finally in the last section we briefly describe possible 
methods for generating correlated or squeezed spin states of ions in a trap. 

Let I e) denote the excited state of a two-level atom and I g) the ground state, and 
consider the case where N atoms are uncorrelated and each atom is initially prepared in 
its ground state I g). Because any two-level system interacting with classical radiation 
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is equivalent to a spin-% magnetic dipole in a magnetic field,4 the initial state of the 
composite system for this case is equivalent to the I J=N/2, M,=-N/2) state of a J=N/2 
spin. This initial ( t=O) state has (J,)o=-N/2, (J,)o=(Jy}o=O, and AJ,(O) =AJ,(O) =N"/2. 
(Here (A), denotes the expectation value of an operator A at time t and AA(t)=(AA*),", 
where AA2=A2-(A)'.) The Hamiltonian for the equivalent spin system is H =  - p B 
where F = p o T  is the magnetic moment of the composite system and E is the applied 
field. Here E=Bo2+fi,, where Bo is a time independent field set by the frequency of 
the transition (wo=-pJ3Jfi, where we assume p,<O), and El is an applied oscillating 
field used to perform spectroscopy on the atoms. We assunie fi, is perpendicular to, and 
is rotating about the z axis according to fi,=Bl[-8sinwt + fcoswt]. In the Ramsey SOF 
technique,' B, is applied (that is, nonzero) for two periods of length trI2=7r/(2QR) where 
OR= I pJ3, I / f i  is the Rabi frequency, separated by a period of length T during which 
B, =O. Throughout this manuscript we assume QR > > I w,-w I and T > > td2 which 
results in a simple expression for the Ramsey lineshape. In a frame of reference rotating 
with E,, the first pulse rotates the spin vector about fi, (the y axis in the rotating frame) 
by 90". The spin vector then precesses about the z axis during the field free period, 
acquiring an angle (wo-w)T relative to the x axis in the rotating frame. This angle could 
be read out by measuring, for example, J, in the rotating frame. Experimentally this is 
done by the second 7d2 pulse, which rotates the spin vector by 90" about the fi, axis, 
and then measuring the number of atoms in le}, or equivalently J,. We obtain 

- -  

(.q = (N/2)cos(wo-w)T 

where &=2t,,,+T. 
Measurements of J, along with Eq. (1) can be used to estimate the frequency 0,. 

Because of the statistical nature of quantum mechanics, the number of particles which 
make a transition to le) from measurement to measurement will fluctuate by AJ,(tf).6 
This produces an uncertainty in the estimate of 0, of I Aw I =AJ,(tf)/ I a(J,},(dw I . We 
obtain 

independent of 0. (Experimental measurements are usually made with w - oo+7r/(2T) 
where Eq. (1) has its steepest slope. This minimizes the effect of any added technical 
noise.) The fundamental noise limit of Eq. (2) has been achieved with small numbers 
of ions in a trap.6 Qualitatively, the dependence of I Am I on AJy(0) in Eq. (2) can be 
understood from the picture that the Ramsey SOF technique measures the accumulated 
angle (oo-w)T of a spin in the x-y plane which is precessing about the z axis. In 
particular, spectroscopy with the Ramsey SOF technique is equivalent to determining the 
rotation of a spin state (after the first d 2  pulse) about the z axis. The precision of this 
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measurement is limited by the uncertainty of the spin normal to the mean spin vector and 
in the x-y plane, which here is AJ,(O). The idea of spin squeezing is to start with a state 
(T)=?(J,), such that AJ,(O) < N'/2. Such a state can be used to improve the frequency 
resolution in Ramsey spectroscopy if the squeezing parameter f R  = (2J)"AJy(0)/ I {Jz)o I 
< l.7 The parameter tR is a measure of the improvement in Ramsey spectroscopy over 
the case where the initial state consists of uncorrelated atoms. States with tR < 1 are 
in general entangled; they cannot be written as a product of individual atomic wave 
functions. These states are multiparticle versions of the correlated two-particle states 
discussed in the Einstein-Podolsky-Rosen experiments. Spin squeezing has also been 
discussed in the context of The discussion there parallels the 
discussion here because there is a one-to-one correspondence between the Ramsey SOF 
technique and a Mach-Zehnder interferometer. 

2. Two-Atom Squeezed States 

For simplicity, consider N=2 (J= 1) and let the mean spin vector be parallel to 
the z-axis, {T)={JZ)2. In this case it is straightforward to show that the state with the 
best squeezing (lowest value of ER) is 

I#,> =(2~osh(28))-'~{e-~1J=l,m,=l) +eel 1, -1) 1, (3) 

where 8 is determined by (J,)=-tanh(28). As discussed above, except for the 8++- 
limits, this is a correlated state of the two atoms; it cannot be written as the product of 
individual atomic states. In addition, AJ~=1/2(1-se~h(28)), AJ:=1/2(1 +sech(28)), and 
~ R ~ ~ ~ ~ h ~ / ( ~ ~ ~ h ( 2 8 ) ) ' ~ .  The smallest (that is, best) values of tR are obtained for small 
e. AS e+, fR+1/d2. However, as e+, the mean spin vector {T)=(J,)~ and the SOF 
signal also approach 0. The next section indicates how this problem can be solved by 
detecting an operator different than J,. 

3. Optimal Frequency Measurements 

Some squeezed states for N > 2 are discussed in Refs. 2 and 3. Reference 3 
shows that certain "intelligent" states, discussed in detail by Rashid,12 provide a 
squeezing ER+d2N-Ih as N+w. By detecting an operator different than J,, we can find 
a state with a squeezing ER=N-". In order to motivate the choice of this state, recall that 
the angle (w,-w)T which is measured in the Ramsey method is, in the rotating frame, just 
the phase factor e-i(wo-O)T that the excited state I e) acquires relative to the ground state I g) 
during the free precession period T. Consequently it may be possible to improve the 
precision of Ramsey spectroscopy by making a coherent superposition (after the first a/2 
pulse) of two energy eigenstates whose energies differ by more than h(co0-u). For N 
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two-level atoms the eigenstates I N/2,-N/2) and I N/2, N/2) provide the largest energy 
difference, with an accumulated phase difference of N(w,-w)T over the free precession 
period. It appears that the state 

I $M) = { I N/2, N/2) + I Nl2, -N/2)) M2 (4) 

may therefore provide a frequency imprecision of (NT)", which is N" smaller than that 
provided by N independent atoms. However, because ($M 17 I fiM) = 0, some operator 
other than J, with higher-order tensor components must be detected. 

Consider the operator 0 = ll u . which is a product of the z-component Pauli spin 
matrices for the atoms. For J=N/2 this operator is diagonal in the I J, M,) basis with 
eigenvalues (- l)J-MJ. (This follows by expressing I J,M,) as a sum over all states which 
are products of individual spin up or spin down states with J-Mj spins down.) Quantum 
jump detection can be used to measure 0 (or J3 without added noise.6 The result of 
measuring x atoms in the spin up state is assigned the value (-l)N-x. Suppose at the end 
of the first a12 pulse the state I $M) is created. After the second a12 pulse we detect (6), 

N 
i = l  z1 

= ($flO I $ f )  where 

Explicit computation gives (6), = (- l)Ncos[N(o,-w)T] and, because o2 = 1, 
(A@)tf=sin2[N(wo-w)T]. By detecting the operator 0, we can therefore use the state 
I $M) in spectroscopy with a frequency imprecision 

[ A w l  = A6(t , ) / ld(6) , /awI = (LVT)-' (6) 

independent of o. 
The Ramsey method measures w, by measuring the phase w,T (we now use the 

laboratory frame of reference) which state le) acquires relative to Ig) during the free 
precession period; that is, w, is measured by observing the free time evolution of the 
system. With the state I$M) a frequency imprecision of (NT)-' is obtained. We show 
that this is in fact the best precision that can be obtained on N identical two-level atoms 
undergoing free time evolution. This follows from an application of the time-energy 
uncertainty principle 

6 t 2  (AH2)  1 A2/4 , (7) 

where (AH2) is the variance of the Hamiltonian and is the variance in estimating time, 
derived from measurements of an operator of the system. (In many texts 6t  is interpreted 
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as a characteristic evolution time of the system and Eq. (7) then relates the uncertainty 
in the system’s energy to this characteristic evolution time. However 6t can also be 
interpreted as the uncertainty in determining time from measurements of an operator of 
the system. For example, measurements of an operator A can be used to determine time 
with an uncertainty AA/ Id(A)/dt I .  See Ref. 13 for a simple proof of the time- 
uncertainty relation and Refs. 14-16 for a more rigorous discussion.) For the system of 
N identical two-level particles, Eq. (7) can be expressed in terms of dimensionless 
quanti ties 

66’ (Ah2) 2 1/4 (8) 

where C#I = o,t and 

N 

We are here considering the full 2N-dimensional Hilbert space and not just the J=N/2 
subspace discussed earlier. We can establish an upper limit (Ah2)IP /4  from 
(Ah2) =(h2) -(h)2 I (h2) and (h2) 5 N2/4. The last inequality follows because the maximum 
eigenvalue of h2 is P / 4 .  From these inequalities and Eq. (8) we have 

1 2 -. 1 662 2 
4 (Ah2) N 2  

For a free time evolution of duration T, Eq. (10) implies that 

1 6w, 2 - ” 

where 60, is the uncertainty in determining o, from measurements at the end of the 
evolution period. Therefore the optimum precision in measuring w, can be obtained 
using Ramsey spectroscopy with I #M) and detecting the operator 8 as described above. 

We can apply the above results to particle interferometry. In particular, for a 
Mach-Zehnder interferometer employing n input particles for each measurement, the 
desired state corresponding to Eq. (4) (that is, the state after the first beam splitter) is 
I #) = { I n), I O),+ IO), I n),}k/2 where a and b denote the two modes after the first beam 
~p l i t t e r .~?~  In this case, the operator 0 can be detected by measuring the number of 
particles n(b’) detected in the b’ output mode of the second beam splitter. The result of 
such a measurement is assigned the value (-l)n@’). Equation (6) implies that the phase 
sensitivity of the interferometer is given by A$=n-’, and Eq. (11) shows that this is the 
maximum sensitivity possible. 
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4. Methods for Making Squeezed States 

In this section we briefly discuss several ideas for making squeezed spin states 
with ions in a trap. (There are also ideas for making squeezed spin states with neutral 
atoms. One possibility replaces the center-of-mass mode of the ion cloud discussed 
below with an electromagnetic cavity mode.I7) Ion traps provide an isolated environment 
for the internal energy states of trapped ions. At first sight, this isolation appears to 
make correlating the intemal states of the trapped ions difficult. However, with cooling, 
the translational states of the trapped ions can be strongly interacting. (For example, 
with laser cooling, ions in a linear rf trap freeze into a l-D ~tring. '~, '~) In the schemes 
discussed so far for generating correlated states of trapped ions, the internal states of the 
ions are coupled to a particular (shared) motional degree of freedom. In Refs. 1 and 2, 
quasi-static inhomogeneous fields and stimulated Raman transitions were discussed as 
possible methods for coupling ground state hyperfine levels of an ion with the center-of- 
mass (COM) mode of a trapped ion cloud. The ions were assumed to be prepared in 
either one of the I N/2, +N/2) states and all ions were assumed to see the same coupling 
with the COM mode. (For the stimulated Raman interaction, this will be satisfied if the 
laser beam waists and confocal parameters are large compared to the ion cloud.) In this 
case, in the interaction picture and the rotating wave approximation, the interaction H, 
between the internal states and the COM mode can take the form of a Jaynes-Cummings- 
type interaction 

H ,  = - f iQ (J+u + J-u +) 

where a+ (a) is the raising (lowering) operator for the COM mode, J, (J-) is the raising 
(lowering) operator for the J=N/2 ladder of atomic states, and fl is the strength of the 
interaction. In one, the COM mode is 
initially assumed to be a coherent state and in the other a squeezed state. The interaction 
of EQ. (12) was then applied for a specific time and the resulting squeezing of the spins 
calculated. In general, this method results in a mixed state of the ions' internal states 
and the COM mode, and a squeezing less than the optimal value discussed in the last 
section. By preparing appropriate (probably nonclassical) states of the COM mode, we 
may be able to prepare to prepare the state I $M). For example, with N=2 the coupling 
in Eq. (12) can be used to evolve the / n = l ) I J = l ,  M,=-1) state into the In=O)IJ=l, 
M,=O) state. For N=2, the internal state differs from I $M) by a rotation. 

More recently, Cirac and Zoller 2o have discussed the use of a string of N ions 
in a linear rf trap for quantum computation and described a method for preparing general 
quantum states of this system. Their method iq similar to that discussed in the previous 
paragraph but differs in that it uses a well focussed laser beam to couple the internal 
states of individual ions with a mode of the ion string. The mode is initially prepared 

Two different schemes were investigated. 
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in In=O). The laser beam is then used to address an individual ion and correlate, or 
entangle, the internal state of the ion with the mode. The laser beam can then be used 
to address a different ion and change the correlation between the ion and the mode to a 
correlation between two different ions. Reference 20 lays out the steps needed to prepare 
the state I tCIM). Here we discuss the simple case of N=2. We assume lasers can be 
focussed and used to drive transitions on an individual ion without perturbing the other 
ion. (If Ig) and le) are hyperfine levels of an atomic ground state, lasers can be used 
to drive a stimulated Raman transition between the states.21) Suppose that the 2 ions are 
prepared in the initial state I g), I g)2 I n =0) where the indices refer to the internal states 
of ions 1 and 2 and I n=O) is the n=O state of a mode of the 2-ion string. First a a/2- 
pulse on the blue sideband of ion 1 takes the Ig), Ig)21n=0) state into the 
I g)2{ I g), I n=O)+ I e), I n =  l)>h/2 state. This is then followed by a a pulse on the red 
sideband of ion 2. This leaves the Ig)lIg)21n=0) state unperturbed, but takes the 
I e), I g)2 I n = 1) state into the I e), I e)2 I n =0) state. In this manner ] +M) can be prepared 
for N=2. 
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