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ABSTRACT

We are investigating the use of GPS carrier-phase fo
high accuracy time transfer measurements.  We have
conducted a long-term time transfer experiment between
the United States Naval Observatory (USNO) Master
Clock and Alternate Master Clock (AMC). These clocks
are located at the USNO in Washington D.C. and
Schriever Air Force Base near Colorado Springs,
Colorado, respectively.  At both locations two-way
satellite time transfer (TWSTT) measurements are made
nearly every hour and geodetic dual-frequency GPS
carrier-phase data are collected every 30 seconds.

The data are analyzed using a geodetic software packag
developed by the Jet Propulsion Laboratory combined
with precise satellite orbits determined by the
International GPS Service (IGS) global tracking network
[1,2].  The radial accuracy of these orbits is
approximately 10 cm. Instead of computing the difference
between the GPS observables, as is common in high
accuracy geodetic GPS analyses, the software explicitly
estimates the receiver and satellite clocks at each dat
epoch. The technical GPS issues investigated include th
importance of carrier-phase ambiguity resolution,
troposphere modeling, thermal effects, and multipath
noise. Given that the error spectra for the GPS and
TWSTT systems are quite distinct, we hope to learn more
about each system's accuracy potential.
23
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INTRODUCTION

National labs currently use TWSTT and GPS common
view time transfer as the primary means of comparing tim
and frequency standards.  By using GPS carrier-phase 
have achieved measurement uncertainties comparable
the TWSTT technique and smaller than the single-chann
common view technique [3-5].  However, severa
environmental and calibration issues must be resolved 
provide an accurate measurement solution [6-8].

BASIC SETUP

Initially short-baseline results at NIST and USNO showe
great promise [9,10]. To test the full capabilities of GPS
carrier-phase time transfer a longer baseline was chos
between Schriever AFB and USNO.  Frequent TWSTT
measurements are made between these sites, and geod
receivers are available at both locations (See Figure 
[11,12].  This allowed us to compare the well
characterized TWSTT data to the GPS carrier-phas
system.

Figure 1: Basic Setup of GPS carrier-phase time transf
and TWSTT systems at Schriever AFB and USNO.

CARRIER-PHASE OBSERVABLE

The carrier-phase measurement is the difference betwe
the satellite-generated phase and the receiver-genera
phase.  The GPS carrier-phase observable ∆φ sr for a
given satellite s and receiver r can be written as:

−∆φ sr λ= ρg + cδ s - cδ r + N sr λ + ρt - ρi + ρm + ε ,  (1)
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where each term is in units of length. The geometric rang

is ρg, or r
s XX − , where Xs is the satellite position at

the time of transmission and Xr is the receiver position at
reception time.  Proper determination of the geometric
range requires precise transformation parameters betwee
the inertial and terrestrial reference frames, i.e. models o
precession, nutation, polar motion, and UT1-UTC.  The
times of the receiver and satellite clocks are δr and δ s,
respectively.  The carrier-phase ambiguity, or bias, is Ns

r,
which is the initial number of integer cycles.  The carrier
wavelength is represented by λ, ρt and ρi are the
propagation delay due to the troposphere and ionospher
ρm is the multipath error, and ε represents unmodeled
errors and receiver noise.  A more complete derivation o
this observable is given in [10].

To analyze carrier-phase results with the highest precisio
we must model or correct all the terms in Equation 1
using a geodetic software package [1].  The satellite an
receiver clocks are modeled as white noise to keep th
estimates uncorrelated from epoch to epoch.  The
reference clock is the USNO receiver clock with all other
clock estimates being reported relative to this clock.  GPS
satellite coordinates are taken from the IGS [2].  The
ionospheric effects are removed by using a linear
combination of the L1 and L2 phase data.  Carrier-phas
ambiguities, variations in the troposphere [13], and station
coordinates are estimated from the data.  To minimize
multipath error, we do not use carrier-phase data observe
below elevation angles of 15 degrees.

The analysis uses carrier-phase data decimated to 6
minute intervals to help reduce the data to a more
manageable computational level.  Data are also include
from geodetic receivers located at Algonquin (Ontario,
Canada) to help define the terrestrial reference frame, an
at Goddard Space Flight Center (Greenbelt, Maryland) to
help resolve carrier-phase ambiguities.  In theory,
however, we would require only data from the two
receivers at USNO and Schriever AFB to perform our
comparison.

COMPARISON WITH TWSTT

Figures 2a-f and 3a-f show the results of the analysis
period of nearly 8 months.  There are several periods
when data were lost due to a measurement system chan
or failure.  Larson, et al. [12], describes these periods an
the reasons for each occurrence in detail, including som
of the recalibration events.  The data loss rate was 3%
over the 236 d analysis period.  The formal errors
reported for the carrier-phase measurements are on th
order of 75 ps.  The hourly individual TWSTT
measurements (an average of 18 measurements per da
have a formal error of about 225 ps.  To compute the
correction for the clock reference difference between the
4
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two time transfer systems, as seen in Figure 1, the US
local hourly MC#3-MC#2 difference data are linear
interpolated.  It is also important to note that the carri
phase clock estimates have an unknown time offset w
respect to the two-way observations, because the de
through the GPS receivers are not known.  The mea
the carrier-phase data has been adjusted to compensa
this overall time offset.
1025
The smoothed TWSTT and GPS carrier-phase
measurements are shown in Figure 3.  In Larson, et a
[12], time differences between the smoothed TWSTT and
carrier-phase are calculated to be 5.4 ps/d over a specif
188 d period.  These residuals place an upper bound o
the long-term stability of the carrier-phase system.
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Figure 2a: TWSTT and carrier-phase estimates.
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Figure 2b: TWSTT and carrier-phase estimates.
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Figure 2c: TWSTT and carrier-phase estimates.
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Figure 2d: TWSTT and carrier-phase estimates.
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Figure 2e: TWSTT and carrier-phase estimates.
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Figure 2f: TWSTT and carrier-phase estimates.
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Figure 3a: Smoothed TWSTT and carrier-phase estimates.
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Figure 3b: Smoothed TWSTT and carrier-phase estimates.
1027



-2

-1

0

1

2

3

50990 51000 51010 51020 51030

MJD

ns

Figure 3c: Smoothed TWSTT and carrier-phase estimates.
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Figure 3d: Smoothed TWSTT and carrier-phase estimates.
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Figure 3e: Smoothed TWSTT and carrier-phase estimates.
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Figure 3f: Smoothed TWSTT and carrier-phase estimates.
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CABLE CONCERNS

Initial analysis of the clock estimates showed diurna
fluctuations of ~400 ps peak-to-peak.  Using local USNO
temperature records it was found that these fluctuation
were highly correlated with air temperature.  The
sensitivity of the cable delay to temperature was no
exactly known, but testing on a similar cable was found to
have sensitivity of 0.53 ps•m-1•K-1.  With approximately
90% of the GPS antenna cable outdoors, and assuming
daily temperature variation of 10 K, the cable would have
a 420 ps p-p diurnal change in its delay [7, 12].

Figure 4a shows 30 days of carrier-phase clock estimate
and hourly TWSTT results for the AMC-USNO baseline.
The carrier-phase and TWSTT measurements are show
to be in close agreement with each other.  However, th
diurnal variations are readily apparent.  In Figure 4b a
low-order polynomial has been removed from the time
series in 4a to make a more direct comparison to loca
temperature records in 4c.  Then using cable dela
sensitivity to temperature of 40 ps/K to correct the GPS
carrier-phase clock estimates in 4a, we made 
considerable improvement to the measurements (se
Figure 4d).
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Figure 5 shows the results before and after the cable wa
changed at the USNO site.  The new cable was reported to
have temperature sensitivity better than 0.02 ps•m-1•K-1

[7,12] and was installed in the ceiling of the building,
instead of on the roof.  The new cable installation
significantly improved the stability of the GPS carrier-
phase clock estimates.  In order to take the temperature o
the antenna cable into account, all the data prior to the
cable change has had the 40 ps/K correction applied to the
clock estimates.

EQUIPMENT ENVIRONMENTAL CONCERNS

Some fluctuations in the data correlated with temperature
fluctuations in the USNO laboratory, with sensitivities on
the order of 200 ps/K.  Figures 6 and 7 show these events
more closely.  Similar receiver dependence on
temperature has been shown with other geodetic GPS
work [7, 8].  To minimize this effect the USNO placed the
GPS receiver in an isolated thermal chamber on MJD
51037.  Aside from a large spike on MJD 51126, which
appeared to be attributed to a MC#2-MC#3 data
correction rather than from the carrier-phase system, the
temperature control has improved the system performance
considerably.  The largest limit to the long-term study is
the significant data outages, which require a recalibration
[7,12].
9
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TIME AND FREQUENCY STABILITY

Figure 8 summarizes the time deviation (TDEV)
information for the two systems.  For periods of less tha
a day, the carrier-phase estimates are significantly mo
precise than the TWSTT system, with carrier-phas
TDEV of 15 to 88 ps between 6 minutes and 12 hours.  
approximately one day, the two systems overlap in TDE
and agree for longer periods, which is consistent wit
their long-term agreement in the time domain.  The rollo
in TDEV at long time intervals is consistent with the fac
that USNO-AMC#1 is steered to USNO-MC#2.  It is
shown in [12] that nearly all the noise at periods of les
than a day comes from the TWSTT system by computin
the TDEV of the difference of the TWSTT and GPS
carrier-phase.

The combined noise of TWSTT and carrier-phase 
flicker PM in nature beyond 1 day, with a level of abou
100 ps.  GPS carrier-phase frequency uncertainty 
periods of less than a day is significantly better than fo
an

us
.
l
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TWSTT, with values of 2.5x10-15 and 5.5x10-15 at one
day, respectively (Figure 9).
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Figure 7: Hourly temperature records for the USNO
receiver room, plotted along with detrended carrier-phase
clock estimates.  The carrier-phase estimates have bee
converted to degrees assuming a conversion relation o
200 ps/K.
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CONCLUSIONS

Our experiments have shown that carrier-phase GPS c
provide timing stabilities of well below 100 ps at intervals
of less than 1 d.  However, there are some issues that m
be taken into account to improve the stability of the link
Foremost, high-quality cables and environmenta
extremes must be considered in maintaining the be
conditions for the time transfer system.  Receivers shou
be installed in thermally controlled chambers, with
temperature fluctuations less than 0.1 K.  Elimination o
errors in local timing links should be minimized by
connecting GPS receiver reference clocks directly to thei
sources as much as possible.  Furthermore, any kind 
receiver clock reset requires a recalibration, especially i
the case of a power outage when a complete receive
reboot takes place.  In this case, a nearest intege
increment correction of the receiver reference signal
24.4427 ns, will not suffice [12].   For GPS carrier-phase
to provide a complete time transfer system, the receiver
antennas and cables must be calibrated.  More work wit
the long-term accuracy of carrier-phase needs to b
pursued as well as the possibilities for a real-time
solution, which requires real-time orbit information.
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