NEW OPTICALLY PUMPED FIR LASER LINES AND FREQUENCY MEASUREMENTS FROM CH₃OD

Edjar M. Telles, Lyndon R. Zink, and K. M. Evenson

²Time and Frequency Division National Institute of Standards and Technology 325 Broadway, Boulder, Colorado 80303-3328, U.S.A.

Received February 27, 1999

Abstract

This work reports the discovery of 45 new optically pumped far-infrared (FIR) laser lines from CH₃OD in the range 42.6 µm to 207.2 µm. A highly efficient CO₂ laser was used as the pump laser for an Optically-pumped Fabry-Perot FIR laser. The frequencies of most of the new lines were measured in the range 1.7 to 6.4 THz.

Twenty-eight CO₂ lines were used as pump lines; nineteen of these had frequencies lower than those previously used to pump CH₃OD in a FIR laser. Sixteen of the new FIR lines had absorption transitions which belong to the OD bending vibrational mode.

¹Postdoctoral fellow from CNPq-Brasilia-Brasil.

²Contribution of US government, not subject to copyright.

I- Introduction

The purpose of this work is to reinvestigate the isotopic species CH₃OD as a FIR lasing molecule. The main motivation is the overlap of the hot and sequence bands of the CO₂ laser lines near 11 µm (909 cm⁻¹) with part of the OD bending vibrational mode. The hot and sequence bands are obtained using a new optical geometry for the CO₂ laser cavity. This resulted in the observation of forty-five new laser lines in CH₃OD.

Before we started this work, one hundred thirty-eight laser lines had been identified from CH₃OD ^{2,3}. In previous work, a regular band CO₂ laser was used as a pump source and several designs for FIR cavities were used to optimize the FIR cavities. The assignment of the pump and laser transitions were determined from other experiments, for example, infrared-infrared double resonance⁴ and high resolution Fourier Transform spectroscopy in the region of C-O stretch band.⁵

Optical pumping of polar molecules is a very versatile technique for generating coherent radiation in far-infrared (FIR) region of the electromagnetic spectrum. In fact, using these techniques, more than 3000 FIR laser lines have been observed from almost 100 molecules.⁶
The CO₂ laser is used as a pump source and methanol (CH₃OH), along

with its isotopic species, are some of the best lasing molecules. The characteristics of FIR laser lines generated from normal methanol and its isotopic species were summarized in recent reviews. ^{7,8,9} The success of methanol as an active medium is due mainly to the strong overlap of the C-O stretch vibrational mode with the CO₂ laser lines and the permanent electric dipole moment with components both parallel and perpendicular to the quasi-symmetrical axis. As a consequence, the selection rules for methanol are less restrictive than for symmetrical molecules.

Furthermore, methanol has a torsional internal rotation of the hydroxyl group around the symmetry axis of the methyl group. The transitions from the internal rotational states yield lines with wavelengths shorter than 100 μ m; this makes methanol almost unique for generating optically pumped laser lines below 100 μ m.

II- Experiment

The experimental apparatus used to search for new FIR laser line is formed by the CO₂ pump laser, the FIR laser, and a detector. The CO₂ laser uses a new design recently reported in the literature. This laser has a 2.0 m long cavity formed by a Littrow-mounted diffraction grating with

744 Telles, Zink, and Evenson

0-order output coupling, a ribbed tube, and a gold-coated 20 m radius-of-curvature end mirror. The ribbed tube has an internal diameter of 18 mm with five ribs spaced every 50 cm. A gas mixture (CO₂, N₂, He) flows through the laser tube at a total pressure of about 2.9 kPa (22 Torr). A specially blazed 150 lines/mm grating provides 3 % output coupling in the zeroth order from 9.2 to 11.4 μm. The electric discharge (12 kV, 50 mA) is obtained in two regions each approximately 100 cm long. This CO₂ laser oscillates on about 275 lines cw including the regular-bands, hotbands, and sequence-bands. The laser has excellent selectivity of these lines by simply rotating the grating. Typical output powers are 25 W for regular-band lines, 10 W for hot-band lines, and 7 W for sequence-band lines.

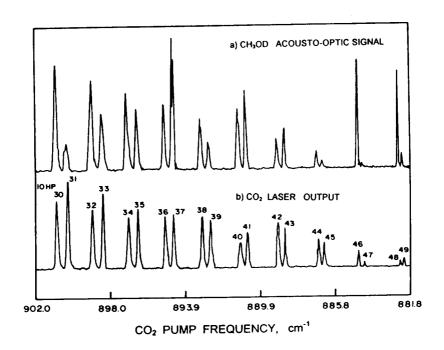
The FIR laser has a low-loss Fabry-Perot cavity with a design similar to that recently reported, 11 but it now has a nearly confocal geometry and is more efficient. It is formed with a 36 mm inside diameter 2 m long Pyrex tube with two 1.9 radius-of-curvature gold-coated concave mirrors at each end. One mirror is fixed while the other is coupled to a micrometer for scanning the cavity length. A microphone is placed inside the cavity to detect Doppler broadened acousto-optic signals

in order to find coincidences of the pump line with the absorption transition of the active medium.

The CO_2 pump radiation was focused into the FIR laser cavity with a 4 m radius-of-curvature concave mirror placed 2 m from the laser end mirror. The CO_2 radiation enters through a 3 mm diameter hole in the fixed mirror located 16.5 mm above the laser axis. The coupling hole is outside the mode radius of the FIR beam at wavelengths below 150 μ m, thus producing a high Q cavity.

The FIR power was coupled out of the cavity using a 45°, 6 mm diameter mirror radially adjustable inside the FIR laser cavity. Either a metal-insulator-metal (MIM) point contact diode (W-NiO-Ni) or a pyroelectric detector detected the FIR output. A 75 µm polypropylene window was used as an output window, then, a crystal quartz filter or a thin piece of paper was added to avoid unwanted CO₂ pump radiation on the detectors.

The CH₃OD sample had an isotopic purity of 99%. A small flux of the sample was flowed through the laser cavity to avoid laser lines from the normal species which is created by the exchange reaction of residual OH species on the walls. All new lines were also identified as belonging


to CH₃OD by checking with those from the normal isotopic species.

III- Results and Comments

The efficiency of the pump CO₂ laser and FIR laser cavity permitted the discovery of 45 new laser lines. The acousto-optic signals generated when the pump radiation is in resonance with the sample is used to identify new absorptions. The FIR laser cavity was used as an acousto-optic cell with multiple passes for the pump radiation. The sample flow was maintained through the laser cavity during the measurements. First, the CO₂ laser was tuned to each of the approximately 275 lines (by rotating the grating) from 10 HP49 to 9 R56 (11.3 µm to 9.1µm; 882 cm⁻¹ to 1097 cm⁻¹). Then, the strongest absorptions were tested to determine if they generated FIR laser lines.

Figure 1 shows part of the acousto-optic spectrum obtained in the range from 882 cm⁻¹ to 902 cm⁻¹. This region coincides with absorptions which belong to the OD bending vibrational mode centered ¹² at 864 cm⁻¹ and ending ⁵ at about 980 cm⁻¹. The opto-acoustic spectrum from CH₃OH was also obtained in the same region for comparison with

Figure 1: Acousto-Optic Spectrum from CH3OD in the region of the OD bending vibrational mode.

that from this isotopomer. Thus, the absorption lines observed were definitely from CH₃OD and the purity of the sample was assured.

Table 1 summaries the new FIR laser lines. Columns 1 and 2 give the pump CO₂ laser line and its frequency, respectively. Column 3 gives the wavelengths of the FIR laser lines with an uncertainty of about 0.5 μm. The wavelength was measured using the laser cavity as an interferometer, and the movable end mirror on the micrometer was scanned at least twenty half-wavelengths for each line identified. Column 4 gives the relative polarization of the FIR laser line to that of the pump line and is labeled by ⊥ for perpendicular and by | | for parallel. Column 5 gives the optimum working pressure, and column 6 gives the intensity of each FIR laser line. The intensity recorded is the rectified voltage on the MIM diode. For the strong 119 μm line from CH₃OH, the rectified voltage was 20 mV pumped with 22 W from the 9P(36) CO₂ pump line. The weakest lines had relative intensities smaller than 0.01 mV.

Previous to this work, the 10 HP30 (901 cm⁻¹) was the lowest pump frequency used to produce FIR laser lines.¹³ Figure 1 shows that nineteen new pump lines were used with frequencies lower than 10 HP30; and five of these generated new FIR laser lines. As shown in Table 1, the

Table 1: New FIR laser lines from CH₃OD.

					
CO ₂ pump	FIR laser line				
line	Frequency	Wavelength (a)	Rel.	Pressure	Int.
	(cm ⁻¹)	(μm)	Pol.	Pa(mTorr)	(mV)
10 HP46	884.6304	173.754	11	11(80)	2.50
10 HP41	890.5330	204.6		17(130)	0.50
10 HP38	892.9926	92.2	11	13(100)	0.04
10 HP37	894.5231	173.785		11(80)	4.00
10 HP35	896.4841	46.7	(b)	12(90)	< 0.01
10 P60	903.2118	58.9	11	16(120)	<0.01
10 HP27	904.1021	76.381	Τ	31(230)	0.05
10 HP26	904.7660	53.3	(b)	11(80)	<0.01
10 P58	905.5066	87.222		32(240)	1.50
10 HP22	908.4874	42.6	11	17(130)	0.10
		141.3		24(180)	0.40
10 HP21	909.5791	126.208		21(160)	2.00
10 P54	910.0159	207.179		24(180)	3,00
10 HP16	913.8804	106.857		25(190)	0.60
10 SP31	931.7559	152.366		11(80)	0.30
10 HR25	945.4668	125.842		11(80)	0.15
10 P4	957.8005	51.4	1	13(100)	0.04
0 R26	979.7054	88.8		20(150)	0.06
10 R28	980.9132	50.2		37(280)	<0.01
0 R34	984.3832	53.219		35(260)	0.10
0 R36	985.4883	48.775		59(440)	0.04
		60.622	1	51(380)	0.04
0 R38	986.5674	95.341	T	27(200)	0.60
		68.865		40(300)	0.25
0 R48	991.5658	118.1		13(95)	0.10

10 R52	993,3764	101.378	11	17(130)	0.40	
10R54	994.2404	69.6	11	17(130)	0.01	
9 P50	1016.7209	62.133		31(230)	0.10	
		73.691	11	31(230)	0.20	
9 P38	1029.4421	62.544	11	20(150)	0.10	
		51.9	1	37(280)	0.02	
9 P36	1031.4774	65.3		11(80)	<0.01	
9 SP17	1046.3796	58.3	1	9(70)	0.04	
9 SP15	1048,1410	70.142	11	13(100)	0.20	
		77.442	Τ	11(80)	0.04	
9 SP13	1049.8754	61.674		23(170)	0.20	
9 HP22	1052.7017	85.760		11(80)	0.20	
		117.4	Τ	12(90)	0.10	
		148.5		21(160)	0.10	
9 P10	1055.6250	112.912	11	20(150)	1.00	
9 P8	1057.3002	85.2	1	13(100)	<0.01	
9 HP14	1059.9401	55.3	11	12(90)	<0.01	
9 R6	1069.0141	92.738		20(150)	0.30	
9 R14	1074.6465	54.8	1	33(250)	0.40	
9 R28	1083.4788	108.4		53(400)	0.20	

⁽a) The lines with wavelengths reported with just one decimal place have not been frequency measured. The lines belonging to the same pump were at the same offset frequency.

⁽b) The relative polarizations of these lines could not be determined because of the low intensity of these lines.

OD bending vibrational mode. In this region, of course, the output power of the CO₂ laser is smaller than at the center of the bands. It decreases from 8 W for the 10 P54 line to 2.5 W for 10 HP46. As a consequence, the strongest new FIR lines are actually very efficient laser lines.

The frequencies of the twenty-four new laser lines and four previously reported ones were also measured directly. For this, the unknown frequency and two stabilized CO_2 laser frequencies were mixed on a $(W-NiO-Ni)^{14}$ metal-insulator-metal (MIM) point contact diode. The CO_2 laser frequencies were stabilized by locking the two CO_2 lasers directly to a saturation dip in the 4.3 μ m CO_2 fluorescence signal from an external reference cell. The difference ($|Iv_{CO2}-IIv_{CO2}|$) between the two stabilized CO_2 laser frequencies was chosen to be nearly equal to the calculated FIR frequency from the wavelength measurement. Thus an RF beat note signal in the frequency operation range of the spectrum analyzer and preamplifier of 1.5 GHz was obtained. When necessary, microwave radiation $(v_{\mu MW})$ from a synthesized signal generator was also used on the MIM diode to obtain a beat-note less than 1.5 GHz.

The beat note (ν_{beat}) signal from MIM diode was amplified by a preamplifier and displayed on a spectrum analyzer. The unknown frequency (ν_{FIR}) is determined from the expression:

$$v_{mx} = |n_1 v_{co2}(I) - n_2 v_{co2}(II)| \pm m v_{uMW} \pm v_{base}$$
.

The integers n_1 , n_2 , and m correspond to the respective harmonic generated in the MIM diode. The (+) or (-) signs and m were determined experimentally by tuning the FIR laser frequency and microwave radiation, and observing the direction and size of the beat note shift on the spectrum analyzer.

The 1 σ uncertainty of frequency measurements is $\Delta v/v = 2x10^{-7}$. This uncertainty is due mainly to the uncertainty in the setting of the FIR laser cavity at the center its gain curve. To minimize this uncertainty, we tuned the FIR laser across its gain curve and observed the frequency and amplitude in the beat note on the spectrum analyzer using a peak-hold feature. The final value of the beat-note frequency was the average of at least ten different measurements. Table 2 summarizes the frequency measurements ordered by increasing pump frequency.

Table 2: Frequency measured FIR laser lines of CH₃OD.

CO ₂ pump			FIR laser line		
line	Frequency (cm ⁻¹)	Wavelength (µm)	Wavenumber (a) (cm ⁻¹)	Frequency (MHz)	
10 HP46	884.6304	173.754	57.55264	1 725 384.7	
10 HP37	894.5231	173.785	57.54237	1 725 077.0	
10 HP27	904.1021	76.381	130.92338	3 924 984.2	
10 P58	905.5066	87.222	114.65021	3 437 126.7	
10 HP25	905.9503	227.610 ^(b)	43.93474	1 317 130.5	
10 HP21	909.5791	126.208	79.23450	2 375 390.7	
10 P54	910.0159	207.179	48.26748	1 447 022.5	
10 HP16	913.8804	106.856	93.58347	2 805 561.9	
10 SP31	931.7559	152.366	65.63148	1 967 582.3	
10 HR25	945.4668	125.842	79.46481	2 382 295.0	
10 R34	984.3832	53.219	187.90185	5 633 155.6	
10 R36	985.4885	60.622	164.95653	4 945 272.3	
•		48.775	205.02137	6 146 386.1	
10 R38	986.5674	95.341	104.88716	3 144 437.9	
		68.865	145.21244	4 353 359.5	
10 R52	993.3764	101.378	98.64102	2 957 183.4	
9 P50	1016.7209	73.691	135.70265	4 068 263.0	
		62.133	160.94559	4 825 027.3	
9 P38	1029.4421	62.544	159.88836	4 793 332.4	
9 P32	1035.4736	108.884 ^(b)	91.84087	2 753 320.0	
9 P10	1055,6250	112.912	88.56485	2 655 107.5	
9 HP22	1052.7017	85.760	116.60389	3 495 696.7	
9 SP15	1048.1410	70.142	142.56849	4 274 095.8	
		77.442	129.12962	3 871 208.5	
9 SP13	1049.8754	61.674	162.14304	4 860 926.1	
9 R6	1069.0141	92.738	107.83080	3 232 686.2	
		69.539 ^(b)	143.80330	4 311 114.4	

9 R8

1070,4623 46.793^(b)

213.70761

6 406 792.9

⁽a) Calculated from frequency with 1 cm⁻¹ = 29 979.2458 MHz.
(b) Lines previously reported

IV- Conclusion

Using a highly efficient CO_2 laser as a pump source and a nearly confocal Fabry-Perot cavity as the FIR laser, we have discovered and characterized 45 new FIR laser lines from CH_3OD . Thirty of these had wavelengths below 100 μ m. The frequencies for most of the new lines and the previously reported ones were measured with a reproducibility of a few parts in 10^7 .

Twenty-eight CO₂ pump lines were used for the first time, and nineteen of these had frequencies lower than those previously reported.

The absorption transitions belonging to the OD bending vibrational mode at about 900 cm⁻¹ generated sixteen new FIR lines, three of which were the strongest lines identified in this work.

These new data are important for future assignments of transitions from CH₃OD and the determination of the molecular parameters for the excited vibrational state. The new FIR laser lines can be applied in other experiments, such as in laser magnetic resonance (LMR) spectroscopy, as radiation sources for spectroscopy.

Acknowledgment: E.M. Telles is grateful to the Conselho Nacional de

Pesquisas e Desenvolvimento Tecnológico-CNPq-Brasil for providing the

funds for his stay at the National Institute of Standards and Technology.

This work is partly supported by NASA grant W-19, 167.

References

- 1- A. Serrallach, R. Meyer, H.H. Günthard, "Methanol and deuterated species: Infrared data, valence force, rotamers, and conformation, " J. Mol. Spectr. 52, 94-129, 1974.
- 2- S.F. Dyubko, V.A. Svich, L.D. Fesenko, "Submillimeter CH₃OH and CH₃OD lasers with optical pumping," Sov. Phys. Tech. Phys. 18, 1121, 1974.
- 3- E.C.C. Vasconcellos, S.C. Zerbetto, L.R. Zink, K.M. Evenson, "New Far-Infrared Laser Lines and Frequency Measurements of Optically-Pumped ¹²CD₃OH, ¹²CH₃OD, and ¹²CH₂DOH," to be submitted to Int. J. Infrared & Mm. Waves, 1999.
- 4- J.C. Petersen, G. Duxbury, "Infrared-infrared double-resonance spectra of CH₃OD," J. Opt. Soc. Am. B 7,10, 1997-2001, 1990.

- 5- A. Lundsgaard, J.C. Petersen, J. Henningsen, "High-Resolution Fourier Transform Spectrum of the C-O Stretch Band of CH₃OD", J. Mol. Spectroscopy 167, 131-155, 1994.
- 6- N. G. Douglas, Millimeter and Submillimeter Wavelength Lasers
 (Springer-Verlag New York), 1989.
- 7- G. Moruzzi, J.C. Silios Moraes, F. Strumia, "Far infrared laser lines and assignments of CH₃OH; a review", Int. J. Infr. & Mm. Waves, 13, 9, 1269-1312, 1992.
- 8- D. Pereira, J.C.S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C.A. Massa, "A review of optically pumped farinfared laser lines from methanol isotopes," Int. J. Infr. & Mm. Waves, 15, 5, 11-44, 1994.
- 9- S.C. Zerbetto, E.C.C. Vasconcellos, "Far infared laser lines produced by methanol and its isotopic species: a review", Int. J. Infr. & Mm. Waves, 15, 5, 889-932, 1994.
- 10- K.M Evenson, Che-Chung Chou, B.W. Bach, K.G. Bach, "New cw CO₂ laser lines: 9- μm hot band", IEEE J. Quantum Electron., QE-30, 1187-1188, 1994.

- 11- E.C.C. Vasconcellos, S. Zebetto, J.C. Holecek, K. M. Evenson, "Short-wavelength Far-Infrared Laser Cavity Yielding New Lines in Methanol", Opt. Lett. 20, 1392-1393, 1995.
- 12- F.C. Cruz, A. Scalabrin, D. Pereira, P.A.M. Velazquez, Y Hase, F. Strumia, "The Infrared Absorption Spectra and Normal Coordinate Analysis of ¹³CH₃OH, ¹³CD₃OH and ¹³CD₃OD", J. Mol. Spectr. 156, 22-38, 1992.
- 13- M. Fourrier, A. Kreisler, "Further Investigations on IR Pumping of CH₃OD and CD₃OD by a cw CO₂ Laser, "Appl. Phys. B41, 57-60, 1986.
- 14- F.R. Petersen, K.M. Evenson, D.A. Jennings, J.S. Wells, K. Goto, J.J. Jimenez, "Far Infrared Frequency Synthesis with Stabilized CO₂ Lasers: Accurate Measurements of Water Vapor and Methyl Alcohol Laser Frequencies", IEEE J. Quantum Electron., QE-11, 838-843, 1975.