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1-bit memory using one electron: Parametric oscillations in a Penning trap
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The parametric oscillation of a single trapped electron is studied and used to measure enhanced spontaneous
emission. Hysteresis in this motion provides a 1-bit memory to store information about excitations made with
the electron “in the dark.” The time dependence and stability criteria for the parametric excitation are exam-
ined. The cyclotron motions for one and two electrons are also sty#é850-29479)01303-7

PACS numbdrs): 32.80.Pj

I. INTRODUCTION below, and a ring electrode are shaped along the hyperbolic
contours which are the equipotentials of the desired electro-
An electron in a Penning trap is typically observed bystatic quadrupole potential. An “orthogonalized” geometry
driving its axial motion along the magnetic field direction [9] makes it possible to improve the shape of the trapping
with a driving force that is nearly resongfit]. Instead, we potential(by adjusting the potential on the asymptotic com-
modulate the trapping potential and thereby parametricallyensation electrodgsvithout changing the electron’s oscil-
drive the electron’s axial motion at approximately twice its |ation frequencies. A 5.3 T magnetic field is directed along
resonant frequency. The magnitude and phase of the rene vertical axis. An electron in this Penning trap undergoes
sponse are separately measured and compared to theoretigad familiar motiong 1] illustrated in Fig. 1. Throughout this
expectationg?2], along with resonance line shapes, bistabil-paper we shall assume that the slow magnetron md&bn
ity, hysteresis, and the time required to excit.e to a steadyrequency wn/(27)=13.6 kHz] is cooled to essentially
state. These studi¢8] are done in extremely high vacuum, zerg radius and is hence not an issue. The rapid cyclotron
in an apparatus virtually identical to that used to establish gyotion, also perpendicular to the magnetic field direction, is
pressure less than>610~ 17 Torr [4], thereby avoiding the 4 frequencyw!/(27) =148 GHz. The axial motion, paral-
collisions which dominated an earlier observatjéh Para- || 1o the magnetic field direction, is at frequeney/(2)
metric resonance is used to measure rapid, enhanced spontags 4 MHz.
neous emission for electron cyclotron motion in a 'trap Cav- e focus on the axial motion of a single trapped electron
ity, at a rate too fast to have been measured previd@ly  foy the rest of this section and the following section. The
The bistability and hysteresis in parametric resonance arg;mmon way to monitor this motion is to drive one end cap
used to measure the cyclotron resonance frequency with @5 resonance abg~w, and detect the response voltage
resolution of 1 partin 19 a resolution which corresponds t0 jnqced across the resistarin a tuned circuit connected to
the relativistic shift in the cyclotron frequency caused byine other end cap, as shown in Fig.(?ve do not discuss a
increasing the cyclotron quantum number by 1. This resolus.equency modulation which is important for practical rea-
tion is attained while the electron is “in the dark™ insofar as gons put does not change the basic ifi8a The measured
all nearly resonant drive@ther than the cyclotron drivand  4ints in Fig. 3a) fit the expected Lorentzian line shape with
detectors are turned off, to avoid significantly increasing they \vidth of 12.2 Hz. The width is due to damping of the
electron’s amplitude. Bistability and hysteresis in the parayarticle’s energy in the detection resis®r The magnified

metric oscillator are used as a 1-bit memory to recordegiqyals below in Fig. ®) clearly show that on resonance
whether or not a cyclotron excitation occurs. “In the dark”

detection should make it possible to increase the accuracy of

tests of quantum electrodynamics which are already the mos1(a) B (b) magnetron
accurate comparison of a physics experiniéitand theory
[8]- endcap

compensation
1. PARAMETRIC RESONANCE AND STEADY STATE )
ring
One electron is stored at the center of the Penning trap
represented in Fig. 1. Two end-cap electrodes, above anc j¢m 7

F—inch—
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FIG. 2. Schematic of drive and detection of electron’s axial
motion.

noise power

axial frequency, v, - 63 374 445 Hz
the electron “shorts out” the 4.2 K Johnson noise from the
resistor. Figure 4 illustrates that it is also possible to detect a FIG. 4. Undriven(except by Johnson noiselectron shorts the
single electron without the external drive. The Johnson noisdohnson noise from the 4.2 K resistor at frequencies near its axial
from the resistor is detecte(the noise spectrum is not flat resonance.
because of the passband of a crystal fileerd the dip dem-
onstrates again the “shorting” of this noise by the trappedelectron remains “in the dark,” because the drive does not
electron. The width of 8.9 Hz differs slightly from that of the make the electron oscillate farther from the center of the trap.
driven resonance in Fig. 2 which was taken at a differentiowever, when the electron does come into parametric reso-
time, illustrating the smalfbut slow) variations in the effec- nance, a large and easily observed axial oscillatiom @2
tive resistance of the tuned circuit. Such a dip is a commor~ w, is produced. In Sec. IV for example, we shift the elec-
way to observe many trapped particles, but a very well-tunedron’s axial motion into parametric resonance with the drive
trap and optimized electronics are needed to see a singl¢sing a cyclotron excitation, and measure how quickly a re-
trapped particle in this way. Figure 4 requires several minsponse occurs. The electron thus remains “in the dark” until
utes of averaging. The advantage is that an electron which ere is a large parametric response.
driven only by noise stays closer to the center of the trap The setup in Fig. 2 can produce a modulation of the trap-
where the electrostatic and magnetic field are most carefullping potential atwy~2w, instead of the direct drive men-
controlled. tioned previously. Such a parametric drive at frequeagy

This paper demonstrates parametric resonance as a thire2(w,+€) excites an electron oscillation at frequency
way to detect the axial motion of a single trapped electronwy/2= w,+ €. The one-electron, parametric oscillator has the
(Detailed studies of the parametric resonance of mangquation of motion
trapped electrons have been carried [diit,11].) Before the
electron’s axial motion is excited it experiences only a drive  Z+ y,Z+ w2[1+h coswgt]Z+ A 402Z°+ A gw2Z°=0,
so far off the 12.2 Hz wide resonance, aty/(2w) 1)
~ 2w,/(2m)~127 MHz, that its oscillation amplitude
does not increase because of the drive. In this sense, théhereZ is a dimensionless axial coordinate scaled by the

trap sized [1]. The damping, at ratez_1= 13 ms, is due to
energy dissipated in the detection resistor. Adjusting the
@ . » . compensation potential changes the coefficiantand g of
the nonlinear terms. In terms of the Legendre expansion co-
Yz /2n=12.2 Hz Q=52x 108 efficients often used to describe Penning trdds A4
:204/(1+C2) and)\6:3C6/(1+C2)

If we start with no axial excitation~0), the nonlinear
terms are not important, and the equation of motion is simply
XTI A AT Cay by, the familiar Mathieu equation with damping. Figure 5 repre-
C L ! . RN sents the well-known properties of the Mathieu equation. For
a parametric drive at 24,+ €), no excitation occurs unth

signal power

c: is increased beyond a threshold. Foabove this threshold
0
© h
'CJJ ) N Mathieu| instability region 2~
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FIG. 3. (a) Response of an electron driven near its axial fre- detuning, & *

qguency(pointg and a fit(solid curve to the expected Lorentzian
line shape.(b) Residuals show clearly the effect of “noise short- FIG. 5. Excitation range, — e_ vs parametric drive strengtn
ing” on resonance. for the Mathieu equation with damping.
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FIG. 8. Measured excitation range — e_ vs parametric drive
amplitude. This givehir=4.3(=1.1)x 10",
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detuning, € [Hz]  drive strength, h/h;  This well-defined excitation band is also a property of the
Mathieu equation. Figure 5 represents fixed drive strength
FIG. 6. Measured amplitud@) and phaséc) of the parametric  h>h; as a horizontal dotted line. The system is in the insta-
response aby/2= w,+ € as the frequency of the parametric drive at pjlity region from detunings betweea_ and e . Figure 8
wy is swept through resonance. The phase takes one of two bistabigyows the measured excitation rarigeints as a function of
values near resonance and is not well defined off resonance whefge drive strength, fit to Eq3) (line). From this fit we obtain
the response amplitude is very small, as is also illustrated in thqa]T:4_3 (+1.1)x 107, in good agreement with E@2).
measured phase-space plot shown in Fig. 7. The amplitude thresh- a¢ the excitation grows, the Mathieu equation ceases to
old (b) and phase(d) of the parametric response aly/2~w, o 5 yalid description. The nonlinear terfiis Eq. (1)] re-
(points are measured as a function of the strerigibf the drive. i frther growth until a steady state is reached. We can
T.he. phase plotd) is shown superimposed on the theoretical P solve the full equation of motion given in E€{) in order to
diction of Eq. (7). obtain expressions for steady state motion. To first order in

. . . .._.._the drive strengtth, the axial response is at half the drive
the drive overcomes the axial damping and the exc'tat'or?requency' so we let

grows exponentially. For a parametric drive resonanbat
=2w, (i.e., €e=0), this threshold occurs at drive strendith Z(t)=A(t)cog (w,+ e)t+W¥(1)]. 4
=hy with
The amplitudeA(t) and the phaseél(t) are taken to be
slowly varying functions of time so that deviations from
steady state can be discussed in the next section. Then, using
e<w, and y,<w,, the solution is a pair of coupled differ-
(The number to the right is twice the ratio of the measuredential equations iA and¥,
damping ratey, and the measured frequenay,.) Figure d h
6(b) illustrates this resonant threshold. _ Y :
X ; ) —A=—"Al-— 2v) |, 5
For a fixed drive strengtfh>h;, Fig. 6a shows that dt 2 [ h sin )} ®
parametric excitations occur for drives not exactly on reso-
nance(i.e., e#0) (see also Fig. 7 Excitations begin in a d 1 3 ,, O 4
rangee_< e< e, with sharply defined boundaries gry=—et Zhwz COE{ZW)+§M“’ZA +ghew A
(6)

hy=2y,/w,=3.8x10"". 2)

o The steady state amplitudes and phases can be obtained
"Wg by setting the time derivatives equal to zero. Figufd)6
. . compares the measured steady state phgsesty and the

° % . calculated steady state phasesrve obtained from Eq(5):

L . sin(2¥ .9 =h/h, @)

quadrature response

f whereW 4 is the phase difference between the response and
the drive for a steady state excitation. Because the driving
period is half the response period, the two solutions differ in

phase by 180°. This can be seen already in(Egwhich is

FIG. 7. Phase-space plot showing two families of attractorsnvariant under a transformatiofr— —Z.
180° apart as the drive frequency is being swept as in Fig. 6. Open Figure Gc) shows the steady state phase response as the
and dark circles correspond to two different phase branches. Thearametric drive is swept in frequency with an amplitude
points clustered near the center occur primarily for an off-resonantesponse shown in Fig.(&. The phase is not well defined
drive. until the axial motion is excited to a nonzero amplitude near

in phase response
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compensation potential, V
response frequency, v,/2- 63 374 900 Hz P P ¢
) ) FIG. 11. Anharmonicity coefficient§€, andCg4 as a function of
B FIG. 9. Amplitude squared of the parametric responsed®  .,mpensation potentia¥,. The slopes of the lines give th,
=w,+ € as the frequency of the parametric driveaf is SWept . efficients. The dotted line is a fit to poirguaresmeasured for
through resonance, when the trap is tuned to nak@s small as i e strength oh/h;=2.2; the solid line is a fit to pointircles
possible. The data are fit to parallel parabolas given by (BH.  neagured for drive strength bfh;=3.2. The calculated parameter
(Calibration of the mm scale depends on a calculated parametgy /D,=—0.19 defined in Ref[1] is assumed.
D¢ /D,=—0.19 defined in Ref[1].) 614

resonance. Near resonance, either of the two phases sepa- 57\6sz4 3\ 0,
rated by 180° is equally likely. One example of each phase is 16 = + 8
superimposed in the figure, and the amplitude and phase of
all measured points are also displayed in a polar, phase spaae can be seen by substituting E¢®. and (7) into Eq. (6)
plot in Fig. 7. Note that Figs. (8) and @b) correspond re- with ¥ =0. The+ in A% ande.. corresponds to the sign of
spectively to horizontal and vertical slices through Fig. 5.  cos(2p,), where

The measured line shapes exhibit bistability and hyster-
esis as illustrated in Fig. 9 where the line shape extends cog2¥ . )=*+1— si?(Z\PSS). 9
further when the drive is swept upward in frequency than
when it is swept downward. The response in the doubleThe stability of these two branches will be discussed in the
valued bistable region thus depends on the excitation historjnext section.
In the following sections we will illustrate how to use the  Fitting the observed parametric line shapes to parallel pa-
bistability and hysteresis to record information about an ex+abolas makes it possible to determine the anharmonicity co-
citation made “in the dark.” The trap was tuned in this caseefficientsC, andCg (or equivalentlyh , and\g), as well as
to make\, as small as possible and the observed shape i® calibrate the dimensionless amplitude(scaled byd).
determined by the value ofg. If the trap is deliberately The amplitudeA is related to the detected signal volta§e
mistuned to maka 4, much larger, the excited line shape thenand trap dimensiod by a constanB with S= 8Ad. To find
becomes a straight line. If the trap is instead tuned so thahis constant, a family of curves taken for different compen-
both \, and\¢ are important, then a more complicated line sation potentials was fit to E¢8). Since the anharmonicity
shape results, one example of which is shown in Fig. 10. coefficientsC, and Cg vary linearly with the ratio of the

All these features can be explained from the steady stateompensation potentid, and trapping potentiaV,
solutions to the equations of motion, EdS) and (6). For
parametric drives swept upward and downward through reso-
nance, the solutions of these equations indicate that the
squares of the measured amplitud€s either vanish or lie
on parallel parabolas, the quadratida) and linear(b) coefficients from the fits de-

pend onV.. The ratio of the variation o& and b with re-

Ai-ﬁ-ei—e:O, (8

Cy=C+D,

Ve
l o

& ' i ' ' ' spect to the compensation potential is relateg@fo

£ 150 C,=-1X10° - g P P ®

o 1ol C,= 4X10° | 1 [[Ab/AV\5 D5_048 v 1

el B=4N\3aav, )2 b, 048 Vimm. (1D

£ 050 - D -

g— o C This depends on the well-known calculated raflq/Dyg.

& 0.00 & : ; \\ : | E Onceg is found, the dimensionless amplitudecan be ex-
-200  -150  -100  -50 . O 50 100 150 pressed in terms of the detected sighat S/Bd, and the

coefficientsC,,Cg,D,4,Dg can be obtained directly from the
parabola fits. This is shown in Fig. 11. The slopes of the lines

FIG. 10. Amplitude squared of the parametric response afre pProportionalto th®,, as can be seen from EG.0). The
wgl2=w,+ € as the frequency of the parametric drive @ is coefficients displayed in Fig. 9 and Fig. 10 differ slightly
swept through resonance, when the trap is mistuned to inc@ase from those in Ref[3] because these coefficients are derived
The data are fit to parallel parabolas given by EqGlibration of ~ from the new method outlined above.
the mm scale depends on a calculated parani2ggD,= —0.19 We note that for a given drive strength, a larger amplitude
defined in Ref[1].) of excitation can be obtained in a trap with a smallgr For

response frequency, v/2 - 63 369 320 Hz
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the largerCg in our cylindrical trap, however, we believe it T I ! T
is still possible to reproduce similar parametric excitations.
From Eq.(8) we can explicitly write the ratio of the tuned
(C4=0) amplitudes for differenCg on resonanceg=0) as

a
N o (a)
K :C_G’ hZ_h_%_' (12) | | | | |

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

amplitude

In the cylindrical geometry trap used for plasma studlies,
Ce=—0.1. In the orthogonalized hyperbolic trap discussed
here,Cs=4x10"°. To achieve the same amplitude in the
cylindrical trap as in this hyperbolic trap, the drive strenigth
would have to be about 2000 times stronger. We have, how-
ever, observed a degraded value@grin the hyperbolic trap (b)
(Ce=4x10"2) which is similar to the value in the cylindri-

cal trap. Compared to the original hyperbolic trap amplitude, | ) \ ; |
the expected amplitude for the cylindrical trap is abbuaind 0.1 0.0 0.1 0.2 0.3 0.4 0.5
that for the degraded hyperbolic trap is abgufor the same time [sec]

drive strengthsh). We have been able to observe a one-

electron parametric resonance in the degraded (isth re- FIG. 12. Amplitude of the parametric responsecgtt € as a
duced signal-to-noise rajioTherefore, it should be possible function of the time after the parametric drive at«fe€) was
to see a one-electron parametric signal in the cylindrical cavturned on at=0, for the faster resonant caseest 0 in (a) and for
ity trap, with roughly the same reduced signal-to-noise ratioa slower, nonresonant case @{27)=20 Hz in(b).

amplitude

IIl. TIME DEPENDENCE AND STABILITY parametric drive is turned on. The response grows much
more quickly for a resonant drivegs=0 in (a), than for a
So far we have considered only the steady state lingonresonant drivee/(27) =20 Hz, in (b). Note from Eqgs.
shapes. Now we examine the time it takes to reach the steadys) and(3) that the rise time within the excitation range can
state. This is most easily done by rewriting the amplitude anghe decreased as desired by increasing the drive stréngth
phase equationg5) and (6) in terms of the in-phase and since €2 increases with increasing The rise time can be
quadrature response variabled,=Acos() and Aq  increased by driving near the ends of the excitation range.

=Asin(¥), Because of the exponential character of the amplitude
d 1 3 5 y growth, the time taken to excite to a steady state also de-
—A=| et+-hw,— =\ gwA%— —\sw,AY|Ag— ZIA, pends in a very sensitive way upon the initial thermal exci-
dt 4 8 16 2 tation amplitude, suggesting excitation time measurements as

(13 a promising new way to measure axial temperature.
As the amplitude grows further, nonlinearity becomes in-

d 1 3 5 ; ; it
— A= “h M0 A2 — N A4 A creasingly |mportqnt and eventually arre;ts the initial
dt’ @ €T30 ghaw T ghe@ A growth. The amplitude then approaches its steady state
value, once again exponentially, with one of two character-
| Ag (14) istic time constants, and , given by
2 b

-1__ 2 2 -1 2
=y, 2+ 12)*+4(9dA%1 9 AL, (16
where we have left the quantity; +A% expressed as’. TS Y2 (2 R AL de) e AL, (10

There are two regimes in which we can obtain a closed-form
solution for the time dependent response. Near zero excita-

tion, the nonlinear terms can be ignored as before, leaving )
the familiar Mathieu equation with exponential solutions. Where #A%/de are the slopes of the steady state response

Near steady state excitation, the amplitude variables can Hearabolas in Eq(8). These time constants are obtained by
expanded about their equilibrium values to obtain linear dif-leting Aj=(A) . + AA; andAq=(Aq) - + AAq WhereAA,
ferential equations for the deviations from steady state. ~ and AAq are small deviations from the steady state ampli-
As the axial excitation begins from zero amplitude, thetudes @) and (Ag). with time dependence 712, and
amplitude initially increases exponentially with the time con-solving Egs(13) and(14) for 71 ;. Any small deviation from

72 1= v /2= (/22 4(0A%10e) He.[AZ,  (17)

stantr given (within the excitation rangeby equilibrium can_be written as a_Iinear combination of two
exponentials using the two solutiorg and . The plus or
i - EZi_ €2+ (y,12)%—v,12, (15) minus sign in the term under the radical corresponds to the

plus or minus sign inﬁizi and will be crucial in determining
which is obtained by assuming the time dependesiefor ~ which branch is stable.
A, and Ag, and solving Eqs(13) and (14) with A;=\g Interpretingr; and 7, as steady state approach times re-
=0. Figure 12 illustrates how the response amplitude growsjuires that they be positive, real quantities. If the radical
as a function of time, with=0 being the time at which the term is imaginary, the electron amplitude oscillates but still
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measured line shapes superimposed on calculated parabolas.
The solid calculated curves are stable solutions whereas the
dotted curves are unstable. Not surprisingly, the experimen-
tal responses lie wholely on the stable branches. As a final
check of the stability criteria, the phase of the response is

; measured and shown in Fig(d. These points were taken
e | , with both anharmonicity coefficients, and\ ¢ positive; thus

-100 0 100 200 both slopes were positive, forcing the “minus” branch to be
the stable one. Again, the measured phases lie on the stable
region, cos(¥¢)<0, shown as a solid curve.

FIG. 13. Amplitude of the parametric responsecstt € as a The time. dependence and stability _of the system can be
function of the time after the parametric drive ata¢-e) was ormulated in a more general way. This may also allow an
turned on at=0, wheree/(27) =15 Hz. The solid line is a fitto  €asier treatment of other aspects of the system such as para-
an exponential with time constant=32 ms. metric feedback. We first review some of the properties of
nonlinear dynamics following closely the treatment pre-
sented by[12]. Specifically, we can examine the Liapunov
stability of a particular point in phase space, which is the
stability of the point under perturbations in the initial condi-
tions. Similarly, we can examine the structural stability of

amplitude

time [ms]

approaches equilibrium exponentially, with the single time
constant §,/2) 1. A negativer,, however, leads to expo-
nential growth of the tiniest fluctuations, rendering that
branch of steady stqte responses unstablg. Figure 13 sho whole system, which is the stability of the topology of
an exgmpl_e of_a _typlcal ap_proach to eq“"'bf_'“.m- A 10 MSihe phase portrait under perturbations in the parameters of
detection filter limits our ability to see the fast initial rise, but tFe differential equations describing the system.

a

the slower approach to steady state fits well to an exponenti Th - . . .
: . . e system can be described, in generalnljfferential
with a time constant of 32 ms. The drive strengths, detun'equations[in our case, Eqs(5) and (6)],

ings, and anharmonicities are adjusted they usually aje
so that the approach to equilibrium is oscillatqaveraged
away in the datawith an overall time constant of simply i
(y,/2)~1. The 32 ms approach time then results in a value of Xo=F5(X1,X2, ... Xp),

10 Hz for vy,/27, consistent with damping rates obtained .

from directly measured axial linewidths as in Figs. 3 and 4. )

When Ref,) is positive, the steady state parametric ex- Xn=Fn(X1,X2, . .. Xpn), (18
citation is stable. This criterion is summarized in Fig. 14 . _ _ o _
which illustrates how the slopes of the parabolas Agr ~ WhereF(x) is a vector flelq. Ifxslls an equilibrium point or
determine the stability of each branch. For the “plus” pa- ste_ady state solutiofnow mcludlng_the zero amplitude so-
rabola to be stable, it must have a negative slope with respebition as wel), thenF;(x%) =0 for all i. We denote the steady
to the detuninge, and vice versa for the “minus” parabola. State solution by
The slopes depend crucially on the anharmonicity coeffi-
cients. The pointy . = —4e.A2%/(y,/2)? delineate the over-
damped and underdamped regions. Figures 9 and 10 show

X1=F1(X1,X2, ... Xp),

X5=(X3,X3, ... X3). (19

We can study the stability of this point under perturba-

tions in the initial conditions. Consider the small deviation
@) "Plus" Parabola Slope x—x5+¢ of the vector field equatiorx=F(x). Then the
time derivative of the deviation can be expanded as

L stable | unstable X
= T -1
: 1
<—decay | oscillation/, > E=F(x3+ §)=F(x5)+Fx(x5)§+§Fxx(xs)§2+ e
only decay P
At 8A42/8e
~Fx(x)§, (20)
(b) "Minus" Parabola Slops whereF, is the Jacobian oF. For the pointx® to be (Li-
< unstable < stable N apunoy stable, we require that for every neighborhdoaf
x% in the phase space there exist a smaller neighborhood
< _oscillation/ ,_decay N;CN of x5 such that every solution starting M, will
o decay ; only remain inN for all t>0. If all solutions tend tox® ast
T 5A-2/%e —oo, thenx® is said to be asymptotically stable. It can be

shown that for asymptotic stability,— 0 ast—o, which is
equivalent to the condition that Re<0 for all eigenvalues
\; of K=F,(x®%). Note thatk can be considered as a function

FIG. 14. Stability regions for each of the two steady state
branches, as determined by given in Eq.(17). The “plus” pa-
rabola[corresponding to co¥(;) positive] must have a negative
slope to be stablgshown in(a)]. The “minus” parabola[corre- of system parameters. . . .
sponding to cos¥s) negativg must have a positive slope to be For the one-electron parametric 05(_:|Ilator., the system is
stable[shown in(b)]. The oscillatory regions, delineated ly. = described by the differential equations foand¥, given by
—4e.A%/(y,/2)?, are discussed in the text. Egs.(5) and(6). The nonlinearity in the system is due to the
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Im N('YZ/Q) @) For the zero-amplitude solutios®>=0, the phase is not
defined. We can, however, take a small nonz&rand then
take the limit asA— 0. The Jacobian is then

..... e h| e
2T A 0 2 Re }\'/(72/2) 1- (h—T> sin(2W®) 0
K~(=7,/2) o :
0 2(—) sin(2¥®)
hr
/ PR (b) (25)
o, | ! y whereWs is the steady state phase for the small amplitéide

The eigenvalues are given directly by the diagonal elements.
Using Eq.(6), we have, for sin(®%)>0,

drive frequency, € Aa=— Y2+ \/ezi — 2+ (y,12)?, (26)

_ FIG. 15. St(_aady state branchéa_)z The eigenvalues of the asso- Ag=—2 ,52i — 2+ ( 72/2)2, (27)
ciated vector fieldK. When both eigenvalues have Re&O0, then

the corresponding steady state solution is stable. A similar grapf,hich for|e|<|e. | are not both< 0. Note that Eq(7) is not
exists for each of the branché&$plus” parabola and “minus” applicable for thisAS=0 case. TheAS=0 solution is clearly

parabola. (b) The steady state solutions given by E(g.and(6). nstable insofar as the amplitude diverges with an exponen-
The solid lines are stable, whereas the dashed lines are unstabhle

e ) -y oo al time constant X,) ~ 1= 7 [the same time constant given
Similar graphs exist for anharmonicities of the opposite sign. in Eq. (15)]. For sin(2¥9<0, we have

anharmonicity, which causes the resonant frequency to de- Mar= — v )2— e — 2+ (v ]2)2 28
pend on the excitation amplitude. This restricts the growth of A Yz ez et (vl2), 28)
the amplitude of the response, which then approaches a
steady state. We quantify the anharmonicity in a tdrde-

Nyr=+2Vel — €+ (y,12)% (29

fined by The\ 5. eigenvalue would lead to a reduced amplitude; how-
3 5 ever, as£—0, F(x®) for our small nonzerd can no longer
J= SN 0,A%+ — N gw,A%. (21)  be neglected compared téx(xs_)g in Eq. (20). Therefore,
8 16 Aas and\y are not valid solutions.
Finally, we examine the effect of perturbations on the
Using J, the Jacobian foA®#0 is structural stability of the system. We restrict our discussion
to the behavior of the family of equilibrium points, that is,
0 2A%.. whether or not they remain stable or unstable under changes
K=| 43 , (22) of system parameters. This is u_se_ful in determining the effect
A ~ Yz of small fluctuations or uncertainties on the robustness of an
S

excitation of the electron. For changeshin-h; and y,>0,
pairs of eigenvalues, given by Eq23) and(24), move to-
ward the(0,0) or (—2,0) points, never crossing the imagi-
nary axis. This is depicted in Fig. (#. A stable(unstablg

with the eigenvalues

\/ T+ AS dJ| 2|e.] -1 pair of eigenvalues therefore remains stdblestablg. Thus,
M=(yd2)| 1=/ 1=A EN (7,12)? TN the system is structurally stable under changes in either
stz (23 >ht or y,>0. Variations in the system parameters and
\g also result in migration of the eigenvalues toward or away
23| 2le.| from the (0,0 or_(—2,0) points. Eigenvalues far away do not
No=(7,/2)| —1+ \/1iAs_ * ) _ _72—1, cro'ss.thesfe points, anq are structurally stable .under small
IA | (y,12)? variations ink4 or \g. Eigenvalues near these points, on the

(29 other hand, may be structurally unstable. The special points
(0,0 and (—2,0) correspond to the vertices of the parabolas

where the sign under the radical depends on the sign dfiven by Eq.(8) and shown in Fig. 1®). Any family of
cos(2V,) as before.(Here, V°=W¥ defined earlie). The  eigenvalues of the parametric oscillator can be depicted by
stable steady state solutions correspond to those havirgig. 15a), except for pathological cases suchXag=0 or
Re\;<0 for both eigenvalues. Figure 15 shoy® the ei-  both N,,A=0. In this broader sense, the various systems
genvalues andb) the steady state solutions. The deviationshave topological equivalence and structural stability.
will approach or diverge from the steady state solution with
exponential rates given by the real parts of the eigenvalues. \, cyclOTRON MOTION COUPLED TO A CAVITY
The delineation pointy -, discussed earlier, correspond to
eigenvalues leaving the real axis and occur-af(0) in Fig. The cyclotron oscillation frequenay, is more than 2000
15(a). times higher than the axial frequenay,. This motion can
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FIG. 16. Axial resonance of a single trapped elect(paise-

shorting dip to the rightis shifted to a lower frequendyeft) when - - . -
the electron’s cyclotron motion is excited to an energy f energy of the initial cyclotron excitation. Thesolid) fitted line

=6.7 eV. When the cyclotron drive is turned off, the dip shifts (constrained to pass through the origishows an exponential

. . o~ damping time for the cyclotron motion which is shorter than the
back as the electron damps via its coupling to the radiation field in ission time in f hed i
the trap cavity quntgnequs emission time in free §péﬁms ed ling Spontaneous

) emission is enhanced by the coupling of the electron cyclotron mo-

. . . . . ti d th ity.
be excited with a very pure microwave driy&3] which on and fhe cavity

enters the trap through the small tube shown in Fig. 1. Asjg) relativity shifts the axial resonance upward, eventually
cyclotron excitation to energy, results in a shift in the axial ¢ parametric resonance with the drive. After a delay, a

frequency, parametric response thus beginsuch like those in Fig. 12
The response grows with a time constant that is due to a filter
Aw, B Ec 30 included to improve the signal-to-noise ratio. When this filter
0,  2mc’ (30 is removed we can observe rise times less than 10 ms but the
signal-to-noise ratio is such that averaging over hours then
and a shift in the cyclotron frequency, becomes necessary. Figure 17 shows four measurements
made of the time delay before a response is observed, for
Ao E different values of the initial cyclotron excitation. Each point
. — (31 is an average of ten trials. The fitted lif@nstrained to pass
¢ mc* through the origiin gives an exponential damping time for

the cyclotron motion of 434 ms. In free space, this cyclo-

Both of these shifts are due to special relativity and are ofteriron radiation lifetime would be 99 ms, and so the spontane-
thought of as relativistic mass shifts since special relativityous emission is clearly enhanced by the coupling between
has the effect of replacing the masdn the mass-dependent the cyclotron motion and the trap cavity. In the past, only the
frequencies byym, wherey is the familiar relativistic factor |onger damping time for inhibited spontaneous emission
(the total energy, rest mass energy plus kinetic energy, dicould be observeff].
vided by the rest energy During these measurements we also observed the interest-

For the purposes of this paper, a cyclotron excitation siming behavior of two electrons whose cyclotron motions are
ply causes the axial frequency to shift. The dip to the right inexcited. As a context, Fig. 18ight line) shows the axial
Fig. 16 is the undriven axial resonance observed for no cyfrequency of one electron as a cyclotron drive is swept
clotron excitation. A cyclotron excitation oE;=6.7 eV downward (large shifi and upward (small excitation
causes the axial frequency to shift downward by 5502  through resonance. As in earlier observatiph3], the fre-
left dip in Fig. 16. Turning off the cyclotron microwave quency of a driven and locked axial resonance is observed
drive causes the electron resonance dip to shift back to itsontinuously. The characteristic, triangular resonant shape of
original position as the cyclotron motion spontaneouslythe anharmonic oscillator is evident and this anharmonicity
emits synchrotron radiation. This spontaneous emission is
modified by the presence of a surrounding microwave cavity Aw, /8
which can either enhance or inhibit spontaneous emissior

-2000 -1000 0

[6,14,185. 150 . ‘ . 3000

For the large cyclotron excitations used here, the time it
takes the axial resonance to come within a linewidth of its §‘
E.=0 position is of order 100 ms. However, it takes several =
minutes of signal averaging to observe the dip in the noiseg -50 |-
resonance; it is not possible to time resolve the shifting dip.
One could apply a drive directly at, for E.=0 and mea- 0 + =
sure how long it takes to see the drive response illustrated ir 086 087
Fig. 3. Instead, we apply a parametric drivewgt=2w, and
take advantage of the large signal which is rapidly produced
by a parametric excitation. At time=0 the microwave drive FIG. 18. Anharmonic cyclotron resonance for ofight line)
is turned off and the cyclotron energy begins to damp. Speand for two(bold line) electrons.

100 |- - 2000
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1000

1/

magnetic field shim current [A]
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is due to special relativity as stated in EG80) and (31).  which has the same slope as for one particle. If, on the other
Sweeping the cyclotron drive downward through resonancéand, one electron is deexcited and the other is exaitgd,
when two electrons are present in the trap exhibits a slightly=m andm,=ym. Then, the frequency of oscillation is

more complicated resonance structure shown in Fighb&l

line). Initially the slope is the same for two electrons as for (1+7y)m

one. This occurs because the center-of-mass motion is ob- wz,+=7\ k/ o (39
served and the center of mass of two electrons has the same

charge-to-mass ratio as does one electron. The cyclotron exne variation in the axial frequency with respect fois
citation energy drops suddenly but not to zero, presumabl , . /¢, , =—2[2y/(1+y)]Ay/y. The variation of the

because one electron remains excited while the Seconﬂ/clotron frequency remaind ’/w’=—Ayly. This gives
damps to the center of the trap. The excitation of the excitedg; o y~1) e

electron continues and increases as the drive is swept down-
ward in frequency until eventually this excitation also drops ,
out. The measured ratio of the two slopes is#1092. Re- Awg - E Ao
lated couplings of two antiprotons in cyclotron orbits with wz 4 o]
frequencies shifted by special relativity have been observed
[16], as have similar couplings between a simultaneouslyvhich is one-half that for one particle. In this model, it is
trapped antiproton and Hion. clear that when the system drops from the first branch to the
The basic features of the two electron resonance can bsecond branch, the axial shift will be divided by 2. This can

explained by a simple model of two oscillators coupled by ape seen in Fig. 18. We check that our initial assumptipn

force F. The equations of motion are ~2z,~z, is valid by recognizing that on the second branch
the axial driving force will be halfway between the two natu-
ral frequencies.

: (40)

My2y= — Kz, +Fy1— y,(21+ 25), (32

Mo2o=—kz+Fiom (214 2), 33 V. MEASURING THE CYCLOTRON FREQUENCY
wherez, ,z, are the displacements from equilibrium, ang, “IN THE DARK”
is the force of particle 2 on particle 1. We add and subtract The measured enhanced spontaneous emission rate re-
the equations to get the behavior of the normal mode mo- . . - P " -
tions, a center-of-mass motion, and a breathing motion. Th orted in the previous section was done "in the dark” inso-
center of charge rather than the center of mass is actuall fas the cyclotron decay ogcurre_d in the ?‘bsence of an,y
detected. However, sincey= m% 1, these are rive a_ble to ma_lke an appreciable increase in the elec_tron s
excitation amplitude. However, the field-effect transistor
about the same. Then we have
. (34  this FET caused the effective temperature of the resRtor
be greater than the ambient 4.2 K. We now consider a cy-
tion. The equation of motion for the center-of-charge modehe crycial part of the measurement, allowing the resistor
is, then, temperature to decrease to the ambient 4.2 K. The parametric
ity produces a shift in the electron’s axial frequency when
the cyclotron motion is excited, we need only detect a shift

(FET) amplifier which detected the voltage induced across
z.\ 1/z1+z,
z. | 2
clotron frequency measurement which is more “in the dark”
axial oscillator is used as a 1-bit memory to record whether
Thus, the signal due to the center of charge is the familiar

the resistor was left on continuously and energy dissipated in
2,— 2,
We takez;~2,~z, , motivated by a rigid body approxima- ingofar as the FET detection amplifier is turned off during
(Mg +mp). ' t lot itati d. Si ial relati
2= —kz, —2y,Z, . (35)  or not a cyclotron excitation occurred. Since special relativ-

Lorentzian at a frequency in the axial frequency._ A param_etri_c dri_ve is turned on at a
frequency corresponding to poirt in Fig. 10. The axial
motion of the electron is not excited. A downward, relativ-
(my+my) -~ o : . : X
Wy = \/k/ — (36)  istic shift in the electron’s axial frequency is equivalent to
shifting the frequency of the parametric drive upward to
CQoint C in the figure. The electron’s axial motion remains
unexcited during the initialand critica) cyclotron excita-
tion, until the electron enters the single valued region at ar-
— ejo row B enroute to pointC. Even when the axial frequency
©g,+ = VK ym. S shifts back because the cyclotron drive is turned off, the

The variation in the axial frequency with respect fois ~ Parametric hysteresis makes the axial excitation persist as
sz,+ /wz,+ = — %A 7/ y. The Variation Of the Cyc|otron fre_ indicated by pOinD in the figure. The FET deteCtOt’ iS Sub'

Consider the case where the cyclotron motions of both ele
trons are excited. Them;=m,=ym, and

quency, isAw./w.=—Avyly. This gives sequently turned on to read out the 1-bit memory, to find out
whether an axial frequency shifand hence a cyclotron ex-
Aw,; 1Aw; citation) took place.
— == , (39 The energy levels for the lowest cyclotron eigenstates

wz+ 2 w¢ (number statgsare shown in Fig. 1@). Since no spin is



PRA 59 1-BIT MEMORY USING ONE ELECTRON: ... 2103

(@ ° ° 8 T T T T T T T T
° ° 2 1+ A A A -
[ ] [ ] (_U b A A
0 T e
a ®,-58/2
0-58/2 © c 8
C [e]
_ n=1 g 5 A
"= ! ] e 0)cI'SS/2 % °r IA |A | |A Zlk ! 1 | I |
0302 55432101234;6
— n = 0 B - - - -
et ——ar o .
o8/ turning point frequency in ppb
C
N=0 c— FIG. 20. Probability for “pulled” relativistic excitation of the
Mme=-1/2 m.=1/2 cyclotron motion of one electron as a function of the turning point
s™ s~ frequency from which the cyclotron drive is swept to lower fre-
8 guencies.
eeoe 4 % * quency between successively higher pairs of energy levels is
© lower by
(b) h(wl)?
o=——, (41)
mc?

wheres/ w,=10"°. To make a cyclotron excitation, a cyclo-
D tron drive frequency is swept upward to a turning point and
then back downwarfl13,17, as illustrated in Fig. 1®). If
the turning point is higher in frequency than the unshifted
cyclotron frequencyC andD in Fig. 19b)], a large excita-
tion is expected(like that directly detected with the FET
turned on, in Fig. 18 If the turning point is less than the
unshifted cyclotron frequenciand there is no power broad-
ening, then no excitation is expectddd and B in Fig.
19(b)]. Figure 20 shows the probability of observing a large
excitation as a function of turning point frequencies which
are separated from each other by 1 part i 0pph. Each
point is the average of ten trials. It to@ h to produce this
: curve owing largely to the time required to turn on and off
B : the heauvily filtered voltage supply for the FET. The observed
- D edge is very clean and has a resolution width less than 1 ppb.
: : This is gratifying insofar as 1 ppb corresponds to the relativ-
: . istic frequency shift due to a single quantum excitation of the
A : : cyclotron oscillator. We have thus succeeded in resolving a
- : : one guantum excitation of the cyclotron motion using special
: : ' relativity, without resorting to any magnetic field inhomoge-

o
: - neities which couple the various electron motions and se-
g verely broaden the resonance lineshdpe$8]. This resolu-
PPN * * /t tion also indicates that the magnetic field produced by a self-
shielding, superconducting solenditd,2q drifted less than
® 1 ppb during this particular 2-h measurement.
For a completely “in the dark” experiment, the axial mo-

tion must also be decoupled from the thermal noise from the
detection resistor. This is easily accomplished by detuning
the frequency of the drive applied to excite the cyclotron motion ofthe traF? potential to makg the aX|a] frequency no longer reso-
an electronabovs in comparison to the resonant frequendips- ~ Nant with theL CR circuit shown in Fig. 2. However, the
low). For a cyclotron motion initially in its ground state, sweeping i@l excitation will remain at the average energy corre-
the drive to the “turning points”A or B ideally produces no exci- SPonding to 4.2 K insofar as such detuning also eliminates
tation, whereas sweeping to the turning poi@tsr D allows a large  the axial damping. To cool the axial motion below 4.2 K, it
excitation. should be possible to employ cavity sideband cooli2d].

At the 4.2 K ambient temperature of our current traps, the
flipped, we focus on one of the two “ladders” of Landau cooling limit for the axial motion would be 2 mK. Electrons
levels. Because of special relativity, the cyclotron energyecently confined at 50 mi22] could, however, be cooled
levels are not equally spaced. Instead, the transition freto uK axial temperatures.

FIG. 19. (a) Energy eigenstategumber statesfor the relativ-
istic electron cyclotron oscillator, with cyclotron quantum numier
and spin quantum numbern. (b) Representation of the change in
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VI. CONCLUSION temperature measurements. Observing a clean parametric
resonance with a single electron also demonstrates the sen-
X - sitivity required to study the nonlinear dynamics of two,
cal Penning tra23], where the radiation modes are now three, four, and more interacting electrons. An initial study

well measured and understofdD,11,24. The “in the dark” X .

: = : . f the collective plasma behavior of many trapped electrons
technlq_ues demons_tratgd here, _together with the deslrab Tas been carried o{110,11], and now it should be possible to
properties of the cylindrical Penning trap, suggest the likeli-

hood of a new aeneration of measurements of the electrons,tudy the onset of collective motions as the particle number
9 % increased from unity.

magnetic moment with higher accuracy and smaller system-
atic error. The |_ncreased under_stand|_ng.of the time depen— ACKNOWLEDGMENTS

dence and stability of parametric excitations should permit

the faster cyclotron frequency detection necessary for an im- We are grateful to L. Lapidus for help with analyzing the
proved magnetic moment measuremg®b]. This under- two-electron system. This work was supported by the Na-
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We look forward to repeating these studies in a cylindri-
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