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linear Frequency Drift 

When linear frequency drift exists (i.e., y ( t )  = d t ) ,  no tractable 
model exists for the power spectral density S,(f). Direct calcu- 
lation in the Lime domain using Eqs. (17) and (34) yields 

d 
a,(r) = - T  (42) J z  

and 

d 
Mod u,(T) = -T  J z  (43) 

respectively. Thus linear frequency drift yields T + ~  law for 
both q ( d  and Mod q&d. 

OTHER MEASURES OF FREQUENCY STABILITY 

A number of other mt.asures have been proposed and used 
during the past 25 years. Each measure has some advantages 
and limitations compared with the well-established power 
spectral density and the Allan variance. The Hadamard vari- 
ance (11) has been developed for high-resolution spectral 
analysis of y ( t )  from measurements of yk. The high-pass vari- 
ance (12) has been proposed through the transfer function ap- 
proach and is defined by 

It was shown that the Allan variance can be estimated by 
high-pass filtering the demodulated phase noise without us- 
ing counting technique. A band-pass variance (12) has also 
been proposed to distinguish white and flicker phase noise 
processes. A filtered Allan variance (13) has been used to sep- 
arate various noise processes. 
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FREQUENCY STANDARDS, CHARACTERIZATION 

In this article we describe the characterization of frequency 
standards following the general definitions accepted by the 
IEEE, the International Telecommunication Union-Radio- 
communications (ITU-R), and International Radio Consulta- 
tive Committee (CCIR) (1-3). In using the term “frequency 
standard” we imply that changes in the frequency A v  of the 
device are small compared to its nominal frequency vo and 
that therefore the frequency would be about the same if we 
were to remeasure it. This permits us to treat the variations 
in fractional frequency Avlv ,  as small compared to 1, and this 
greatly simplifies the mathematics of the characterization. 
We describe what is meant by accuracy and frequency stabil- 
ity of a frequency standard. The variations in frequency 
(which define the frequency stability) can be classified into 
two basic types, random and systematic. To characterize the 
random variations in frequency the systematic effects must 
be removed from the data. Special statistical techniques other 
than the standard variance must then be used to quantify the 
random variations in frequency, because some of the noise 
processes are not stationary. By this we mean that the mean 
of the frequency noise changes slowly with time. As part of 
the statistical treatment we describe how to determine the 
confidence intervals for the estimates of the various types of 
random frequency noise. 

ACCURACY 

Frequency standards generate a periodic voltage signal, 
whose ideal frequency is defined as a specific number of oscil- 
lations per second. The second is the agreed unit of time, 
based on the energy difference between two energy levels of 
the unperturbed cesium atom (41, and it is this definition that 
allows the specification of accuracy of a frequency standard. 
Generally there will be offsets or biases in the actual fre- 
quency of a standard when compared to the ideal or defined 
value (according to the definition of the second) due to system- 
atic and random effects (5-7). The accuracy of a frequency 
standard, more recently described as an uncertainty, is a 
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measure of the confidence relative to a physical model of the 
standard and the evaluation process. To evaluate the accu- 
racy of a frequency standard, a list of known sources of fre- 
quency offsets is made, and the offset or bias due to each 
source and its unceitainty are carefully measured or com- 
puted. The uncertainty is a proper summation of the esti- 
mates of various systematic offsets and random noise (8). For 

10 MHz and an uncertainty of has an frequency error of 
5 -t 0.1 Hz. 

example, a frequency standard with an output frequency of 

STAB I LlTY 

Figure 1 shows the output voltage signal of an ideal frequency 
standard as a function of time. The maximum value Vo is the 
nominal amplitude of the signal. The time required for the 
signal to repeat itself is the period T of the signal. The nomi- 
nal frequency vo of the signal is the reciprocal of the period, 
1/T. This voltage signal can be represented mathematically 
by a sine function, 

u ( t )  = V, sine = V, sin(2nuot) (1) 

where the argument e = 2mgt of the sine function is the nomi- 
nal phase of the signal. The time derivative of the phase e is 
27w0 and is called the nominal angular frequency wo. In the 
frequency domain, this ideal signal is represented by a delta 
function located at  the frequency of oscillation. Since this sig- 
nal is ideal, there are no known sources that cause frequency 
shifts, and thus its frequency is totally accurate and its uncer- 
tainty is 0. Furthermore, its frequency, phase, and amplitude 
are constant; therefore the signal is also stable in frequency, 
phase, and amplitude. 

In real situations, the output signal of an oscillator 
(source) or frequency standard has noise. Such a noisy signal 
is illustrated in Fig. 2. In this example we have depicted a 
case where the noise power is much less than the signal 
power. Frequency instability is the result of fluctuations in 
the period of the signal. Amplitude instability is the result of 
fluctuations in the peak values of the voltage. Phase instabil- 
ity is the result of fluctuations in the zero crossings. Since the 
period (and thus the frequency) of the signal is related to its 
phase, frequency instability and phase instability are di- 
rectly related. 

Figure 3 shows the power spectrum of a noisy signal (power 
as a function of frequency) as measured by a spectrum ana- 

+ 

0, or s o  
P 

- 

I 

Time 

Figure 2. Output voltage of a noisy signal. 

lyzer. Although the maximum power occurs at  the frequency 
of oscillation, other peaks are observed at  frequencies of 2u,, 
3u0, . . ., nvo, where n is a positive integer. These frequencies 
are called harmonics of the fundamental frequency yo; 2u0 is 
the second harmonic, 3u0 is the third harmonic, and so on. 
The power a t  these harmonic frequencies will depend on the 
design of the source. The spectrum around the fundamental 
frequency displays power sidebands a t  frequencies above the 
carrier (upper sideband) and a t  frequencies below the carrier 
(lower sideband). These power sidebands are the result of 
phase fluctuations and amplitude fluctuations in the signal. 
While the power spectrum gives an idea of the total noise of 
a signal, it does not give information about the relative mag- 
nitude of its phase instabilities and amplitude instabilities. 
Furthermore, at  frequencies close to uo it is difficult to  sepa- 
rate the noise power from the power of the fundamental fre- 
quency. Therefore, special measurement techniques are 
needed to measure phase instabilities and amplitude instabil- 
ities in sources. 

A noisy signal can be mathematically represented by 

u ( t )  = W, + c( t ) l  sin[2nuot + 4 ( t ) l  (2) 

where d t )  represents amplitude fluctuations (amplitude devi- 
ation from the nominal amplitude Vo) and &t) represents 
phase fluctuations (phase deviation from the nominal phase 
2nu,$) (1).  The instantaneous frequency of this signal is de- 
fined as 

1 d  1 d  
u ( t )  = - 2n - dt (phase) = u, + - 2n -$( t )  dt  (3) 

Time 

Figure 1. Ideal output voltage of a frequency standard. 

Frequency 
Figure 3. Power spectrum of a noisy signal. 



Frequency fluctuations refer to the deviation d t )  - vo of the 
instantaneous frequency from the nominal frequency. Frac- 
tional frequency fluctuations, denoted as y( t ) ,  refer to  fre- 
quency fluctuations normalized to v,,; that is, 

(4) 

Equation (4) indicates that there is a direct relation between 
phase fluctuations and fractional frequency fluctuations. 
Therefore, if a signal exhibits a certain amount of phase fluc- 
tuation, it also exhibits frequency fluctuation given by Eq. (4). 
The time deviation x( t )  of a signal is the integral of y ( t )  from 
0 to t .  Thus one can write 

The frequency stability of a frequency standard is affected 
by random noise processes and by systematic, deterministic 
changes. Systematic effects often dominate the frequency sta- 
bility in nonlaboratory environments. The sensitivity of the 
standard to temperature, humidity, atmospheric pressure, 
magnetic field, and radiation may play a role (9-11). Gener- 
ally, frequency (and thus phase) stability is divided into three 
regions: short-term, medium-term, and long-term stability. 
(Though the term frequency stability is used throughout most 
of the literature, the term actually refers to  instabilities in 
the frequency.) 

Short-term frequency stability refers to the random, nonsys- 
tematic fluctuations that are related to  the signal-to-noise ra- 
tio of the device. In quartz crystal resonators this refers to  
the region dominated by white phase noise, where the time 
between observed frequencies (sample time) is less than a sec- 
ond. In atomic frequency standards the short-term stability 
also includes white frequency noise and extends to sampling 
times of several minutes. 

Medium-term frequency stability refers to the region where 
flicker noise dominates. The sampling time characteristic of 
this region is a function of the type of frequency standard. 
Short-term and medium-term frequency stability can be char- 
acterized either in the frequency domain or in the time do- 
main, after known systematic effects have been removed. Fre- 
quency-domain characterization and measurements are 
generally used when the sample time of interest is less than 
a second. For sampling times longer than a second, time-do- 
main measurements are used to characterize frequency sta- 
bility. 

Long-term frequency stability includes random-walk fre- 
quency-noise processes in addition to systematic, determinis- 
tic changes in frequency observed when the sampling time 
is long. The long-term, systematic frequency change is called 
frequency drift (2,12). Drift includes frequency changes due to 
changes in the components of the source in addition to those 
due to external parameters such as temperature, humidity, 
pressure, magnetic field, and radiation (9- 11). Frequency 
aging, on the other hand, refers to  the long-term systematic 
frequency change due to changes in the components of the 
source, independent of parameters external to the source 
(2,121. 
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Frequency-Domain Characterization 

Phase fluctuations in the frequency domain, or phase modula- 
tion (PM) noise, are characterized by the power spectral den- 
sity (PSD) of the phase fluctuations, given by (13) 

where 9[ ] is the Fourier transformation and &',+(T) is the 
autocorrelation function of the phase fluctuations given by 

A more practical definition of PSD[&(t)l is 

where [4(f)lZ is the mean squared phase deviation at  an offset 
frequency f from the frequency vo (called the carrier in this 
context), and BW is the bandwidth of the measurement sys- 
tem (1,13-15). The offset frequency f is also called the Fou- 
rier frequency. The units for S , ( f )  are rad2/Hz. Equation (8)  
is defined for 0 < f < m ;  nevertheless it includes fluctuations 
from the upper and lower sidebands and thus is a double- 
sideband measure. 

The PM noise measure recommended by the IEEE 
(1,14,15) is .L ( f ) ,  defined as 

At Fourier frequencies far from the carrier frequency, where 
the integrated PM noise from 03 to f (the Fourier frequency) 
is less than 0.1 rad2, d ( f )  is equal to  the single-sideband 
phase noise. The units for 1 ( f )  are decibels below the carrier 
in a 1 Hz bandwidth (dBc/Hz). 

Frequency fluctuations in the frequency domain, or fre- 
quency modulation (FM) noise, are characterized by the power 
spectral density of the fractional frequency fluctuations, given 
by 

where y(  f)' represents the mean squared fractional frequency 
deviation at  an offset (Fourier) frequency f from the carrier 
(1,13-15). S,( f )  is defined for Fourier frequencies 0 < f < m. 

and its units are inverse hertz. 
The conversion between S,(f) and S + ( f )  can be obtained 

from Eq. (4). Applying the Fourier transformation to both 
sides of Eq. (4), squaring, and dividing by the measurement 
bandwidth results in 

Amplitude fluctuations in the frequency domain, or ampli- 
tude modulation (AM) noise, are characterized by the powei 
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Figure 4. PM and FM noise characteristics of a source. 

spectral density of the fractional amplitude fluctuations, 
given by 

S , ( f )  =PSD - = - (12) [ ( & 
where 4 f ) '  represents the mean squared amplitude deviation 
at an offset frequency f from the carrier (1). S , ( f )  is defined 
for Fourier frequencies 0 < f < Q), and its units are inverse 
hertz. 

In free-running sources, the FM noise is usually modeled 
by the sum of five different power laws or noise types as 

where h-2f-2  represents random-walk frequency noise, h- ,  f - '  
represents flicker frequency noise, hop represents white fre- 
quency noise, h l f l  represents flicker phase noise, and h 2 f  rep- 

resents white phase noise. Similarly, the PM noise can be 
modeled by 

S , ( f )  = C k p f @  = k - J 4  + k - 3 f - 3  
0 

p=-4 

+ K - 2 f - 2  + k- , f - '  + k o P  (14) 

where k-*f-* represents the random-walk frequency noise, 
k-3 f - 3  represents flicker frequency noise, k - z f - 2  represents 
white frequency noise, k - l  f - '  represents flicker phase noise, 
and kofo represents white phase noise. Notice that SJf l  and 
S,(fl have different slopes for a specific type of noise, as im- 
plied by Eq. (11). Equation (11) can be used to obtain the con- 
version between the S J f )  and S J f )  coefficients, yielding 

k ,  =$ha for p = a -  2 (15) 

Figure 4 shows the common noise types characteristic of 
the PM noise and the FM noise of a source (1,14-17). Usually 
a source exhibits two or three of the noise types shown in the 
plots (17). 

The AM noise of a source can typically be modeled by the 
sum of three different power laws or noise types: 

0 

SaCf) = h a y  = h-2f -2  + h - , f - ' +  hofo (16) 
a = - 2  

where h-zf-2 represents random-walk amplitude noise, h-,f-' 
represents flicker noise, and hop represents white amplitude 
noise (18). Figure 5 shows the common noise types character- 
istic of the AM noise of a source. 

Upper and lower PM sidebands are always equal and 100% 
correlated. Likewise the upper and lower AM sidebands are 
always equal and 100% correlated. This is true even when the 
RF spectrum is not symmetric about the carrier (18a). The 
phase between AM and PM noise varies randomly with time 
for broadband additive noise (18a). 

Time-Domain Characterization 

In the time domain, the fractional frequency stability of a sig- 
nal is usually characterized by the Allan variance, a type of 
two-sample frequency variance given by (1,13-15) 

c 

log f 
Figure 5. AM noise characteristics of a source. 
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where 7, is the average fractional frequency of interval 
by 

given 

In practical situations only a finite number of fractional fre- 
quency samples are available, and the Allan variance is ap- 
proximated by 

(19) 

where M = N - 1 is the number of frequency samples (N is 
the number of time samples) (1,14,15). The Allan variance 
can also be expressed in terms of time samples using Ft = 

(X,+1 - X J %  

The square root of the Allan variance is called the Allan devi- 
ation, a,(~).  

When time samples are taken every T,, seconds, the Allan 
variance can be computed for several sampling times T = n~~ 
where n > 0. For n > 1, overlapped samples can be used to 
compute 4 as shown in Fig. 6, providing better confidence 
intervals (1,19). A n  expression for the fully overlapped Allan 
variance can be derived using Fig. 6 and Eq. (19). For T = 

n~~ Eq. (19) becomes 

which can also be expressed in terms of time-domain data by 
substituting 7, for (x,+" - x , ) / T z T ~ :  

Figure 7(a) shows a log-log plot of the Allan variance as a 
function of the sampling time T for a source that exhibits all 
five common noise types. The slopes of the white PM noise 
and the flicker PM noise are the same; therefore these two 
noise types cannot be separated using this plot. The Allan 
variance can often be modeled by the sum of four different 
power laws: 

Figure 6. Computation of G,} for the overlapped Allan variance and 
n = 2. 

White -1 

- 

- 

Random-walk 

\ phase (F2) I 
- 

- 

Random-walk 

frequency (r  O) 
I I I I I I 

log 

\ White 
phase ( r-3) -1 - 

Random-wal k 

frequency (r  O )  
I I I I I I 

log ( 5 )  

(b) 

Figure 7. a',(~) and Mod 4 ( ~ )  for the five noise types 

where p-2r-2 represents white phase and flicker phase noise, 
p _ , ~ - l  represents white frequency noise, pO?D represents flicker 
frequency noise, and p171 represents random walk frequency 
noise. 

When the dominant noise type in the short term is flicker 
PM or white PM, the modified Allan variance can be used to 
improve the estimate of the underlying frequency stability of 
the sources (1,14,20). Here a new series is created by aver- 
aging n adjacent phase (time) measurements of duration T ~ .  
The average fractional frequencies are computed from the 
{TL}, as illustrated in Fig. 8. For N time samples and T = n ~ ~ ,  
the resulting modified Allan variance is 

Equation (24) can also be expressed in terms of the initial 
time-domain data { x ~ } :  

Mod at ( r  ) 

(25) 
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Figure 8. Computation of G,} and G,} for the Modified Allan variance 
and n = 3. 

where 

and 

(26) 

(27) 

Here is the phase (time) averaged over n adjacent measure- 
ments of duration T ~ .  Thus Mod uY(d is proportional to the 
second difference of the phase averaged over a time nTo.  

Viewed from the frequency domain, Mod uY(d is proportional 
to the first difference of the frequency averaged over n adja- 
cent samples. The square root of the modified Allan variance 
is called the modified Allan deviation Mod ~ " ( d .  

Figure 9 shows the ratio R(n) = [Mod ~ ( T ) ] / < ( T )  as a func- 
tion of n for all five types of noise processes (15). For random- 
walk FM, flicker FM, and white FM the ratio is constant for 
n 5 5 .  Therefore, Mod o$(T) and 4 ( ~ )  have the same slope for 
these noise types. For white PM noise (a = 2), the slope is 
- l /n;  therefore the slope of Mod $(TI  is equal to the slope of 
$(T) divided by T. Finally, for flicker PM noise the ratio 

asymptotically reaches 3.37/(1.04 + 3 In W ~ T .  In this case and 
for n > 10, the slope of Mod $(T)  is approximately 7-l. Figure 
9 also shows that Mod 4(d is considerably smaller than 
@T) far white PM and flicker PM noise. Not only does Mod 
&T) provide a different slope for white PM noise and flicker 
PM noise, allowing the separation of the two noise processes 
(see Fig. 7b); it can also speed the stability measurements. If 
a system is limited by white and flicker PM noise a t  short 
average times, using Mod a",(~) reduces the measurement time 
required to observe white FM, flicker FM, and random-walk 
FM a t  longer averaging times, in comparison with that re- 
quired when using O$T) (15). 

At long averaging times when the ratio N T & h T , )  is close 
to 1, the Allan variance has a bias related to its insensitivity 
to odd noise processes in the phase (time) fluctuations (odd 
with respect to the midpoint). In these situations an extension 
of the Allan variance that removes this bias can be used to 
characterize the frequency stability of a source. This vari- 
ance, $,TOTa(~), is obtained by extending the {x,} in both direc- 
tions and then computing the Allan variance from the new 
{x:} sequence (21-23). Figure 10 illustrates this extension of 
{xL}: on the left side the extension is the inverted mirror image 
of {q} with respect to x l ;  on the right side it is the inverted 
mirror image of {x,} with respect to xN.  How far this extension 
depends on the maximum value n, of n. For N time data 
points, n, is the integer part of (N - 1)/2. The far-left data 
point is xi -nm = 2x1 - xnm; the far-right data point is x ; + , ~ - ~  = 
2xN - xN-nm+l. Thus ~ , T O T ~ ( T )  is given by 

Equation (28) can be expressed in terms of {x:}  using T,' = 
(xI'+" - x{ ' ) /T as 

For a detailed description of 0 2 , , T o T a ( ~ )  see Refs. 21-23. 

I 1 I I 1 1 " -  

- 
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Figure 9. Ratio of the modified Allan o,ol I I I I I I I I I  I I I I l l 1 1  

variance to the Allan variance, R(n) = 1 2 5 10 2 5 100 2 5 1000 
[Mod ~ ( T ) I / ~ ( T ) ,  as a function of n (15). 
T = ni-,. Number of samples averaged, n 
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Figure 10. Extension of {xt} for u:(T). 

CONVERSION BETWEEN TIME-DOMAIN MEASURES 
AND FREQUENCY-DOMAIN MEASURES 

Frequency-domain data S,( f ,  can be converted to time-do- 
main data 0 3 7 )  using the relation (1,241 

(30) 

Equation (30) is derived by expressing both S,(f) and O$(T) in 
terms of the autocorrelation function ??,(T) of the random 
process &(t) and then combining the two expressions to cancel 
.8 ,(TI (13). Similarly, 

Expressions for Mod 037) (15,241, obtained using a similar 
procedure, are 

The inclusion of f h  as the upper limit of the integral as- 
sumes that the term inside the integral is multiplied or “fil- 
t e r ed  by an infinitely sharp low-pass filter with cutoff fre- 
quency f h .  Table 1 shows the results of Eqs. (31) and (33) for 
the five types of noise for 2 n f h 7  * 1 (1,14-16,241. The results 
will depend on the type of filter assumed. While an infinitely 
sharp filter was assumed in Eqs. (3014331, actual measure- 
ment systems have different filter response. 

Table 1. Conversion Factors for a:(f) and Mod cr : ( f )  
(1, 14-16. 24) 

Noise Type S , ( f )  u;(f) Mod u:(f) 
Random walk h-2f-Z (2n2~/3 )h-2  5 .42h .*~  

Flicker frequency h . f ’  (2  In 2)h-,  0.936h-, 
White frequency hofo hJ2 7 h0/47 

frequency 

1.038 + 3ln(%7) 1 3.37 1 
Flicker phase h i f l  4n2 h ’ 2  g h 1 - ; i  

White phase 
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Table 2. Empirical Equations for the Number of Degrees of 
Freedom When Computing Confidence Intervals for the 
Overlapped Allan Variance (16) 

~ ~~ 

Noise Type Q No. of Degrees of Freedom 

White phase 

Flicker phase 

(N  + 1)(N - 2n)  
2(N - n )  -2 

Flicker frequency +1 

N - 2 ( N -  1)2-3n(N- 1 ) + 4 n 2  +2 - Random-walk 
frequency n (N  - 3)’ 

Expressions have also been derived for a single-pole filter 
(15,25,26). These expressions, along with those in Table 1. 
constitute the boundaries for (T:(T) and Mod ( T ~ ( T ) ,  given a spe- 
cific PSD of phase fluctuations (15). For this reason it is im- 
portant to specify the filter frequency response, including the 
high cutoff frequency, when specifying the Allan and modified 
Allan variances of a source. 

Generally, conversion from (T:(T) or Mod ( T ~ ( T )  to the fre- 
quency domain is not possible, unless specific information 
about the noise characteristics is known. Greenhall demon- 
strated that several different spectral densities of random 
processes can have the same Allan variance (27). However, in 
the case where the spectral density follows the noise model in 
Eqs. (13)-(14), a one-to-one correspondence between S,(f) 
and 4 7 )  and Mod o ~ ( T )  is found, except that for white PM 
and flicker PM noise ( T ~ ( T )  exhibits the same slope, corre- 
sponding to T+. Often, uniqueness fails more generally. Some 
sources have internal phase-locked loops, and their noise 
spectra deviates from the model in Eqs. (13)-(14) (28); others 
exhibit 60 Hz and other peaks that will affect ( T ~ ( T )  (16,29). 
Generally, multivariance analysis should be used to obtain 
frequency-domain coefficients for each type of noise from 
time-domain data (30). 

CONFIDENCE INTERVALS FOR ~~$71 AND Mod 4(7) 

The Allan variance is defined as the first difference of average 
fractional frequencies, averaged over an  infinite time. Since 
only a finite number M of frequency samples can be taken, 
we can only estimate the Allan variance and deviation, and 
the confidence of this estimate depends on the number of 
samples. 

A simple method to obtain confidence intervals is to use 
the chi-squared distribution function. “he Allan variance has 
a chi-squared distribution function given by 

(34) 

where df is the number of degrees of freedom (16). The Allan 
variance is the sum of the squares of the first differences of 
adjacent fractional frequency values. If all the first-difference 
values were independent, then the number of degrees of free- 
dom would be equal to the number of first difference values. 
This is not the case, and thus other procedures have been 
used to compute the number of degrees of freedom for  TI 
(16). Table 2 shows analytical (empirical) equations that ap- 
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Table 3. Confidence Intervals for the Nonoverlapped and Fully Overlapped q , ( ~ )  (16) and for the Fully Overlapped 
Mod u,(T) (31-33)” 

Confidence Interval (%) 

n 

Fullyoverlapped 
Nonoverlapped u,( T) Fullyoverlapped cy( T) Mod u,(d 

+ - + - + Noise Type - 

2 White PM 4.1 4.8 2.9 3.2 3.1 3.4 
8 7.7 10.1 2.9 3.2 5.2 6.1 

32 13.6 23.1 3.0 3.4 9.7 14 

2 Flicker PM 3.7 4.3 2.9 3.1 3.0 3.3 
8 7.1 9.0 3.6 4.0 5.7 6.8 

32 12.7 20.7 5.2 6.1 11 16 

2 White FM 3.6 4.0 2.8 3.0 3.0 3.2 
8 6.8 8.6 4.8 5.6 5.8 7.0 

32 12.5 20.1 8.8 12 11 16 

2 Flicker FM 3.2 3.5 2.6 3.0 2.9 3.2 
8 6.1 7.4 5.1 6.0 5.8 7.1 

32 11.1 16.8 9.9 14 11 16 

2 Random-walk FM 3.0 3.3 3.0 3.3 3.2 3.5 
8 5.7 6.8 5.7 7.0 6.4 8.0 

32 10.4 15.2 11 16 12 19 

a Confidence intervals for the nonoverlapped q.(d were obtained using df in Table 2 (16). The degrees of freedom used for the fully overlapped d r )  were computed 
using numerical methods and are approximately equal to those obtained using Table 2 (16, 19). Confidence intervals for the fully overlapped Mod r,(d were 
obtained from Ref. 33. N = 1025. 

proximate the number of degrees of freedom for the fully over- 
lapped Allan variance (16). The equation depends on the noise 
type. For nonoverlapped estimates, n in Table 2 is equal to 1, 
and N refers to the equivalent number of time samples for 
7 = n~~ given by Int((N - l ) / n )  + 1, where Int( ) refers to the 
integer part. 

Usually a (p x 100) % confidence interval is computed, 
where p is the probability that the true Allan variance or Al- 
lan deviation is within the computed confidence interval. The 
( p  X 100) % confidence interval for the overlapped Allan vari- 
ance is given by 

where the chi-squared value ,$(C) for (p x 100) % confidence 
can be obtained from chi-squared distribution tables or from 
several computer programs. The ( p  x 100) % confidence inter- 
val for the Allan deviation is 

The chi-squared distribution can also be used to find the con- 
fidence intervals for Mod 4(7). 

Walter (31) and Greenhall (32) have derived expressions 
for the number of degrees of freedom of Mod 4(7) using differ- 
ent procedures. These expressions are complicated and will 
not be presented here. The two methods yield similar results 
(33). Table 3 shows the confidence intervals for CT,,(T) with no 

overlap and full overlap (16.191, and for Mod q,(d (31-33) for 
the five noise types. In general, the confidence intervals for 
the fully overlapped ~ ~ ( 7 )  are smaller than those for the non- 
overlapped CT,~T) .  For random-walk FM noise, the confidence 
intervals for the nonoverlapped and the fully overlapped 
q,(d are approximately the same, although Table 3 shows a 
small degradation when using fully overlapped estimates. 
This degradation is due to the approximations used in the 
analytical expressions. Table 3 also shows that the confidence 
intervals for the fully overlapped Allan deviation are smaller 
than the ones for the fully overlapped modified Allan devia- 
tion. Nevertheless, the modified deviation is generally smaller 
than the Allan deviation, and thus the absolute confidence 
intervals for the two are similar. 
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FREQUENCY SYNTHESIZERS 

Frequency synthesis is the engineering discipline dealing 
with generation of a single or of multiple tones, all derived 
from a common time-base, always a crystal oscillator. 

Traditionally, frequency synthesis (FS) generated a single 
tone with variable frequency or amplitude. There are new ap- 
plications, especially for testing and simulation, that require 
multitone generation a n d  even arbi t rary wave generation, 
which relate to  digital frequency synthesis. In the last two 
decades, FS has evolved from mainly analog to a mix of ana- 
log, radio-frequency (RF), digital, a n d  digital signal pro- 
cessing (DSP) technologies. 

There are three major FS techniques: 

1. Phase  Lock Loop. Also known as indirect synthesis, the 
most popular FS technique, based on a feedback mecha- 
nism that enables simplicity a n d  economics via digital 
division a n d  analog processing. 

2 .  Direct Analog. An analog technique using multiplica- 
tion, division, a n d  mix-filtering, offers excellent signal 
quality a n d  speed. 

3. Direct Dig i ta l .  DSP method that generates a n d  manip- 
ulates the signal in the numbers  (digital) domain and 
eventually converts to  its analog form via a digital to 
analog converter. 


