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Abstract

We give results of recent work on a newly developed frequency stability characterization,
called Total variance, whose main advantages are improved confidence at and near the longest
averaging time of half the data duration, and lower sensitivity to drift removal. Properties given
here, for the standard FM noise types, include mean, degrees of freedom, frequency response,
and empirical distribution function.

1 Introduction and Conclusions

This paper is about characterizing common, difficult to characterize frequency noise modulations
found at long-term averaging time 7 in the output signal of many laboratory frequency standards.
It assumes a familiarity with the Allan variance and its characterizations of white, flicker, and
random walk FM noise models (WHFM, FLFM, and RWFM) [1].

A shortfall of the currently recommended [2] Allan variance for 7, denoted here by Avar (7),
is that the usual estimators of it are highly variable at large 7 [1, 3, 4] and are sensitive to the
method of drift removal [5]. We report statistical properties of a new kind of frequency variance,
inherently dependent on measurement duration 7" as well as 7, called Total variance and denoted
hereafter by Totvar (7,7") (pronounced tot "-vér). We quantify the improvement in the uncertainty
on frequency-stability estimation from the use of Totvar (7,7 rather than Avar (7) in the presence
of FM noises. The square root of this variance, called Total deviation and denoted by Totdev (7,T")
or the recommended [2] notation o, ToTAL(T), can be interpreted like the Allan deviation o, (7)
but with improved confidence at long-term 7, as pointed out in earlier papers [6, 7] and quantified
in this paper for FM noises. We do not address the important property that Totvar (7,7") appears
to have considerably less sensitivity to the method of drift removal than Avar (7) [8].

The main advantages of Totvar over Avar are improved confidence at and near the longest
averaging time of 7 = T'/2, and lower sensitivity to drift removal. By theory and simulation we
have computed its mean, variance, and empirical probability distribution in the presence of the
three FM noise types. Variance results are given in terms of equivalent degrees of freedom [9]. In
the presence of white FM noise modulation, Total variance is an unbiased estimate of the Allan
variance for all 7, yet has three degrees of freedom instead of one at 7 = T'/2. For all three noise
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types, the mean and edf of Totvar are given by simple exact or empirical formulas. A comparison of
the empirical distribution of Totvar(7'/2,T") with the appropriate chi-squared distribution indicates
that confidence intervals based on chi-squared levels are conservative.

In the established tradition of time and frequency statistics, frequency stability is described
in terms of finite-difference variances that are ensemble or infinite-time averages of stationary,
ergodic increments of phase [12, 13, 14]. In particular, the theoretical Allan variance is a number
that depends only on 7, while its conventional estimators are random variables that depend on
both 7 and T, the largest possible 7 being T'/2. Total variance is a random variable that, along
with all its properties, inherently depends on both 7 and T'. Moreover, Total variance can report
values beyond the usual Allan variance last-T value of 7 = T'/2; its values at 7 > T7'/2 might be
used to augment the normal last-7 value of frequency stability reported at 7 = T'/2.

We compute the frequency response of Total variance as a function of 7 by averaging the
squares of the Fourier transforms of Total variance sampling functions, and find that it resembles
the frequency response of Allan variance. The results of these investigations indicate that Total
variance, while it has an interpretation like that of the Allan variance, also has lower variability
and less sensitivity to drift removal.

2 Equations for Totvar (7,7)

The purpose of this section is to give a precise definition of Totvar (7,7) for an N,-point time
deviation record with sample period 7y. In the following description, the indices m, n, and N, are
related to time by 7 = mmy, t = tg + n71g, and T = N,79, where g is the time origin and without
loss may be made equal to 0.

We start with time-deviation data x,, n =1 to N,, with normalized frequency deviations
Yn = (Tny1 — zpn) /70, n =1 to Ny = N — 1. Extend the sequence {y,} to a new, longer virtual
sequence {y;} by reflection as follows: for n =1 to Ny let y: = yp; for j =1 to Ny — 1 let

Yiej =Yjs  YN,+j = YNy+1—j- (1)

An equivalent operation can be performed on the original time-deviation sequence {x,} to produce
an extended virtual sequence {z}} as follows: for n =1 to N, let x} = z,,; for j =1 to N, — 2 let

x ) * _ _ .
Ti_; =271 — T1tj, TN,4j = 2TN, — TN,—j- (2)

This operation, depicted in Figure 1, is called extension by reflection about both endpoints. The
result of this extension is a virtual data sequence z},, n = 3 — N, to 2N, — 2, having length 3N, —4

and satisfying v, = (2}, — x},) /70, n =3 — N, to 2N, — 3.
We now define

1 Nz—1

* * * 2
Totvar (m, Ny, 79) = 2 (mn )2 (N, —2) Z (T — 225, + 25 pn) (3)
0 T

n=2

for 1 <m < N, — 1, that is, 7 can go to (N, — 1) 7y instead of the usual limit of | (N, — 1) /2] 7.
The previous notation Totvar (7,7") is to be regarded as equivalent to (3) with the dependence on
7o suppressed. Totvar can also be represented in terms of extended fractional frequency fluctuation
averages as

) Ny—1
Totvar (m, Ny, 7o) = m 2—21 (g5 (m) — G, (m))2’ (4)



where g (m) = (5 — 5) / (mo).

It can be verified that Totvar, like Avar and its estimators, is invariant to an overall shift
in phase and frequency; that is, if a first-degree polynomial ¢y + ¢in is added to the original data
set x,,, then Totvar does not change.

We expect the Total variance to be applied mostly to long phase records in which the
FM noises dominate the PM noises (white and flicker PM). Then, it is convenient for theoretical
purposes to approximate Totvar (m, N,,9) by a continuous-time analog called Totvarc (7,7), in
which the sum in (3) is replaced by an integral and dependence on g is eliminated. The time
deviation is now a continuous-time process z (t), given for 0 < ¢t < T. Extend xz (t) to z* (t)
as follows: for 0 < t < T let z*(t) = z(t); for 0 < u < T let z* (—u) = 22(0) — x (u) and
(T +u) =2x(T) — 2 (T —u). Then z*(t) is given for =T < ¢ < 2T'. The continuous analog of
Totvar is defined by

1 T * * * 2
Totvare (7, T) = 5 /0 o* (t — 1) — 20 (t) + &* (t + 7)]2 dt, (5)

for0<7<T.

The expressions above are quite different from their equivalent Allan variance expressions.
Mainly, Totvar (7,T") reports a value for an interval 7 within data length 7" based on more samples
of the second-difference of phase (or first-difference of average frequency) using a rearranged and
extended series of the original data series {x,}. It does this by a multiple sample on the phase
using a larger, virtual set of data which is an odd, or reflected, extension at the beginning and end
(left and right) of the original real set. Figure 1 illustrates the extension and, hence, the resulting
circular or repeating representation.

Analyzing a larger virtual data set built from the original data set has been a tool in
frequency-domain signal processing for many years. An assumption of periodicity replaces the
recurrent behavior (in a time-series sense), a consequence of the ergodic principle [15]. In particular,
a range of frequency values (Fourier components) from 0 < f < fj can be extended by a mirror
reflection through f = 0 so that “negative frequencies” are added to an original data set, resulting
in —fy < f < fr. In the context of time-series analysis, rather than doing extensions of the original
vector {z,} and applying the straight second-difference, we alternatively can resample within the
original vector; see Section 4 for an algorithm that requires no extension of the data array.

3 Totvarc(r,T) as an Estimator of Avar (7)

3.1 Mean and Variance

For computing theoretical moments it is convenient to use the continuous-time random variable
Totvarc (7,7) as a surrogate for the discrete-time random variable Totvar (7,7"), for the same
reason that the calculus of integrals and derivatives is less intricate than the calculus of sums and
differences. The mean and variance of Totvarc (7, T") in the presence of the three standard power-law
FM noises were computed by the generalized autocovariance method [4] under the assumption of
Gaussian, mean-zero second differences of phase; no frequency drift or drift removal is allowed. The
mean F [Totvarc (7,7)] is compared to Avar (7); the variance is most conveniently communicated
through the equivalent degrees of freedom (edf), defined for a random variable V' by

2(EV)?

edf (V) = ar (V" (6)



The results, some of which are exact and some of which are empirical fits to numerically computed
results, can be expressed as
E [Totvarc (1,T)] T

— ] <
Avar (1) ! “ 0<7<

: (7)

N N

T
edf[Totvarc (1,T)] =b— —¢, 0<7< (8)
T

where a, b, and c are given in Table I. These results were checked by simulations of Totvar (m, N, 79),
with N, = 101.

Table I. Values of a, b and ¢ for FM noises

Noise a b c
WHFM 0 3/2 0
FLFM 1/(3In(2)) 24(In(2)/7)*> 0.222
RWFM 3/4 140/151  0.358

The simple, exact form (7) for the mean of Totvar can be interpreted as a scaling property
of power-law noise. It turns out this way because the shapes of the sample functions for Totvar and
Avar (see Section 4) depend only on 7. For T'/2 < 7 < T the sampling function shapes depend also
on T’ yet, it is noteworthy that (7) persists all the way to 7', but only for white FM and random
walk FM. The edf results are empirical, with an observed error below 1.2% of numerically computed
values; for white FM, though, the edf result appears to be exact, although this is unverified.

For white FM noise processes, Total Variance is an unbiased estimate of the traditional Allan
Variance (square of frequency change vs. 7) for all averaging times (7’s). Its primary advantage as
surmised from (8) and Table I is a considerable improvement in the confidence of that estimate at
longer averaging times. For example, 10 000 seconds of frequency measurements means that 7 can’t
go beyond 5000 seconds (7'/2) to get one single estimate of frequency-change over the data duration
(last half minus first half) using Avar. The edf result (8) for white FM yields the equivalent of
three independent estimates (edf = 3) by using Totvar and its multi-sampling function, which is
discussed in the next section. The improvement of edf in the presence of FLFM and RWFM (2.097
and 1.514, respectively) is not as dramatic, but substantial nevertheless. For 7 = T'/4, T'/8, etc., the
confidence measures of Allan and Total confidence approach each other, until they are essentially
the same at 7/16. For small values of 7/T, the time-deviation record is extended only a short

distance at both ends, and hence Totvar (7,7T") differs little from the fully overlapped estimator of
Avar () [9].

3.2 Distribution Functions

In the tradition of time and frequency statistics, it is customary to derive confidence intervals for
frequency stability on the basis of the assumption that the probability distribution of a frequency
stability estimator V', when scaled appropriately, follows the chi-squared distribution with the same
edf as V; see [9]. The chi-squared assumption has been investigated in a limited way for conventional
estimators of Allan variance [10, 11]; in view of the greater complexity of Total variance, some
investigation of its distribution is appropriate.

Let V denote the Totvar estimator of Allan variance o2, for some 7, and let r = E (V) /o2,
v = edf (V'), which are presumed known from the previous results. Then the random variable

vV

x =2
ro?



has the same mean and edf as does a 2, namely, v. If X had the x? distribution, then one could
derive confidence intervals for o2 based on one observation of V.

We carried out a brief investigation of the chi-squared assumption for the most important
case of 7 = T'/2. One thousand independent trials of Totvar (50, 101) were simulated for the three
FM noise types, and the empirical distribution functions of X were plotted along with the theoretical
chi-squared distribution functions. The chi-squared distributions were good fits to the empirical
distributions except at the lower tails, expanded views of which are shown in Figure 2. The empirical
tail always lies below the chi-squared tail. Thus, for a probability p < 0.2, if x,, (p) is the chi-squared
level for p, and z, (p) the level of the scaled Totvar X, we have x, (p) < z}, (p). Because the upper
end of a true confidence interval for o2 is proportional to 1/x% (p) for an appropriate value of p,
using x (p) for this purpose gives a conservative confidence interval. For example, suppose we want
a 90% confidence interval for 02 at 7 = T//2 based on V = Totvar (T/2,T) and a white-FM noise
assumption. Then r = 1, v = 3; the 5% and 95% x? levels are 0.352 and 7.81; and a 90% confidence
interval for 0 based on chi-squared is [3V//7.81,3V/.352] = [0.384V,8.52V]. (Take square roots for
0.) The more realistic value of 0.60 for the 5% Totvar level from Figure 2(a) reduces the upper end
of the confidence interval to 5V.

4 Sampling Functions and Frequency Responses

Extending by reflection an original {z,,} vector at both ends and then applying a second difference
can be equivalently represented as four different types of differencing on {z,, : n = 1,...,N,}
directly. The summand of Totvar (m, N,,7y) in the following equation takes on four forms that
depend on the relationship of n to a given m and N,:

1 Nz—1

Totvar (m, N, 79) = MmN, —2) Z Dy, (9)
n=2

where

Dp=%nm—2,+ZTptm @ m—nmn>1, m+n< N,

Dy, =221 — 2o pim —2Tn+ Tntm : m—n<1l m+n< N,
Dy =zp—m — 22y, +22N, —ToN,—n-m : Mm—n=>1 m+n>N,,
D, =221 — xo_pnym — 2T + 2N, — ToN,—n—-m : M —n <1, m+n>N,.

We can derive from these expressions the frequency sampling functions associated with
Totvar (7,T"), that is, how its terms act on y, = (x, — Tp—1) /70, and contrast them with the
simpler sampling function associated with Avar () (see Figure 3), which gives the change in average
frequency from one 7 interval to the next [7]. The augmentation incorporated in Totvar (7,T")
combines the sequential sampling function with others which makes its sampling technique bizarre,
but nevertheless shown in Figure 4.

Although the time-domain presentation of the action of Totvar on frequency residuals seems
to give little insight, we can use the Fourier transform of these sampling functions to derive frequency
responses that perhaps convey more meaning. The continuous analog version of Totvar(r,T") can
be written in the form

1 T T 2
Totvarc (1,7 = ﬁ/ dt [/ du y (u) hy (ust,7)| (10)
T 0 0



where hy, (u;t,7) is the sampling function for V2z* (¢) (for the extended z* (-) record) in terms of
y(u) = de(u)/du, 0 <u <T. Let H,(f;t,7) = fOT hy (ust, 7) e /%dy. We can show that the
expected value is given in terms of S, (f), the one-sided spectral density of y (t), by

E [Totvarc (, T)] = /0 W, (£ T) S, (F) df. (11)

where ) .
. — . 2
Wy (i 1) = 5o [ 1, (i)t (12)

W, (f;7,T) can therefore be regarded as the mean frequency response of Totvar as an action on
y (t). Figure 5 shows this frequency response plotted against f7 for 7/7° = 0.1,0.2,...,0.5. The
frequency response of Allan variance (dotted curve) is the limit of Totvar response as 7/T — 0.
Also shown (dashed curve) is the frequency response of 2 - Totvarc (T, T), regarded as an estimator
of Avar (T'/2) (see Section 5 below).

Totvarc (7,7') has an approximate Allan-like response; more importantly, Totvar does not
have the deep nulls encountered with Avar(7) near 7 = T'/2; consequently it has less variability
and hence better confidence as indicated by an increased edf. We showed that the estimate (vis-a-
vis E [Totvarc (7,T")]) is an unbiased estimate of Avar(r) for WHFM noise and slightly biased for
FLFM and RWFM noise. This may be somewhat evidenced by noting the slight reduction in the
amplitudes of the main lobes of the frequency responses in Figure 5.

5 Properties of Totvarc (T, T)

Although we have defined Totvar for 7 all the way up to (N, — 1) 79, we can realistically expect to
obtain meaningful frequency stability results only 7 < T'/2. Nevertheless, we computed the mean
and edf of Totvarc (7,T") for T/2 < 7 < T. For white and random walk FM, twice Totvarc (T,T)
is unbiased for Avar (7'/2) and is almost unbiased (within a factor of 2/(31n(2)) = 0.9618) for
flicker FM. This result was motivated by comparing the frequency responses of 2 - Totvarc (7', T")
and Avar (7'/2), as seen in Figure 5. Unfortunately, Totvarc (T, T') has a smaller edf (1.5, 1.126, and
1.029 for WHFM, FLFM, and RWFM) than Totvarc (17/2,T) does, and hence the mean-squared
error (bias? + variance) of 2 - Totvarc (T, T) as an estimator of Avar (T/2) is greater than that of
Totvarc (T'/2,T), so we might still prefer Totvarc (7'/2,T), or perhaps some linear combination of
the two. This possibility has yet to be investigated, but other work indicates that Total variance
coefficients beyond 7 = T'/2 could justifiably be incorporated in the last 7'/2 value usually reported.
Summing all the familiar “power-of-2” 7-values in a Total variance plot leads to exactly twice the
standard sample variance much in the same way that integrating an estimate of a spectrum also
yields the sample variance [18].
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Figure 1: (a) Extension of a phase record by reflection at both ends; (b) circular representation of
extended phase record
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Figure 2: Expanded views of the lower tails of empirical Totvar distribution functions (lower curves),
and the corresponding chi-squared distribution functions (upper curves)
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Figure 4: Sampling given by Totvar for values of m and n when N, =10; note that m is not restricted
tom < (N,

—1)/2 as with Avar

Figure 5: Mean frequency responses of Avar and Totvar as operations on y (t)



