Hydrazine—an excellent optically pumped far-infrared lasing gas: review

E. C. C. Vasconcellos and S. C. Zerbetto

Instituto de Física "Gleb Wataghin," Departamento de Electrônica Quântica, Universidade Estadual de Campinas, 13083-970 Campinas, São Paulo, Brazil

L. R. Zink and K. M. Evenson

Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80303-3328

Received November 19, 1997; revised manuscript received March 18, 1998

We summarize the 194 far-infrared lasing lines of hydrazine: 7 new lines, 144 lines that we reported recently, and 43 lines reported by other authors. Fewer than 5% of the 43 previously reported lines had wavelengths shorter than 200 μ m, but 82% of our 134 lines (127 and 7 new), discovered in cw $^{12}C^{16}O_2$ -laser-pumped hydrazine, were shorter than 200 μ m; the shortest was at 49.2 μ m. Of the 194 lines now known in hydrazine, 150 have been frequency measured. We present the pump line, the pump offset from the CO₂ line center, the far-infrared wavelength and frequency, the optimum pressure, the relative intensity, and the relative polarization of each line. © 1998 Optical Society of America [S0740-3224(98)03307-4]

OCIS codes: 140.3070, 140.5560.

1. INTRODUCTION

Until recently hydrazine (N_2H_4) , when it was optically pumped by a ${}^{12}C^{16}O_2$ cw laser, had just 30 known farinfrared (FIR) laser lines, most with wavelengths longer than 200 μ m. In the past few years, we discovered 134 new far-infrared laser lines by optically pumping hydrazine with a cw ${}^{12}C^{16}O_2$ laser and 17 new far-infrared laser lines by optically pumping hydrazine with an ${}^{14}N_2{}^{16}O$ laser. Unlike the previously known hydrazine laser lines, most of these new lines have wavelengths shorter than 200 μ m. We also measured the frequencies of 150 laser lines plus the frequencies of the doublets of 6 lines. Optimum pressure, relative polarization, relative strength, and pump offset frequency from line center were also determined for most of the lines.

Although most of these measurements have been reported before,^{1–9} the last summary of hydrazine laser lines⁶ listed only 68 lines and did not report pump offset, polarization, intensity, or pressure. Inasmuch as we thoroughly examined every ¹²C¹⁶O₂ laser pump line, found 7 new lines, discovered a total of 110 lines with wavelengths less than 200 μ m, and did some preliminary studies of the ¹⁴N₂¹⁶O laser as a pump, we are now summarizing our work. The 17 new ¹⁴N₂¹⁶O laser-pumped lines⁹ quadruple the number of known hydrazine FIR lines pumped by this source.¹⁰ Jones *et al.*¹⁰ also reported seven N₂H₄ lines pumped by CO₂ isotope lasers. We have not done any research with these sources.

2. LASER DESCRIPTION

The CO_2 pump laser uses a 1.5-m-long, high-Q Fabry– Perot resonator. The key element in this laser is a highresolution grating. This grating selects the CO_2 laser transition and also couples out the laser radiation in the zeroth order. By using gratings with different coupling percentages, we are able to cover the complete range of the normal CO_2 laser bands with as much as 40 W of power and also have many sequence-band and hot-band lines oscillating with as much as 20 W. A more comprehensive description of this laser design can be found in Ref. 11. The N₂O laser is of the same design as the CO_2 laser, but the cavity and the discharge lengths were extended 0.5 m to increase the power.¹²

Two FIR lasers were used for these measurements. The first is a 2-m-long, metal-dielectric waveguide laser.¹³ It has two flat end mirrors. CO_2 pump radiation is coupled into the laser through a hole in one of these end mirrors for longitudinal pumping. A small 45° polished copper mirror near this end couples out a fraction of the FIR radiation. The other end mirror is mounted upon a movable micrometer to tune the cavity into resonance with the FIR radiation. A Brewster-angled silicon output window transmits most of the FIR radiation and blocks most of the CO₂ radiation. The FIR radiation is detected with either a thermocouple or a metal-insulator-metal (MIM) diode.

The second FIR laser has a 35-mm-diameter, 2-m-long Pyrex tube. At the ends of this tube are two mirrors, one a flat copper mirror and the other a 4-m-radius goldcoated mirror mounted upon a movable micrometer. The hydrazine is longitudinally pumped by CO_2 radiation in a V configuration. The CO_2 laser is focused through a 5-mm hole in the flat mirror that is 16 mm above the mirror center. The pump radiation strikes the curved mirror in the center and is then refocused to strike the flat mirror 16 mm below the center. FIR power is coupled out and detected in the same way as was done for the waveguide laser. This laser favors short wavelengths. Its calculated loss is less than 0.5% for wavelengths less than 150 $\mu m.^{14}$

3. MEASUREMENTS

When searching for new laser lines we first look for absorption of the ${}^{12}C^{16}O_2$ pump radiation by monitoring the photoacoustic signal from a microphone mounted inside the FIR laser cavity. Optimum photoacoustic signals occur near 650-1300 Pa of hydrazine. Once an absorption signal is found, we search for FIR emission by lowering the hydrazine pressure and simultaneously tuning the FIR cavity length and the pump-laser gain curve to determine the pump offset from the ${}^{12}C^{16}O_2$ gain maximum. Once a FIR laser signal is detected, the pressure, the output coupling, and the pump offset are adjusted to optimize the signal. In this FIR laser, the polarization relative to the pump polarization is measured. A scan of the laser modes is recorded as a function of FIR cavity length, which gives a first measurement of the number of FIR lines that are lasing and their wavelengths. Finally, measuring the difference in cavity length among 20 laser modes (10 λ) gives a wavelength value accurate to ~0.1%. This process is repeated for every FIR laser line.

A. Frequency Measurements

We determine the FIR laser frequency by heterodyning it with a known frequency; in our case the FIR radiation is mixed in a MIM diode with radiation from two reference CO_2 lasers and a microwave synthesizer. The diode generates frequencies of various mixing orders among these four sources. In our case

$$\delta \nu = \nu_{\rm FIR} - n |\nu_1 - \nu_2| \pm m \nu_m, \qquad (1)$$

where $\delta \nu$ is the rf beat frequency generated in the diode, $\nu_{\rm FIR}$ is the FIR laser frequency, ν_1 and ν_2 are the CO₂ laser frequencies, and ν_m is the microwave frequency. The integers *n* and *m* are the mixing order of each component. Once $\delta \nu$ is measured and the values and the sign of the mixing components are determined, the FIR laser frequency can be calculated. Inguscio *et al.*³ have described this and other frequency-measurement techniques.

The beat note $\delta\nu$ from the MIM diode is amplified and observed with a spectrum analyzer. We then tune the FIR laser across its gain curve and map out the changing amplitude of $\delta\nu$, using a peak hold feature in the spectrum analyzer. The center of this beat note is then measured with a marker frequency. Observing this beat note as each of the four radiations is changed gives the values and signs of n and m. For all measurements here n= 1, 2 and m = 1, 2. The CO₂ reference frequencies and the microwave frequency are chosen to give $\delta\nu$ within the 1.5-GHz bandwidth of our amplifier and spectrum analyzer.

The CO₂ reference lasers are frequency stabilized within ±10 kHz, and their frequencies are known to an accuracy of 2.5 kHz. The microwave source frequency is also accurate within 10 Hz. The main uncertainty comes from setting the FIR laser to the center of its gain curve. We generally measure each frequency five times or more and report the average measurement. Our 1 σ uncertainty is 2 × 10⁻⁷ times the frequency (the accuracy of the synthesized reference is ~15 kHz, or 5 × 10⁻⁹ at 3 THz).

B. Frequency Offset Measurements

Pump-frequency offset (the difference between the absorption frequency and the CO_2 laser line center frequency) measurements are important for assigning these FIR laser transitions. Measuring the offset is a simple matter of setting the pump frequency for maximum FIR power and then mixing, in a MIM diode, some of the pump radiation with a reference laser locked to the appropriate line center. As with the FIR frequency measurements, the diode generates between the two laser frequencies a beat note that is measured as above. Inasmuch as some residual pump radiation is coupled out of the FIR laser along with the FIR radiation, we remove

Fig. 1. Wavelength distribution of N_2H_4 FIR laser lines pumped by ${}^{12}C^{16}O_2$.

Table 1. Summary of the Hydrazine FIR Laser Lines Pumped by a $\rm ^{12}C^{16}O_{2}$ Laser

$^{12}\mathrm{C}^{16}\mathrm{O}_2$ Laser Pump Line ^a	Frequency (MHz)	Wavelength $(\mu \mathrm{m})^b$	Pressure [Pa (mTorr)]	Relative Intensity c	Relative Polarization	Offset (MHz)	Ref.
9 <i>R</i> (52)	4 463 894.4	67.159	53(400)	W		43	8
9R(50)	$4\ 553\ 228.0$	65.842	53(400)	Μ	Ш	-9	7
9R(48)	$574\ 117.3$	522.180	7(50)	W			6
9R(46)	$1\ 945\ 888.1$	154.065	11(80)	\mathbf{M}	Ш	$^{-2}$	7
		454.7	33(250)	Μ		$^{-2}$	7
9R(42)	$858\ 156.2$	349.345	20(150)	VS	\perp		6, 7
9 <i>R</i> (36)	$2\ 950\ 180.8$	101.618	27(200)	S	Ш	-38	7
9 <i>R</i> (34)	$1\ 055\ 803.2$	283.947	13(100)	VS			7
9R(26)	$916\;511.7$	327.102	20(150)	S	Ш	-13	1, 7
9 <i>R</i> (18)	812 750.0	368.862	27(200)	Μ			3
9 <i>R</i> (14)	$3\ 497\ 481.1$	85.717	27(200)	S	Ш	-50	7
9 <i>R</i> (12)	$3\ 975\ 563.7$	75.409	60(450)	W	1	35	8
9R(10)'	$4\ 104\ 665.7$	73.037	47(350)	W	1	43	8
9 <i>R</i> (10)"	$1\ 203\ 541.3$	249.092	20(150)	м	Ш	-20	1, 7
9R(8)	$3\ 696\ 638.2$	81.099	33(250)	S	11	-12	7
9R(4)	$3\ 918\ 281.0$	76.511	13(100)	\mathbf{M}	Ш	40	7
		125.7	20(150)	\mathbf{M}	1		7
9 <i>SP</i> (11)		85.9	13(100)	S			7
9P(08)		708.3	20(150)	Μ			7
9P(12)'	904 899.4	331.299	20(150)	S	 ∥(⊥)		2.6
9P(12)''	903 889.6	331.669	20(150)	S	II(+)		1. 2. 6
9P(12)'''	567 925.4	527.873	7(50)	M			2
9P(14)	3 317 269.0	90.373	53(400)	VS	Ш	-32	7
9P(16)'	3 536 744.1	84.765	20(150)	М		8	7
9P(16)''	3 304 457.8	90.724	20(150)	S		-45	7
9SP(13)	2 884 000.7	103.950	53(400)	vs		-12	7
9P(20)	963 731 4	311 075	4(30)	M			. 1 2
9P(20)	000 101.1	483 5	1(00)	111			1, 2
9P(22)		73 07					New
01 (22)	25104287	119 419	43(320)	W	Ш	39	8
9P(30)	1 920 424 5	156 107	20(150)	M	1	28	7
01 (00)	1 020 121.0	331.5	20(100)	111	II II	20	1
9 <i>P</i> (32)	$4\ 058\ 513.9$	73.868	40(300)	\mathbf{S}	Ш	28	7
9 <i>P</i> (34)		102.0	53(400)	VS	1		New
9 <i>P</i> (36)'	$2\ 946\ 196.7$	101.756	20(150)	м	Ш		6
9 <i>P</i> (36)"	$2\ 225\ 036.9$	134.736	27(200)	W			6
9 <i>P</i> (36)‴	$1\ 619\ 248.8$	185.143	13(100)	W			6
9 <i>P</i> (46)	1866375.4	160.628	27(200)	VS	Ш	-7	7
	960 791.1	312.027	27(200)	VS	Ш	-7	6, 7
9 <i>P</i> (50)	$2\ 104\ 368.9$	142.462	20(150)	VS	11	43	7
9 <i>P</i> (52)	$2\ 473\ 562.9$	121.199	27(200)	S	Ш	-45	7
9P(56)	$1\ 644\ 081.4$	182.346	20(150)	S		-32	7
10R(54)'	2 729 129.8	109.849	21(160)	\mathbf{M}	11	-19	7
10R(54)''	$2\ 340\ 717.5$	128.077	33(250)	S	Ш	19	7
10R(52)	$2\ 106\ 238.3$	142.335	43(320)	S	1	40	7
10R(50)'	$5\ 034\ 814.5$	59.544	117(880)	S		-16	7
. ,		61.9	96(720)	М	1		7
10R(50)''	$2\ 638\ 540.7^d$	113.621	29(220)	s		7	7
/	$2\ 638\ 537.7^d$	113.621	29(220)	S	Ĩ	7	7
	$1\ 635\ 937.6$	183.254	29(220)	M	 J	7	7
10R(48)	27408832	109.378	40(300)	M		10	7
10R(44)	2 651 522 1	113.064	44(330)	S		-22	7
10R(42)'	3 551 318 2	84 417	43(320)	M	n JI	44	7
10R(42)''	3 343 021 8	89 677	33(250)	M	n H	-23	7
10R(40)	1 485 618 5	201 796	65(490)	VS		-36	7
10R(38)	1 272 681.1	235.559	25(190)	vs	"		5, 7

$^{12}\mathrm{C}^{16}\mathrm{O}_2$ Laser	Frequency	Wavelength	Pressure	Relative	Relative	Offset	
Pump Line ^a	(MHz)	$(\mu m)^o$	[Pa (mTorr)]	Intensity ^c	Polarization	(MHz)	Ref.
10R(38)	$408\ 346.7$	734.162					3
10R(36)'	$2\ 746\ 267.9$	109.164	25(190)	Μ	Ш	-14	7
10R(36)''	$1\ 868\ 475.0$	160.448	33(250)	S	Ш	44	7
	960 791.1	312.027	37(280)	\mathbf{S}	\perp	44	7
10R(34)'	$2\ 082\ 274.2$	143.974	40(300)	VS	\perp	41	7
10R(34)''		153.4	29(220)	VS	Ш		7
		234.0			Ш		1
10R(34)'''	$1\ 371\ 660.8$	218.562	40(300)	VS	Ш	44	7
10R(30)	$1\ 132\ 510.3$	264.715	33(250)	S	Ш	-10	1, 7
10R(28)	$1\ 955\ 291.8$	153.324	28(210)	S	Ш	42	7
10SR(27)	$1\ 860\ 374.8$	161.146	37(280)	S	Ш	7	7
10SR(23)'	$3\ 275\ 035.8$	91.359	32(240)	VS	Ш	26	7
10SR(23)''	$2\ 743\ 410.5$	109.277	25(190)	VS	П	-28	7
10SR(23)'''		267.4	32(240)	Μ	П	47	7
10R(24)		802.4			П		1
10R(20)	$2\ 092\ 854.4$	143.246	24(180)	\mathbf{S}	\perp		5
		165.0	25(190)		П		New
	$1\ 132\ 140.6$	264.801	27(200)	S	П		1, 2
10R(18)'	$2\ 790\ 942.8$	107.416	36(270)	Μ	П		7
10R(18)''		116.7	40(300)	\mathbf{M}	Ш	-33	7
10SR(21)	$939\ 054.3$	319.249	27(200)	VS	П		7
10SR(17)	$1\ 610\ 436.0$	186.156	20(150)	VS	Ш	19	7
10HR(14)'	$1\ 977\ 072.4$	151.635	13(100)	Μ	Ш	-30	7
10HR(14)''	$1\ 574\ 927.0$	190.353	13(100)	Μ	\perp	-8	7
10R(12)		234.12	35(260)		Ш		New
10R(12)	$995\ 077.8$	301.275	20(150)	S	Ш		1, 2
	802 492.8	373.576			\perp		1, 5
10SR(11)	$2\ 381\ 482.4^d$	125.885	13(100)	S	Ш	36	7
	$2\ 381\ 478.9^d$	125.885	13(100)	S	I	36	7
	$1\ 510\ 382.3$	198.488	11(80)	W			7
		234.36	13(100)				New
10SR(9)	$1\ 126\ 495.9$	266.128	20(150)	VS	\perp	0	7
	$645\ 737.5$	464.264	19(140)	VS	Ш	0	7
10R(8)	$1\ 281\ 625.8$	233.916	13(100)	VS	Ш		1, 2
	$561\ 773.0^d$	533.654			\perp		1, 5
	$561\ 771.3^d$	533.656			\perp		1, 5
10R(6)	2 565 990.1	116.833	5(40)	М			6
10R(4)	5 116 059.9	58.598	108(810)	М	П		7
	$2\ 574\ 085.5$	116.466	39(290)	VS		39	7
	$1\ 989\ 217.5$	150.709					5
10P(2)	$4\ 017\ 213.1$	74.627	21(160)	М	I		7
	$1\ 811\ 655.9$	165.480	23(170)	М	I	-11	7
10P(4)'		49.2	24(180)	М	I	-36	7
. ,	$3\ 844\ 230.0$	77.985	23(170)	М	I	-36	7, 8
10P(4)''	3 319 710.8	90.307	41(310)	\mathbf{S}	\perp		7
	$2\ 415\ 908.4$	124.090	39(290)	М	I		7
	$2\ 098\ 942.5$	142.830	20(150)	М	I		7
10P(4)'''	$2\ 625\ 546.4$	114.183	28(210)	\mathbf{S}	ï	42	7
		186.1	24(180)	W	1	42	7
10P(6)'	$2\ 221\ 963.2$	134.922				-	5
10P(6)''	$2\ 174\ 579.3$	137.862					5
10P(6)'''	1647877.4	181.926	20(150)	S	⊥()		2
10P(6)'''		246.5	- ()				1
10P(10)	$1\ 880\ 947.4$	159.384	5(40)	W			6
	$1\ 450\ 431.1$	206.692	40(300)	М	П	37	7

Tab	le 1.	Continued
-----	-------	-----------

¹² C ¹⁶ O ₂ Laser Pump Line ^a	Frequency (MHz)	${egin{array}{c} { m Wavelength}\ (\mu{ m m})^b \end{array}}$	Pressure [Pa (mTorr)]	$\begin{array}{c} \text{Relative} \\ \text{Intensity}^c \end{array}$	Relative Polarization	Offset (MHz)	Ref.
	1 907 887.0	157.133	24(180)	М		-43	7
		721.0					1
10P(16)'	$3\ 690\ 723.1$	81.229	20(150)	Μ	\perp		5
	$2\ 923\ 359.0$	102.551	53(400)	S	I		5
10P(16)''	$650\ 207.7$	461.072			\perp		1, 2
10P(18)'	$4\ 668\ 834.6$	64.211	29(220)	W		-43	8
10P(18)''	$2\ 555\ 898.1$	117.294	27(200)	W		26	8
		273.0	13(100)	W	l		1
10P(18)''		372.5			\perp		1
10P(20)	$3\ 559\ 814.8$	84.216	67(500)	Μ		-42	8
10P(22)	$3\ 691\ 269.2$	81.217	20(150)	W	I	31	8
	$2\ 923\ 138.5$	102.558	20(150)	W	I	31	8
		1007.0			\perp		1
10P(24)'	$3\ 676\ 638.9$	81.540	29(220)	Μ	Ш	40	8
10P(24)''	$2\ 460\ 606.8$	121.837	27(200)	Μ		13	8
10P(24)'''	$1\ 554\ 077.8$	192.907	15(110)	VS	\perp	-32	1, 2, 6
		336.0			\perp		1
	$687\ 957.4$	435.772	7(50)	\mathbf{S}	\perp		1, 2
10P(26)	$3\ 197\ 414.3$	93.761	29(220)	М		-46	8
10P(28)		262.0			\perp		1
10P(30)'	$3\ 442\ 096.1$	87.096	13(100)	М		-36	8
10P(30)"	$2\ 695\ 149.6$	111.234	13(100)	М	I	-8	7
10SP(29)	$2\ 432\ 134.3$	123.263	27(200)	VS	Ţ	$^{-12}$	8
	$1\ 615\ 503.5$	185.572	20(150)	VS	I	$^{-12}$	7
10P(32)	$2\ 219\ 596.6$	135.066	19(140)	W		0	8
- (-)		795.0			Ţ		1
10SP(31)	4 722 332.3	63.484	27(200)	М	I	1	8
	3 559 099.1	84.233	27(200)	M		1	8
10SP(33)	5 494 676.8	54.561	27(200)	М		-7	8
10P(36)	3 266 508.2	91.778	21(160)	M		-33	8
10P(40)	1 241 985.4	241.382	7(50)	М			6
	568 210.2	527.608	7(50)	W			6
10P(42)	954 857 6 ^d	313 966	.(00)				6
101 (12)	054 057.0	313 968					6
	954 850.7	510.000					G
	$569\ 599.7^{a}$	526.321					0
	$569\ 589.7^a$	526.331					6
10P(44)		89.5		~			New
10P(44)	$3\ 172\ 777.9$	94.489	27(200)	S			6
10P(44)	$2\ 452\ 677.4$	122.231	27(200)	VS			6
10P(46)	$3\ 444\ 748.6$	87.029	33(250)	W	\perp	34	8
10P(52)	1860374.6	161.146		W			6
	$1\ 833\ 951.7$	163.468					6
10 <i>HP</i> (19)		93.5	43(320)		I		New
10P(54)	$2\ 988\ 681.8$	100.309	28(210)	VS	\perp		6, 8
	$1\ 980\ 809.4$	151.348	11(80)				6
10HP(20)	$1\ 573\ 986.2$	190.467	10(75)				6
10HP(22)	$1\ 037\ 179.7$	289.046	24(180)	Μ	\perp		8
10P(56) - HP(23)	$3\ 896\ 540.2$	76.938	24(180)	VS	Ш		8
	$1\ 556\ 427.9$	192.616		VVS			6
	885 606.8	338.516		S			6
	$2\ 823\ 688.6$	106.171	13(100)	М			6
10HP(24)							
10 <i>HP</i> (24) 10 <i>HP</i> (24)	1 864 680.0	160.774	10(75)	W			6
10 <i>HP</i> (24) 10 <i>HP</i> (24) 10 <i>HP</i> (25)	$1\ 864\ 680.0$ $1\ 708\ 654.6$	160.774 175.455	10(75) 19(140)	W M	I		6 8

Table 1. Continued

¹² C ¹⁶ O ₂ Laser Pump Line ^a	Frequency (MHz)	$egin{array}{c} Wavelength\ (\mu { m m})^b \end{array}$	Pressure [Pa (mTorr)]	$\begin{array}{c} \text{Relative} \\ \text{Intensity}^c \end{array}$	Relative Polarization	Offset (MHz)	Ref.
	1 858 872.0	161.277	7(50)	VS			6
	$1\ 040\ 932.6$	288.004	8(60)	Μ	I		6
10 HP (32)	$1\ 282\ 805.7$	233.701	8(60)	S			6
	$1\ 042\ 133.2$	287.672	8(60)	S			6

 Table 1.
 Continued

 a ', ", and "' indicate different $\rm ^{12}C^{16}O_2$ laser frequency offsets from line center.

^bCalculated from c = 299792458 m/s.

^cAbbreviations here and in the tables that follow are defined in text.

 d Doublets.

any CO_2 filters in front of the FIR-measuring MIM and easily perform the measurement. For regular pump lines the reference laser is set to the same laser transitions as the pump line. For hot-band and sequence-band lines the closest regular line is used for the reference, and the difference is made up by a microwave synthesizer. Our pump offset measurements are reproducible within 2 MHz. Our pump laser's free spectral range is ± 37.5 MHz from line center, so any offset measurements that are ≥ 38 MHz are near the edge of the CO_2 gain curve.

4. RESULTS

We present pump line, FIR frequency and wavelength, optimum pressure, relative strength, relative polarization, pump offset, and reference to the original research-for all the 194 known hydrazine FIR laser lines pumpedby a cw $^{12}\mathrm{C}^{16}\mathrm{O}_2$ laser, isotopic CO₂ lasers, and a $^{14}\mathrm{N}_2{}^{16}\mathrm{O}$ laser.

Of the 164 unique FIR laser lines obtained by ${}^{12}C^{16}O_2$ laser pumping, 135 (82%) have been frequency measured (we count the doublets just once). Twelve lines reported by Dyubko et al.¹ have not been frequency measured. We have observed oscillation on only one of these. Our laser favors short-wavelength lines and has so much loss that it will not lase at long wavelengths. Several other unobserved lines from Ref. 1 have been excluded from the table or have been assigned to other pump lines. Of the 17 new FIR laser lines obtained by ¹⁴N₂¹⁶O laser pumping, 12 have been frequency measured. We also measured the frequencies of three other previously reported laser lines pumped by an N_2O laser. Of the 23 lines obtained by pumping hydrazine with a ${}^{14}N_2{}^{16}O$ laser, 65% are now measured in frequency. Hydrazine is probably the molecule with the highest percentage (78%) of frequency-measured laser lines.

Figure 1 shows the wavelength distribution of the ${}^{12}C^{16}O_2$ -laser-pumped hydrazine lines. Of the 164 lines discovered by pumping with the regular ${}^{12}C^{16}O_2$ laser, 110 have wavelengths shorter than 200 μ m. This is an important region for spectroscopy, and a high density of lines at higher frequencies makes hydrazine an important FIR lasing medium. Of the 110 lines below 200 μ m pumped by the ${}^{12}C^{16}O_2$ laser, 108 were discovered in our laboratory. Table 1 is a summary of the 164 laser lines arranged by the CO_2 pump lines. It contains the frequency, wavelength, optimum pressure, relative polarization, relative intensity, pumping offset, and reference for

Table 2.	Summary of the Hydrazine FIR Laser
Lin	es Pumped by Isotopic CO ₂ Laser

Laser Pump Line	Wavelength (μm)	Relative Intensity ^a	Ref.
$^{12}C^{18}O_2$			
10P(24)	705.0	S	10
$^{13}C^{16}O_2$			
10P(18)	219.0	VS	10
10P(24)	945.0	S	10
10P(30)	289.0	VVS	10
$^{13}C^{18}O_2$			
10R(18)	267.0	Μ	10
10P(14)	863.0	Μ	10
9 <i>P</i> (14)	195.0	VS	10

 a The relative intensity estimations in this table do not correlate with ours; they are being reported according to the references in which they can be found.

each line. The relative intensities of the laser lines presented in the tables are listed with the references in which they were reported. We use the notation VW (very weak), W (weak), M (medium), S (strong), VS (very strong), and VVS (very, very strong) to denote the relative intensities of the lines. The intensities differ from successive ones by 1 order of magnitude. On our scale the well known 119- μ m line of methanol is VVS; the 192.616- μ m hydrazine line has the same value. The 312.027- μ m line is pumped by two different CO₂ lines, 9P(46) and 10R(36). The same is true for the 161.146- μ m line, which is pumped by two different CO₂ lines, 10SR(27) and 10P(52). In each case the two pumps populate the same upper lasing level in hydrazine and therefore produce the same FIR lasing line. There are also five doublets, denoted by footnotes in the tables, from CO_2 laser pumping and one doublet from N_2O laser pumping. The doublet separations vary from 2.7 to 10 MHz. This doublet structure could be a real property of hydrazine, as noted in Ref. 5 for the 533.7- μ m line, or it could be an artifact of our longitudinal pumping, with the FIR frequency being pulled by pump Doppler pulling, producing two peaks in the FIR gain curve.

Table 2 is a summary of the lines observed by Jones et al. ¹⁰ with isotopic CO_2 lasers. We have excluded a line pumped by the ${}^{13}C^{18}O_2$ 10P(28) laser line, whose wavelength was not measured in that reference. Table 3 summarizes our preliminary study of ${}^{14}N_2{}^{16}O$ -laser-pumped hydrazine. We did not measure the offsets for the

Table 3.	Summary of the Hydrazine FIR Laser Lines Pumped by an	¹⁴ N ₂ ¹⁶ O Laser

		9		I I I I I	2	
¹² N ₂ ¹⁶ O Laser Pump Line ^a	Frequency (MHz)	$egin{array}{c} { m Wavelength} \ (\mu{ m m})^b \end{array}$	Pressure [Pa (mTorr)]	Relative Intensity	¹⁴ N ₂ ¹⁶ O Power (W)	Ref.
10R(38)		339.4	19(140)			9
10R(36)		98.0	35(260)	М	3.2	9
10R(25)	2823287.0	106.186	19(140)	W	5.0	9
10R(24)		257.5	15(110)	W	4.2	9
10R(11)	906 899.8	330.568	15(110)	W	5.2	10
10R(4)	1 369 893.3	218.844	9(70)	W	2.6	9
10P(7)	$1\ 371\ 481.5$	218.590	27(200)	Μ	5.0	10
10P(11)	$1\ 858\ 872.0$	161.277	9(70)	W	6.0	9
10P(11)		575.0				10
10P(15)'''	$2\ 631\ 380.7$	113.930	19(140)	W	5.4	9
10P(15)''	$1\ 288\ 113.7$	232.738	7(50)	W	5.8	9
10P(15)'	801 069.7	374.240	9(70)	W	5.8	10
10P(16)	$2\ 191\ 609.6^c$	136.791	13(100)	\mathbf{M}	6.0	9
	$2\ 191\ 613.7^c$	136.791	13(100)	\mathbf{M}	6.0	9
10P(24)	$2\ 485\ 511.6$	120.616	27(200)	Μ	6.0	9
10P(24)		237.0				10
10P(26)		114.2	21(160)	Μ	4.0	9
10P(28)		492.4	17(130)	W	5.0	10
10P(29)		241.6	16(120)	W	6.0	9
10P(30)	$1\ 902\ 430.3$	157.584	8(60)	\mathbf{M}	4.0	9
10P(34)	$1\ 426\ 180.2$	210.207	7(50)	Μ	3.8	9
10P(34)	$1\ 041\ 094.2$	287.959	13(100)	W	4.4	9
10P(32)	$3\ 222\ 036.9$	93.044	24(180)	S	4.0	9
10P(45)	$2\ 823\ 544.5$	106.176	23(170)	\mathbf{M}	1.8	9

 a ', ", and "' indicate different $^{14}\rm{N_2}^{16}O$ laser frequency offsets from line center. b Calculated from c= 299 792 458 m/s. c Doublets.

Table 4.	Summary of the Hydrazine FIR Laser Lines Pumped by a ${}^{12}C^{16}O_2$ Laser,
	Sorted by Increasing Wavelength

$^{12}\mathrm{C}^{16}\mathrm{O}_2$ Laser Pump Line ^a	Frequency (MHz)	Calculated Wavelength $(\mu m)^b$	Calculated Wave Number (cm ⁻¹)	Pressure [Pa (mTorr)]	Relative Intensity	Relative Polarization	Offset (MHz)	Ref.
10P(4)'		49.2		24(180)	М		-36	7
10SP(33)	$5\ 494\ 676.8$	54.561	183.2827	27(200)	Μ		-7	8
10R(4)	$5\ 116\ 059.9$	58.598	170.6534	108(810)	М	Ш		7
10R(50)'	$5\ 034\ 814.5$	59.544	167.9433	117(880)	S		-16	7
10R(50)''		61.9		96(720)	Μ			7
10SP(31)	$4\ 722\ 332.3$	63.484	157.5201	27(200)	Μ		1	8
10P(18)'	$4\ 668\ 834.6$	64.211	155.7356	29(220)	W		-43	8
9 <i>R</i> (50)	$4\ 553\ 228.0$	65.842	151.8793	53(400)	Μ		-9	7
9 <i>R</i> (52)	$4\ 463\ 894.4$	67.159	148.8995	53(400)	W		43	8
9R(10)'	$4\ 104\ 665.7$	73.037	136.9169	47(350)	W		43	8
9 <i>P</i> (22)		73.07						New
9 <i>P</i> (32)	$4\ 058\ 513.9$	73.868	135.3775	40(300)	\mathbf{S}		28	7
10P(2)	$4\ 017\ 213.1$	74.627	133.9998	21(160)	Μ			7
9 <i>R</i> (12)	$3\ 975\ 563.7$	75.409	132.6105	60(450)	W		35	8
9R(4)	$3\ 918\ 281.0$	76.511	130.6998	13(100)	Μ		40	7
10P(56) - HP(23)	$3\ 896\ 540.2$	76.938	129.9746	24(180)	VS			8
10P(4)'	$3\ 844\ 230.0$	77.985	128.2297	23(170)	Μ		-36	7, 8
9 <i>R</i> (8)	$3\ 696\ 638.2$	81.099	123.3066	33(250)	S		$^{-12}$	7
10P(22)	$3\ 691\ 269.2$	81.217	123.1275	20(150)	W		31	8
10P(16)'	$3\ 690\ 723.1$	81.229	123.1093	20(150)	Μ	\perp		5
10P(24)''	$3\ 676\ 638.9$	81.540	122.6395	29(220)	Μ		40	8
10P(20)	$3\ 559\ 814.8$	84.216	118.7426	67(500)	Μ		-42	8
10SP(31)	$3\ 559\ 099.1$	84.233	118.7188	27(200)	Μ		1	8
10R(42)'	$3\ 551\ 318.2$	84.417	118.4592	43(320)	Μ		44	7
						(7	able cont	inuad)

$^{12}\mathrm{C}^{16}\mathrm{O}_2$ Laser Pump Line ^a	Frequency (MHz)	Calculated Wavelength $(\mu m)^b$	Calculated Wave Number (cm ⁻¹)	Pressure [Pa (mTorr)]	Relative Intensity	Relative Polarization	Offset (MHz)	Ref.
<u>9P(16)'</u>	3 536 744.1	84.765	117.9731	20(150)	М		8	7
9 <i>R</i> (14)	$3\ 497\ 481.1$	85.717	116.6634	27(200)	\mathbf{S}	П	-50	7
9 <i>SP</i> (11)		85.9		13(100)	\mathbf{S}	П		7
10P(46)	$3\ 444\ 748.6$	87.029	114.9044	33(250)	W	\perp	34	8
10P(30)'	$3\ 442\ 096.1$	87.096	114.8160	13(100)	Μ	1	-36	8
10P(44)		89.5						New
10R(42)''	$3\ 343\ 021.8$	89.677	111.5112	33(250)	Μ	I	-23	7
10P(4)''	$3\ 319\ 710.8$	90.307	110.7336	41(310)	\mathbf{S}	\perp		7
9P(14)	$3\ 317\ 269.0$	90.373	110.6522	53(400)	VS	I	-32	7
9P(16)''	$3\ 304\ 457.8$	90.724	110.2248	20(150)	\mathbf{S}	П	-45	7
10SR(23)'	$3\ 275\ 035.8$	91.359	109.2434	32(240)	VS	П	26	7
10P(36)	$3\ 266\ 508.2$	91.778	108.9590	21(160)	Μ	I	-33	8
10HP(29)	$3\ 214\ 438.5$	93.264	107.2221	33(250)	\mathbf{S}	1		8
10HP(19)		93.5		43(320)				New
10P(26)	$3\ 197\ 414.3$	93.761	106.6543	29(220)	Μ		-46	8
10P(44)	$3\ 172\ 777.9$	94.489	105.8325	27(200)	\mathbf{S}			6
10P(54)	$2\ 988\ 681.8$	100.309	99.6917	28(210)	VS	\perp		6, 8
9 <i>R</i> (36)	$2\ 950\ 180.8$	101.618	98.4074	27(200)	\mathbf{S}	I	-38	7
9 <i>P</i> (36)'	$2\ 946\ 196.7$	101.756	98.2745	20(150)	Μ	I		6
9 <i>P</i> (34)		102.0		53(400)	VS	I		New
10P(16)'	$2\ 923\ 359.0$	102.551	97.5128	53(400)	\mathbf{S}	I		5
10P(22)	$2\ 923\ 138.5$	102.558	97.5054	20(150)	W	I	31	8
9SP(13)	$2\ 884\ 000.7$	103.950	96.1999	53(400)	VS	I	$^{-12}$	7
10HP(24)	$2\ 823\ 688.6$	106.171	94.1881	13(100)	Μ			6
10R(18)'	$2\ 790\ 942.8$	107.416	93.0958	36(270)	Μ	I		7
10R(36)'	$2\ 746\ 267.9$	109.164	91.6056	25(190)	Μ	I	-14	7
10SR(23)''	$2\ 743\ 410.5$	109.277	91.5103	25(190)	VS	I	-28	7
10R(48)	$2\ 740\ 883.2$	109.378	91.4260	40(300)	Μ	I	10	7
10R(54)'	$2\ 729\ 129.8$	109.849	91.0340	21(160)	Μ	I	-19	7
10P(30)''	$2\ 695\ 149.6$	111.234	89.9005	13(100)	Μ	I	-8	7
10R(44)	$2\ 651\ 522.1$	113.064	88.4453	44(330)	\mathbf{S}	I	-22	7
10R(50)''	$2\ 638\ 537.7^d$	113.621	88.0121	29(220)	\mathbf{S}	I	7	7
	$2\ 638\ 540.7^d$	113.621	88.0122	29(220)	\mathbf{S}	I	7	7
10P(4)'''	$2\ 625\ 546.4$	114.183	87.5788	28(210)	\mathbf{S}		42	7
10R(4)	$2\ 574\ 085.5$	116.466	85.8623	39(290)	VS		39	7
10R(18)''		116.7		40(300)	Μ		-33	7
10R(6)	$2\ 565\ 990.1$	116.833	85.5922	5(40)	Μ			6
10P(18)''	$2\ 555\ 898.1$	117.294	85.2556	27(200)	W	I	26	8
9 <i>P</i> (22)	$2\ 510\ 428.7$	119.419	83.7389	43(320)	W	I	39	8
9P(52)	$2\ 473\ 562.9$	121.199	82.5092	27(200)	\mathbf{S}	I	-45	7
10P(24)''	$2\ 460\ 606.8$	121.837	82.0770	27(200)	Μ	I	13	8
10P(44)	$2\ 452\ 677.4$	122.231	81.8125	27(200)	VS			6
10SP(29)	$2\ 432\ 134.3$	123.263	81.1273	27(200)	VS	\perp	-12	8
10P(4)''	$2\ 415\ 908.4$	124.090	80.5860	39(290)	Μ	I		7
9R(4)		125.7		20(150)	Μ	I		7
10SR(11)	$2\ 381\ 482.4^c$	125.885	79.4377	13(1000)	S	I	36	7
	$2\ 381\ 478.9^c$	125.885	79.4376	13(100)	\mathbf{S}	I	36	7
10R(54)''	$2\ 340\ 717.5$	128.077	78.0779	33(250)	\mathbf{S}	I	19	7
9 <i>P</i> (36)"	$2\ 225\ 036.9$	134.736	74.2192	27(200)	W			6
10P(06)'	$2\ 221\ 963.2$	134.922	74.1167					5
10P(32)	$2\ 219\ 596.6$	135.066	74.0378	19(140)	W	I	0	8
10 <i>P</i> (6)"	$2\ 174\ 579.3$	137.862	72.5362					5
10R(52)	$2\ 106\ 238.3$	142.335	70.2565	43(320)	\mathbf{S}	I	40	7
9 <i>P</i> (50)	$2\ 104\ 368.9$	142.462	70.1942	20(150)	VS	I	43	7
10P(4)''	$2\ 098\ 942.5$	142.830	70.0132	20(150)	Μ	I		7

Table 4. Continued

Table 4. Continued

$^{12}\mathrm{C}^{16}\mathrm{O}_2$ Laser Pump Line ^a	Frequency (MHz)	Calculated Wavelength $(\mu m)^b$	Calculated Wave Number (cm ⁻¹)	Pressure [Pa (mTorr)]	Relative Intensity	Relative Polarization	Offset (MHz)	Ref.
10 <i>R</i> (20)	$2\ 092\ 854.4$	143.246	69.8101	24(180)	S	\perp		5
10R(34)'	$2\ 082\ 274.2$	143.974	69.4572	40(300)	VS	\perp	41	7
10R(4)	$1\ 989\ 217.5$	150.709	66.3532					5
10P(54)	$1\ 980\ 809.4$	151.348	66.0727	11(80)				6
10HR(14)'	1977072.4	151.635	65.9480	13(100)	Μ		-30	7
10R(28)	$1\ 955\ 291.8$	153.324	65.2215	28(210)	\mathbf{S}		42	7
10R(34)''		153.4		29(220)	VS			7
9 <i>R</i> (46)	1945888.1	154.065	64.9078	11(80)	Μ		$^{-2}$	7
9 <i>P</i> (30)	$1\ 920\ 424.5$	156.107	64.0585	20(150)	Μ		28	7
10P(12)	$1\ 907\ 887.0$	157.133	63.6403	24(180)	Μ	1	-43	7
10P(10)	1880947.4	159.384	62.7417	5(40)	W			6
10R(36)''	1868475.0	160.448	62.3256	33(250)	\mathbf{S}		44	7
9P(46)	1866375.4	160.628	62.2556	27(200)	VS		-7	7
10 <i>HP</i> (24)	1864680.0	160.774	62.1990	10(75)	W			6
10SR(27)	1860374.8	161.146	62.0554	37(280)	\mathbf{S}	1	7	7
10P(52)	1860374.6	161.146	62.0554		W			6
10 <i>HP</i> (29)	1858872.0	161.277	62.0053	7(50)	VS			6
10P(52)	1 833 951.7	163.468	61.1740	.(,				6
10R(20)		165.0		25(190)		Ш		New
10P(2)	1 811 655 9	165 480	60 4303	23(170)	м		-11	7
10HP(25)	1 708 654 6	175 455	56 9946	19(140)	M	"		8
10P(06)'''	1 647 877 4	181 926	54 9673	20(150)	S	I.		2
9P(56)	1 644 081 4	182 346	54 8407	20(150)	S	1	-32	7
$\frac{31}{10R(50)''}$	1 635 937 6	182.540	54.5690	20(130)	M	1	52	7
0D(26)'''	1 610 949 9	195 149	54.0199	19(100)	WI WZ	1	'	6
$\frac{31}{100}$	1 615 502 5	105.145	59 0074	13(100) 20(150)	V	Ш	10	7
103F(29) 10D(04)'''	1 013 303.3	100.072	00.0074	20(130)	vo w	1	-12	1
10P(04) 10SP(17)	1 610 496 0	100.1	59 7104	24(180) 20(150)	W	1	42	1
105K(17)	1 610 436.0	100.100	53.7184	20(150)	VO M		19	1
$10HR(14)^{"}$	1 574 927.0	190.353	52.5339	13(100)	IVI	\perp	-8	1
10HP(20)	1 573 986.2	190.467	52.5025	10(75)	1710			6
10P(56) - HP(23)	1 556 427.9	192.616	51.9168	15(110)	VVS		00	6
$10P(24)^{m}$	1 554 077.8	192.907	51.8385	15(110)	VS	1	-32	1, 2, 6
10SR(11)	1 510 382.3	198.488	50.3809	11(80)	W		0.0	7
10R(40)	1 485 618.5	201.796	49.5549	65(490)	VS		-36	7
10P(10)	1 450 431.1	206.692	48.3812	40(300)	M		37	7
10R(34)'''	1 371 660.8	218.562	45.7537	40(300)	vs	I	44	7
10HP(32)	1 282 805.7	233.701	42.7898	8(60)	S			6
10R(08)	1 281 625.8	233.916	42.7504	13(100)	vs			1, 2
10R(34)''		234.0						1
10R(12)		234.12		35(260)		l		New
10SR(11)		234.36		13(100)		I		New
10R(38)	1272681.1	235.559	42.4521	25(190)	VS	I		5, 7
10P(40)	$1\ 241\ 985.4$	241.382	41.4282	7(50)	Μ			6
10P(6)'''		246.5						1
9R(10)''	$1\ 203\ 541.3$	249.092	40.1458	20(150)	Μ	I	-20	1, 7
10R(30)	$1\ 132\ 510.3$	264.715	37.7765	33(250)	\mathbf{S}	I	-10	1, 7
10R(20)	$1\ 132\ 140.6$	264.801	37.7641	27(200)	\mathbf{S}	I		1, 2
10P(28)		265.0				\perp		1
10SR(9)	$1\ 126\ 495.9$	266.128	37.5759	20(150)	VS	\perp	0	7
10SR(23)'''		267.4		32(240)	Μ	Ш	47	7
10P(18)''		273.0		13(100)	W	I		1
9R(34)	$1\ 055\ 803.2$	283.947	35.2178	13(100)	VS	Ш		7
10HP(32)	$1\ 042\ 133.2$	287.672	34.7618	8(60)	\mathbf{S}			6
10HP(29)	$1\ 040\ 932.6$	288.004	34.7218	8(60)	Μ	I		6
10HP(22)	$1\ 037\ 179.7$	289.046	34.5966	24(180)	Μ	\perp		8
10R(12)	995 077.8	301.275	33.1922	20(150)	\mathbf{S}			1, 2

${ m ^{12}C^{16}O_2}$ Laser Pump Line ^a	Frequency (MHz)	Calculated Wavelength $(\mu m)^b$	Calculated Wave Number (cm ⁻¹)	Pressure [Pa (mTorr)]	Relative Intensity	Relative Polarization	Offset (MHz)	Ref.
9 <i>P</i> (20)	963 731.4	311.075	32.1466					1, 2
10R(36)''	960 791.1	312.027	32.0485	37(280)	S	\perp	44	7
9 <i>P</i> (46)	$960\ 791.1$	312.027	32.0485	27(200)	VS	Ш	-7	7
10P(42)	$954\ 857.6^c$	313.966	31.8506					6
10P(42)	$954\ 850.7^c$	313.968	31.8504					6
10SR(21)	$939\ 054.3$	319.249	31.3235	27(200)	VS	П		7
9 <i>R</i> (26)	$916\ 511.7$	327.102	30.5715	20(150)	\mathbf{S}	П	-13	1, 7
9P(12)'	904 899.4	331.299	30.1842	20(150)	\mathbf{S}	П		2, 6
9 <i>P</i> (30)		331.5						1
9P(12)''	903 889.6	331.669	30.1505	20(150)	\mathbf{S}	Ш		1, 2, 6
10P(24)'''		336.0						1
10P(56)-HP(23)	885 606.8	338.516	29.5407		\mathbf{S}			6
9R(42)	$858\ 156.2$	349.345	28.6250	20(150)	VS	\perp		6, 7
9 <i>R</i> (18)	$812\ 750.0$	368.862	27.1104	27(200)	Μ			3
10P(18)''		372.5						1
10R(12)	$802\ 492.8$	373.576	26.7683					1, 5
10P(24)'''	$687\ 957.4$	435.772	22.9478					1, 2
9R(46)		454.7		33(250)	Μ	Ш	$^{-2}$	7
10P(16)''	$650\ 207.7$	461.072	21.6886					1, 2
10SR(09)	$645\ 737.5$	464.264	21.5395	19(140)	VS	Ш	0	7
9P(20)		483.5						1
9R(48)	$574\ 117.3$	522.180	19.1505	7(50)	W			6
10P(42)	$569\ 599.7^c$	526.321	18.9998					6
10P(42)	$569\ 589.7^c$	526.331	18.9995					6
10P(40)	$568\ 210.2$	527.608	18.9535	7(50)	W			6
9P(12)'''	$567\ 925.4$	527.873	18.9440					2
10R(8)	$561~773.0^{c}$	533.654	18.7387					1, 5
10 <i>R</i> (8)	$561~771.3^{c}$	533.656	18.7387					1, 5
9 <i>P</i> (08)		708.3		20(150)	М	П		7
10P(12)		721.0						1
10R(38)	408 346.7	734.162	13.6210					3
10P(32)		795.0						1
10R(24)		802.4						1
10P(22)		1007.0						1

 Table 4.
 Continued

 a ', ", and " indicate different CO_2 laser frequency offsets from line center.

^bCalculated from c = 299792458 m/s.

 c Doublets.

 $^{14}\mathrm{N_2}^{16}\mathrm{O}$ -pumped FIR laser lines.⁹ This table also includes the six N₂O-pumped FIR laser lines previously reported.¹⁰ We have omitted a line whose wavelength was not measured but was reported as pumped by the N₂O 10P(26) laser line.¹⁰ Tables 4 and 5 present all the known laser lines (sorted by increasing wavelength), which were obtained by pumping hydrazine with a $^{12}\mathrm{C}^{16}\mathrm{O}_2$ laser and an $^{14}\mathrm{N_2}^{16}\mathrm{O}$ laser, respectively.

Before our research was started,⁵⁻⁹ 43 laser lines had been reported (3 were reported twice because of errors in the pumping laser lines)⁴; only 2 had wavelengths less than 200 μ m (in the range 181.926–195.0 μ m), and the others ranged from 250 to 1007.0 μ m. We have shown hydrazine to be a good laser medium, providing many FIR laser lines in the short-wavelength region. Among the 134 lines that we discovered in hydrazine pumped with a ¹²C¹⁶O₂ laser, 82% have wavelengths in the 49.2–200- μ m range. In summary, we now have 194 laser lines from hydrazine in the wavelength range 49.2–1007.0 μ m, and the frequencies of 150 of these have been measured. Because it is such an efficient and prolific laser medium, hydrazine is the second most important laser molecule for FIR laser emission, after methanol.

5. FUTURE WORK

We plan to study the N_2O -pumped N_2H_4 system further, looking for more FIR lines and frequency measuring as many of the lines as possible. Also, with so much information now available on the N_2H_4 FIR laser lines, the next obvious step is to assign the upper and lower laser levels.

			8	8			
¹⁴ N ₂ ¹⁶ O Laser Pump Line ^a	Measured Frequency (MHz)	Calculated Wavelength $(\mu m)^b$	Calculated Wave Number (cm^{-1})	Pressure [Pa (mTorr)]	Relative Intensity	${^{14}\mathrm{N}_2}\ {^{16}\mathrm{O}}$ Laser Power (W)	Ref.
10P(32)	3 222 036.9	93.044	107.4756	24(180)	S	4.0	9
10R(36)		98.0		35(260)	Μ	3.2	9
10P(45)	$2\ 823\ 544.5$	106.176	94.1833	23(170)	\mathbf{M}	1.8	9
10R(25)	$2\ 823\ 287.0$	106.186	94.1747	19(140)	W	5.0	9
10P(15)'''	$2\ 631\ 380.7$	113.930	87.7734	19(140)	W	5.4	9
10P(26)		114.2		21(160)	Μ	4.0	9
10P(24)	$2\ 485\ 511.6$	120.616	82.9077	27(200)	Μ	6.0	9
10P(16)	$2 \ 191 \ 609.6^d$	136.791	73.1042	13(100)	Μ	6.0	9
	$2\ 191\ 613.7^d$	136.791	73.1044	13(100)	\mathbf{M}	6.0	9
10P(30)	$1\ 902\ 430.3$	157.584	63.4582	8(60)	\mathbf{M}	4.0	9
10P(11)	$1\ 858\ 872.0$	161.277	62.0053	9(70)	W	6.0	9
10 <i>P</i> (34)	$1\ 426\ 180.2$	210.207	47.5723	7(50)	\mathbf{M}	3.8	9
10P(7)	$1\ 371\ 481.5$	218.590	45.7477	27(200)	\mathbf{M}	5.0	10
10R(4)	$1\ 369\ 893.3$	218.844	45.6947	9(70)	W	2.6	9
10P(15)''	$1\ 288\ 113.7$	232.738	42.9668	7(50)	W	5.8	9
10P(24)		237.0			Μ		10
10P(29)		241.6		16(120)	W	6.0	9
10R(24)		257.5		15(110)	W	4.2	9
10P(34)	$1\ 041\ 094.2$	287.959	34.7272	13(100)	W	4.4	9
10R(11)	906 899.8	330.568	30.2509	15(110)	W	5.2	10
10R(38)		339.4		19(140)			9
10P(15)'	801 069.7	374.240	26.7208	9(70)	W	5.8	10
10P(28)		492.4		17(130)	W	5.0	10
10P(11)		575.0			\mathbf{M}		10

Table 5. Summary of the Hydrazine FIR Laser Lines Pumped by an 14N2¹⁶O Laser,Sorted by Increasing Wavelength

 a ', ", and " indicate different $^{12}\mathrm{N}_2$ $^{16}\mathrm{O}$ laser frequency offsets from line center.

 b Calculated from $c\,=\,299$ 792 458 m/s.

^c Doublets.

ACKNOWLEDGMENTS

We are pleased to acknowledge financial support for this research from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil), the Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), and the National Institute of Standards and Technology.

REFERENCES

- S. F. Dyubko, V. A. Svich, and L. D. Fesenko, "Stimulated emission of submillimeter lines of hydrazine, excited by a CO₂ laser," J. Appl. Spectrosc. **20**, 545–546 (1974).
- H. E. Radford, F. R. Petersen, D. A. Jennings, and J. A. Mucha, "Heterodyne measurements of submillimeter laser spectrometer frequencies," IEEE J. Quantum Electron. QE-13, 92–94 (1977).
- M. Inguscio, G. Moruzzi, K. M. Evenson, and D. A. Jennings, "A review of frequency measurements of optically pumped lasers from 0.1 to 8 THz," J. Appl. Phys. 60, R161– R192 (1986).
- 4. N. G. Douglas, *Millimeter and Submillimeter Wavelength Lasers* (Springer-Verlag, New York, 1989), p. 223.
- H. E. Radford, K. M. Evenson, F. Matsushima, L. R. Zink, G. P. Galvão, and T. J. Sears, "Far infrared laser frequencies of CH₃OD and N₂H₄," Int. J. Infrared Millim. Waves 12, 1161–1166 (1991).
- 6. E. C. C. Vasconcellos, L. R. Zink, G. P. Galvão, and K. M.

Evenson, "New N_2H_4 far infrared laser lines and frequencies," IEEE J. Quantum Electron. **30**, 2401–2406 (1994).

- E. C. C. Vasconcellos, S. C. Zerbetto, K. M. Evenson, and L. R. Zink, "New far-infrared hydrazine laser lines and their frequencies," J. Opt. Soc. Am. B 12, 1334–1337 (1995).
- S. C. Zerbetto, L. R. Zink, K. M. Evenson, and E. C. C. Vasconcellos, "New N₂H₄ far-infrared laser lines and their frequencies," Int. J. Infrared Millim. Waves 17, 1041–1047 (1996).
- E. C. C. Vasconcellos, M. Tachikawa, L. R. Zink, and K. M. Evenson, "Far-infrared hydrazine laser pumped by an N₂O laser," Int. J. Infrared Millim. Waves 18, 2295–2299 (1997).
- H. Jones, G. Taubmann, and M. Takami, "The optically pumped hydrazine FIR laser: assignments and new laser lines," IEEE J. Quantum Electron. QE-18, 1997-1999 (1982).
- 11. K. M. Evenson, C. Chou, B. W. Bach, and K. G. Bach, "New cw CO_2 laser lines: the 9- μ m hot band," IEEE J. Quantum Electron. **30**, 1187–1188 (1994).
- 12. M. Tachikawa, K. M. Evenson, L. R. Zink, and A. G. Maki, "Frequency measurements of 9- and $10-\mu m N_2O$ laser transitions," IEEE J. Quantum Electron. **32**, 1732–1736 (1996).
- 13. M. Inguscio, F. Strumia, K. M. Evenson, D. A. Jennings, A. Scalabrin, and S. R. Stein, "Far-infrared CH_3F laser," Opt. Lett. 4, 9–11 (1979).
- E. C. C. Vasconcellos, S. C. Zerbetto, J. C. Holecek, and K. M. Evenson, "Short-wavelength far-infrared laser cavity yielding new lines in methanol," Opt. Lett. 20, 1392–1393 (1995).