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Abstract: 

A single, laser-cooled, trapped %e’ ion is used to investigate methods of 
coherent quantum-state synthesis. We create and characterize nonclassical states 
of motion including “Schrodinger-cat” states. A fbndamental quantum logic gate is 
realized using the quantized motion and internal states as qubits. We explore some 
of the applications for, and problems in realizing, quantum computation based on 
multiple trapped ions. 
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1. INTRODUCTION 

Currently, a major theme in atomic, molecular, and optical physics is 
coherent control of quantum states. This theme is manifested in a number of topics 
such as atom interferometry, Bose-Einstein condensation and the atom laser, cavity 
QED, quantum computation, quantum-state engineering, wavepacket dynamics, 
and coherent control of chemical reactions. 

the dynamics of a two-level atomic system coupled to harmonic atomic motion, (2) 
the creation and characterization of nonclassical states of motion such as 
“Schradinger-cat” superposition states, and (3) quantum logic for the generation of 
highly entangled states and for the investigation of scaling in a quantum computer. 

Here, we report related trapped-ion research at NIST on (1) the study of 

2. TRAPPED ATOMIC IONS 

Because of their overall charge, atomic or molecular ions can be confined 
by particular arrangements of electromagnetic fields for relatively long periods OS- 
times (hours or longer) with relatively small perturbations to their intemal energy 
level structure. For studies of ions at low kinetic energy (< 1 ev), two types of 
trap are commonly used - the Penning and Paul traps. The Penning trap uses a 
combination of static electric and magnetic fields for confinement, and the Paul, or 
rf, trap confines ions primarily through ponderomotive fields generated by 
inhomogeneous oscillating electric fields. The operation of these traps is discussed 
in various reviews (for example, see Refs. 1 - 3) and in a recent book [4]. For 
brevity, we discuss one trap configuration which is usefil for the topics discussed 
in this paper. 

In Fig. 1 we show schematically a “linear” Paul trap. This trap is based on 
the one described in Ref [5], which is derived from the original design of Paul [6]. 
It is basically a quadrupole mass filter which is plugged at the ends with static 
electric potentials. An oscillating potential V,cos(Q,t) is applied between 
diagonally opposite rods, which are fixed in a quadrupolar configuration, as 
indicated in Fig. 1. We assume that the rod segments along the z (horizontal) 
direction are coupled together with capacitors (not shown), so the rfpotential is 
constant as a function of z. Near the axis of the trap this creates an oscillating 
potential of the form 
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v - v o  1 + R'), x= -y2 
2 

where R is equal to the distance fiom the axis to the surface of the electrode [7]. 

- 
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Fig. 1. The uppa part ofthe figure shows a schematic diagram ofthe elcctrodc confguration for a 
lincar Paul-RF trap (rod spacing - 1 mm). The lower part dthc figure shows an image of a string of 
'%g+ ions, illuminated with 194 nm radiation, takcn with a UV-sensitive, photoncounting imaging 
tube. The spacing bctwccn adjacent ions is appmximatcly 10 pm. The "gaps" in the string arc 
occupied by impurity ions, most likely other isotopes ofHg+, which do not fluoresce because the 
hqucncits oftheir rsonant transitions do not coincide with those ofthe 194 nm IS, - T,  transition 
of "g+. 

This gives rise to a (harmonic) ponderomotive potential in the x-y direction which, 
for a single ion (or the center-of-mass (COW motion of a group of ions), yields 
the motion 

where e = -qy 
q and m are the ion mass and charge. Equations (2) are valid for the typical 
conditions that I 
micromotion (the (qj2)cosRt terms in Eq. (Z)), the ion behaves as if it were 

2qVJ(tnR%2: ) = 2J20fl,, O, = = o = qVJ(J2mR%lT), and 

, I qy I << 1. In this approximation, if we neglect the 
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confined in a pseudopotential (DP given by 

in which the ion oscillates with secular frequency ai. To provide confinement 
along the z direction, static potentials are applied to the end segments of the rods 
relative to the central segments. Near the center of the trap, this provides a static 
harmonic well along z. This necessarily weakens the well in the radial direction 
[SI, but we will assume that the binding in the radial direction is large compared to 
that along z, so this effect is small. Figure 1 also shows an image of a “string” of 
IWg+ ions which are confined near the z axis of the trap described in Ref. 8. This 
string of ions can be thought of as a linear molecule or a super-molecule composed 
of the atomic ions bound to a much heavier atom, which is the trap. 

When this kind of trap is installed in a high-vacuum apparatus (pressure < 
10’ Pa), ions can be confined for days with minimal perturbations to their internal 
structure. Collisions with background gas are infrequent (the mean time between 
collisions is more than a few minutes). Even though the ions interact strongly 
through their mutual Coulomb interaction, the fact that the ions are localized 
necessarily means that @) = 0 at the positions of the ions; therefore electric field 
perturbations occur only in second order. These perturbations are typically very 
small [9]. Magnetic field perturbations are important; however, ifwe operate at 
fields where the energy separation between levels is at an extremum with respect to 
field, the coherence time for superposition states of the two levels can be very 
long. For example, in a %e+ (Penning trap) experiment operating in a field of 0.82 
T, a coherence time between hyperline levels exceeding 10 minutes was observed 
[lo]. As described below, we will be interested in coherently exciting the 
quantized modes of the ion motion in the trap. Not surprisingly, the coupling to 
the environment is relatively strong because of the ions‘ charge. One measure of 
the decoherence rate due to environmental coupling is the rate of transitions 
between the ions’ quantized oscillator levels. Transition times from the zero-point 
energy level (achieved from laser cooling) to the first excited motional state have 
been measured for single ”*Hg+ ions to be about 0.15 s [ 1 I] and for single %e+ 
ions to be about 1 ms [12]. 

Ion trap experiments can achieve high detection efficiency of the ion’s 
internal states. Unit detection efficiency has been achieved in previous experiments 
on “quantumjumps” [I31 where the internal state ofthe ion is indicated by light 
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scattering (or lack thereof), correlated with the ion's internal state. 
In the experiments we discuss here, a single %e+ ion was stored in a 

conventional Paul trap [ 1-31 where the ion's coniinement is characterized by 
secular oscillation f?equenCies (on or oJ2n = (1 1, 19,29) MHz along the three 
principal axes of the trap [ 141. The future goal of the work will be able to extend 
these experiments to the c ~ s e  of multiple ions in a linear trap (Fig. 1). 

3. ENTANGLED QUANTUM STATES 

entangled quantum state is one where the wave finction of the overall system 
cannot be written as a product of the wave functions of the subsystems. In this 
case, a measurement on one of the subsystems will affect the state of the other 
subsystems. For example, consider a two-level atom bound in a I-D harmonic 
well. Suppose we can create the state 

where the kets I 1 ) and I t ) denote the two internal eigenstates of the atom (here, 
we use the spin-% analog to a two-level system: 0.1 t )  = + I  l), etc. ), the second 
ket denotes a harmonic oscillator eigenstate In), and I$ is a (controlled) phase 
factor. This state is entangled because, if we measure the motional eigenstate of 
the atom and find it to be in level n, then it must also be found in the 1 internal 
state ifwe measure a,. Similarly, ifwe find the atom in the n' motional state, it 
must be found in the 1 internal state. Such correlations are central to "EPR" 
experiments [l5]. Another interesting state is the state for N two-leveI atoms 

where the subscript i (= 1,2, ..., N) denotes the ith atom. This state is "maximally 
entangled" in the sense that a measurement of (I, on any atom automatically 
determines the value of u, of all other atoms. 
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4. LASER COOLING TO THE ZERO-POINT STATE 

As a starting point for the experiments discussed in this paper, we want to prepare 
the %e+ ion in a particular internal state and in the lowest quantized level of 
vibrational motion in the trap - the zero-point state. The ion can be optically 
pumped into a particular internal state using polarized light. Preparation in the 
zero-point state of motion is achieved with laser cooling. 

resolved-sideband laser cooling [ 161 which can be explained as follows: Consider 
a two-level atom characterized by a resonant (optical) transition frequency o, and 
radiative linewidth y. For simplicity, we assume the atom is contined by a 1-D 
harmonic well of vibration fiequency ox )) y. Ea laser beam (frequency o) is 
incident along the direction of the atomic motion, the bound atom's absorption 
spectrum is composed of a "carrier" at frequency o, and resolved (since o, )) y) 
fiequency-modulation sidebands that are spaced by w, and are generated from the 
Doppler effect (like vibrational substructure in a molecular optical spectrum). . 

Cooling occurs ifthe laser is tuned to a lower sideband, for example, at o = w,-o,. 
In this case, photons of energy h(o,-oJ are absorbed, and spontaneously emitted- 
photons of average energy hao return the atom to its initial internal state (assuming 
hw, is much greater than the photon recoil energy for the bound atom). This 
reduces the atom's kinetic energy by ha, per scattering event. Cooling proceeds 
until the atom's mean vibrational quantum number in the harmonic well is given by 
(n), - (y/2o$ a 1. This kind of laser cooling can be regarded as cooling through 
anti-Stokes spontaneous Raman scattering or "inverse-Stokes" scattering [ 161. 
Experimentally, we find it convenient to use two-photon stimulated Raman 
transitions for cooling (as described below), but the basic idea for cooling is 
essentially the same as for single-photon transitions described here. 

We cool a single, trapped %e+ ion to near the zero-point energy using 

5. JAYNES-C"GS-TYPE COUPLING BETWEEN INTERNAL AND 
MOTIONAL STATES 

To achieve both laser cooling and entanglement, we need to provide a 
coupling between internal and motional quantum states. This can be achieved with 
the application of inhomogeneous (classical) electromagnetic fields. For example, 
consider an atom confined in a 1-D harmonic potential. The atom's dipole moment 
p is assumed to couple to an electric field E(x,t) through the Hamiltonian 
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We have p - (J, + a-, where a+ and (J- are the raking and lowering operators for 
the intemal levels (in the spin-% analog). In Eq. (6), the position x is an operator 
representing the position of the atom, which we write as x = %(a + at), where a 
and at are the usual harmonic oscillator lowering and raising operators, and x, is 
the rms spread of the n=O zero-point state of motion. As a simple example, 
suppose the field is static and the motional oscillation fiequency ox of the atom is 
equal to the resonance fiequency a, of the internal state transition. In its reference 
fiame, the atom experiences an oscillating field due to the motion through the 
inhomogeneous field. Since ox = a,, this field resonantly drives transitions 
between the intemal states. If the extent of the atom's motion is small enough that 
we need only consider the first two terms in Eq. (6), HI can be approximated as 
M(a+a + or? (in the interaction frame and using the rotating wave 
approximation), where Q is a proportionality constant. This Hamiltonian is 
equivalent to the Japes-Cummings Hamiltonian of cavity-QED [ 171 which 
describes the coupling between a two-level atom and a single mode of the radiation 
field. This analogy has been pointed out in various papers [18-211; for a review, 
see Ref. 22 and firther references in Ref. 2 1. 

5. I Realization of a Jaynes-Cummings-&ve coupling for a trapped 9Be+ ion 

The relevant energy-level structure of %e' is summarized in Fig. 2. Because the 
ion is trapped, the internal %e+ electronic states must include the ladder of external 
harmonic oscillator levels of energy E. = hm(n+%), where we have considered only 
the x-dimension of the oscillator (o, = oJ and its associated quantum number n 
\ E (0, 1,2, ...). The two internal levels of interest are the 'Sin ground state 
hyperfine levels IF=2, mF=2) (denoted by I 1)) and IF=l, mF=l) (denoted by I I)), 
which are separated in fiequency by aJ2n 1.25 GHz. The other Zeeman levels 
(not shown) are resolved from the I I )  and I I )  states by the application of a ~ 0 . 2  
mT magnetic field [12,21]. 

e'o"-"'>. In our experiment, the field corresponding to that in Eq. (6) is provided 
by two laser fields (Rl and R2 of Fig. 2a) which drive stimulated-Raman 
transitions between the levels of interest. The use of stimulated-Raman transitions 

Strong field gradients can be obtained with laser fields (eh factor in & - 
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Fig. 2. (a) Electronic (intend) d motional (external) energy levels (not to scale) ofthe trapped 'Be' 
ion. mupicd by indicated lascr beams R1 and R2. The diffcrrnce kquency ofthc Raman beams R1 
and R2 is set near 0/2x 1.250 GHz, providing a two-photon coupling between the 'S,,(F=2. 
my2)  and aSl,(F=l, mpl)  hypafine ground states (denoted by 11) d I t  ) rrspectively). The 
motional energy lmls are dcpictcd by a laddcr of vibrational states separated in ikqucncy by the trap 

m&) excited state. As shown, the Ramanbeams arctuucd to the red sideband (see text). 
@) Detection ofthe internal state is afccmplishcd by illuminating the ion with a+-polarizad 
"dektion" beam D2, which drives the cycling 'S,,(F=2, ~ 2 )  - ?&=3, my3) transition, and 
obsaving the scattned fluoresccnce. The vibrational structure is omitted from @) since it is not 
resolved. BeamD1. also a' polarized. provides spontaneous rccyclingfromthc 1 1 )  to 1 1) state. 

~ 

fl-equencyonn- l lMHz ThcRamanbeamsmddrmed~x=-12~6romthe2P1,(F=2, 

has some technical advantages, but is formally equivalent to driving a narrow 
single-photon transition. Raman transitions between the 1 1 ) and I 1 ) states can be 
driven by tuning the difference frequency of R1 and R2 to be near 0,. The two 
Raman beams (A - 3 13 nm) are generated from a single laser source and an 
acousto-optic modulator, allowing excellent stabiity of their relative frequency and 
phase. Both beams are detuned Al2x = -12 GHz from the excited Zpu2 electronic 
state (radiative linewidth yI2n = 19.4 h4Hz), and the polarizations are set to 
couple through the 2p,,(F=2, mF=2) level (the next nearest levels are the zPw, states 
which are over 200 GHz away and can be neglected). Because A >> y, the excited 
2p state can be adiabatically eliminated in a theoretical description, resulting in a 
coupling between the two ground states which exhibits a linewidth inversely 
proportional to the interaction time. When R1 and R2 are applied to the ion with 
wavevector difference 6l? = El - l?, along the x direction, the effective coupling 
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Hamiltonian in the rotating-wave approximation is given by 

trl(#'+#)-ibf + -ill(. ' + #  ) + i b r ) .  (7) 

m e  coupling strength g depends on A and the intensity of the laser beams, q = 

IbElx, - 0.2 is the Lamb-Dicke parameter, x, = (W2moJ'" = 7 nm, and 6 is the 
difference between the relative frequency of the two Raman beams and 0,. Setting 
6E to be parallel to the x axis of the trap yields almost no coupling between the 
intemal states and motion in the y and z directions. 

If b = q(n'-n), transitions are resonantly driven between the levels I 1 ,n) 
and I 1,n') at a rate n,, - g which is dependent on n and n' [16,21,23] (analogous 
to Franck-Condon factors). Starting from the I 1 )In) state, application of a 
"Ubi z'' pulse coherently transfers the ion to the1 1 )In'> state; this corresponds to 
applying the Raman beams for a duration T such that 2!2,,,.t = 7c. If we apply the 
Raman beams for half of this time, we create the entangled state of Eq. (4). Here, 
we will assume the ion is confined in the Lamb-Dicke limit ((bfl<?>' << 1) and 
will consider three transitions. The carrier, at 6 = 0, drives transitions between 
states I 1 ,n) - I 1 ,n) with Rabi frequency Q,, = g. The first red sideband, 
corresponding to b = -0, drives transitions between states I 1 ,n) - I f ,n-1) with 
Rabi frequency 
QED [ 171 where energy is coherently exchanged between the internal state and 
single-photon radiation field. The first blue sideband, at b = +ox, drives transitions 
between states I I ,n) - I 1 ,n+l) with Rabi frequency n,,, = gq(n+l)'. 

Laser cooling to the I 1 ) I n-0) state is accomplished in two stages. We first 
use first Doppler cooling [ 161 to cool the ion to a limit given by (n) - 1 for our 
experimental conditions. We then apply sideband laser cooling using stimulated 
Raman transitions [12] to achievdn) - 0. For sideband laser cooling, Rabi 7c 
pulses on the first red sideband (I 1)ln) - I r)/n-l)) are alternated with repumping 
cycles using nearly resonant radiation (beam D1 of Fig. 2b) - which results (most 
probably) in transitions I T ) I n) - I 1 ) In). These steps are repeated (typically 5 
times) until the ion resides in the I 1)lO) state with high probability (> 0.9). 

As described below, fiom the 11 )IO) state we are able to coherently create 
states of the form I 1 )'f(x), where the motional state U(x) = Z,,C,,exp(-iino,t) I n) 
and the C,, are complex. One way we CM analyze the motional state created is as 
follows [21]: The Raman beams are pulsed on for a time T, and the probability 
P,(T) that the ion is in the I 1) intemal state is measured. The experiment is 
repeated for a range of r values. When the Raman beams are tuned to the first 
blue sideband, the expected signal is [21] 

= gqJn. This coupling is analogous to the case in cavity 
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where Pa = lCalz is the probability of finding the ion in state n and y. are 
experimentally determined decay constants. The intemal state I 1) is detected by 
applying nearly resonant a'-polarized laser radiation (beam D2, Fig. 2b) between 
the I 1) and ?,(F=3, mF=3) energy levels. Because this is a cycling transition, 
detection efficiency is near 1 [12,13,21]. The measured signal P,(t) can be 
inverted (Fourier cosine transform), allowing the extraction of the probability 
distribution of vibrational state occupation P,. This signal does not show the phase 
coherences (phase fictors of the C,,), which must be verified separately [21,24]. 
The most complete characterization is achieved with a state reconstruction 
technique [25] discussed below. 

6. CREATION OF COHERENT AND SCHR6DINGER-CAT STATES 
OF MOTION 

We have created and analyzed thermal, Fock, squeezed, coherent, Schrbdinger-cat 
states, and other superpositions of Fock states [21,24,25]; here we briefly describe 
the creation and measurement of coherent and Schrodinger-cat states [21,24]. We 
note that a scheme recently proposed for producing arbitrary states of the 
electromagnetic field [26] should be directly applicable to the ion case for 
producing arbitrary states of motion. 

-0Cc 

A coherent state of motion 

corresponds to a displaced zero-point wave packet oscillating in the potential well 
with amplitude 21ctIxo. From Eq. (8), Pl(s) for a coherent state will undergo 
quantum collapses and revivals [27,28]. These revivals are a purely quantum effect 
due to the discrete energy levels and the narrow distribution of states [27,28]. 

We have produced coherent states of ion motion from the I 1 ) 10) state by 
applying either a resonant (fiequency w,J classical driving field or a "moving 
standing wave" of laser radiation which resonantly drives the ion motion through 
the optical dipole force [21,24]. In Fig. 3, we show a measurement of P,(T) after 
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mation of a coherent state of motion, exhibiting the expected collapse and revival 
signature. (For comparison, see the cavity-QED experiment of Ref. 29.) Eq. (8) 
is fitted to these data assuming a Poissonian distribution, allowing only (n) to vary. 
n e  inset shows the results of a separate analysis, which yield the probabilities of 
the Fock-state components, extracted by applying a Fourier cosine transfonn to 
p,(r) at the known frequencies as described above. These amplitudes display the 
expected Poissonian dependence on n. 

0.1 

1.0 /- - w w  pno2& 0.0 

0 2 4 6 8 1 0  

0 2  

Fig. 3. P,(r) for a cohaent state driven by tbc first blue sideband interaction, showing collapse and 
revivalbehavia. Thedataarefi~torcohcrrntstattdis(ribution,yieIding(n) =3.1(1). Theinset 
shows the rcsults of inverting the ti"ain data by employing a Fourier cosine transform at the 
known Mi frequencies &,, fitted to apoissonian distxibutim, yielding (I$ = 2.9(1). Each data 
point represents M average of 4000 measurements, or 1 s of integration. (hm Rd. 21) 

A Schrodinger-cat state is taken to be a coherent superposition of classical- 
like motional states. In Schrodinger's original thought experiment [30], he 
descriied how we could, in principle, entangle a superposition state of an atom 
with a macroscopic-scale superposition of a live and dead cat. In our experiment 
[24], we construct an analogous state, on a smaller scale, with a single atom. We 
create the state 

where I a,) and I a) are coherent motional states (Eq. (9)) and @ is a (controlled) 
phase factor. The coherent states of the superposition are spatially separated by 
distances much greater than the size of the atom wavepacket which has an r.m.s. 
spread equal to 4. 
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Analysis of this state is interesting from the point of view of the quantum 
measurement problem, M issue that has been debated since the inception of 
quantum theory by Einstein, Bohr, and others, and continues today [3 11. One 
practical approach toward resolving this controversy is the introduction of 
quantum decoherence, or the environmentally induced reduction of quantum 
superpositions into classical statistical mixtures [32]. Decoherence provides a way 
to quantify the elusive boundary between classical and quantum worlds, and almost 
always precludes the existence of macroscopic Schrodinger-cat states, except for 
extremely short times. On the other hand, the creation of mesoscopic Schrbdinger- 
cat states like that of Eq. (10) may allow controlled studies of quantum 
decoherence and the quantum-classical boundary. This problem is directly relevant 
to quantum computation, as we discuss below. 

harmonic oscillator (Eq. (10)) with a sequence of laser pulses [24]. First, we 
create a state of the form ( I  1 ) + e</ f ))ln=O)lJ2 with a x/2 pulse on the Raman 
carrier transition (Sec. 5.1). To spatially separate the I 1) and I 1) components of 
the wave knction, we apply a coherent excitation with an optical dipole force 
which, because of the polarization of the beams used to create the force, selectively 
excites the motion of only the I 1 >-state. We then swap the I 1 ) and I 1 ) states with 
a carrier x pulse and reapply the dipole force with a different phase to create the 
state of Eq. (IO). In principle, if we could make I al, I large enough, we could 
design a detector which could directly detect the (distinguishable) position of the 
particle and correlate it with a spin measurement [33]. Instead, to analyze this 
state in our experiment, we apply an additional laser pulse to couple the internal 
states, and we measure the resulting interference of the distinct wavepackets. With 
this interferometer, we can establish the correlations inherent inEq. (lo), the 
separation of the wavepackets, and the phase coherence 4 between components of 
the wavefunction. These experiments are described in Ref. 24. The interference 
signal should be very sensitive to decoherence. As the separation la, - is made 
larger, decoherence is expected to exponentially degrade the frinse contrast [32]. 

experiment. Examples are atom interferometers [34] and superpositions of 
electron wavepackets in atoms [35] (also, see additional citations in Ref. 24). 
However, as opposed to these experiments, the harmonic oscillator cat states of 
Eq. (10) do not disperse in time. This lack of dispersion provides a simple 
visualization of the “cat” (for example, a marble rolling back and forth in a bowl 
which can be shultanmusly at opposite extremes of motion) and should allow 
controlled studies of decoherence models. This has recently been realized in cavity 

In our experiment, we create a Schrbdinger-cat state of the single-ion %e+ 

Other experiments generate Schrtidinger cats in the same sense as in our 
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QED experiments [36]. 
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7. COMPLETE RECONSTRUCTION OF ' 
THE MOTIONAL QUANTUM STATE 

m e  controlled interaction of light and rf-electromagnetic fields with the trapped 
ion not only allows us to prepare very general states of motion, but also to 
determine these quantum mechanical states using novel techniques. Few 
experiments have succeeded in determining the density matrices or Wigner 
fUnctions of quantum systems [37]. Here we present the theory and experimental 
demonstration of two distinct schemes to reconstruct both the density matrix in the 
number state basis and the Wigner function of the motional state of a single 
trapped atom. Other proposed methods are discussed in Refs. 38-41. Both of our 
measurement techniques rely on our ability to coherently displace the input state to 
several different locations in phase space. The technical realization of the 
displacements is described in the previous section in the context of the production 
of coherent states. M e r  the coherent displacement we apply radiation on the first 
blue sideband for a time T, which induces a resonant exchange between the 
motional and internal degrees of &&om. For each coherent displacement 
characterized by a complex number a, a time series of measurements of the 
population P,(r) is made by monitoring the fluorescence produced in driving the 
resonant dipole cycling transition just as in Eq. (8). The intemal state at t=O is 
always prepared to be I 1 ) for the various input states, so the signal averaged over 
many measurements is 

(1 1) I Q , ( a ) c o ~ ( 2 i Z ~ ~ + ~ t ) e  -',P . 

Without the coherent displacement we would just produce the signal of Eq. (8) and 
would get the populations of the motional eigenstates only. However, since we 
repeat these measurements for several magnitudes and phases of the coherently 
displaced state, we are able to extract information about the off-diagonal elements 
of the density matrix and can also reconstruct the Wigner fbnction [42] fiom the 
measured displaced populations Q,,(a). These can be found by a Fourier cosine 
transform and are linearly related to the elements of the motional density matrix in 
the number state basis (a detailed description of these relations is given in Ref 25). 
These relations can be numerically inverted to reconstruct the density matrix of the 
motional state in the number state basis using a general linear least-squares 
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method. 

F(a,s) 142,431 such as the Wigner hnction can be characterized by a displacement 
a and a parameter s. These functions have a particularly simple representation 
when expressed in populations of coherently displaced number states Qk(a) [43]. 

As pointed out by several authors, quasiprobability distribution hnctions 

For s = -1, the sum reduces to one term, and F(a,-1) = Q,(a)/n gives the value of 
the Q-quasi-probability distribution at the complex coordinate a [44]. The Wigner 
function is given by s = 0. F(a,O) = W(a) for every point a in the complex plane 
can be determined by the sum 

In our reconstruction, the sum is carried out only to a finite n-, depending on the 
estimated magnitude of the states to reconstruct [25]. 

0.0 

-0.5 

.- 

Fig. 4. Surface and contour plot of the wignerfunction Of an approximate In=l) number state. 
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In Fig. 4, we show the surface and contour plots of the Wigner hnction of 
approximate In=1> number state. The plotted points are the result of fitting a 

hear interpolation between the actual data points to a 0.1-by-0.1 grid. The 
shape is 8n artifact of the eight measured phases per radius. The white 

contour represents W(a)=O. The negative values around the origin highlight the 
nonclassical character of this state. 

Fig. 5. Rccmdmctcd density matrix amplitudes of an appmximnte 1/J2 ( i n 4 )  - i (n=2)) state. The 
amplitudes of the cohcrmces indicate that the 
state. 

dcnsity matrix is close to that of a pure 

As an example of a reconstructed number state density matrix, we show in Fig. 5 
our result for a coherent superposition of I n=O) and I n=2) number states. This 
state is ideally suited to demonstrate the sensitivity of the reconstruction to 
coherences. Our result indicates that the prepared motional states in our system are 
very close to pure states. 

8. QUANTUM LOGIC 

Quantum computation has received a great deal of attention recently 
because of the algorithm proposed by Peter Shor for efficient factorization [45,46]. 
Factorization has important implications for public-key data encryption where the 
security of these systems is due to the inability to efficiently factorize large 
numbers. Accomplishing quantum factorization will be formidable with any 
technology; however, other applications of quantum logic may be more tractable. 
One possibility is described in Sec. 9. Ignacio Cirac and Peter Zoller E471 
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proposed an attractive scheme for a quantum computer which would use a string 
of ions in a linear trap as "qubits," similar to what is shown in Fig. 1. This 
proposal has stimulated experimental efforts in several laboratories, including those 
at Innsbruck, Los Alamos National Laboratory, IBM, and MST. 

Each qubit in a quantum computer could be implemented by a two-level 
atomic system; for the ith qubit, we label these states I I )i and I t )i as above. In 
general, any quantum computation can be comprised of a series of single-bit 
rotations and two-bit controlled-NOT (0 logic operations [46,48]. We are 
interested in implementing these two operations in a system of %e+ ions. Single- 
bit rotations are straightforward and correspond to driving Raman carrier 
transitions (Sec. 5.1) for a controlled time. Such rotations have been achieved in 
many previous experiments. In the following, we describe the demonstration of a 
nontrivial CN logic gate with a single %e' ion [49]. 

8. I "Conditional &"ticsr9 and a single-ion controlled-not logic gate 

The key to making a quantum logic gate is to provide conditional dynamics; thaLs* - 
we desire to perform on one physical subsystem a unitary transformation which is 
conditioned upon the quantum state of another subsystem [46]. In the context of 
cavity QED, the required conditional dynamics at the quantum level has recently 
been demonstrated [50,51]. For trapped ions, conditional dynamics at the quantum 
level has been demonstrated in verifications of zero-point laser cooling where 
absorption on the red sideband depended on the motional quantum state of the ion 
[ 11,121. Recently, we have demonstrated a CN logic gate; in this experiment, we 
also had the ability to prepare arbitrary input states to the gate (the "keyboard" 
operation of step (2a) below). 

A two-bit quantum CN operation provides the transformation: 

where q,e2 E (0,l) and 8) is addition modulo 2. The (implicit) phase factor in the 
transformation is equal to 1. In this expression el is the called the control bit and 
e2 is the target bit. Ifq = 0, the target bit remains unchanged; if e, = 1, the target 
bit flips. In the single-ion experiment of Ref 49, the control bit is the quantized 
state of one mode of the ion's motion. Ifthe motional state is In*), it is taken to 
be a le,+) state; ifthe motional state is In=l>, it is taken to be a ~el=l)  state. The 
target states are two ground-hyperfine states of the ion, the I 1) and I 1) states of 
Sec. 5 with the identification here I 1) - lez*) and I 1) c. Ispl). Following the 
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notation of Sec. 5 ,  the CN operation is realized by applying three Raman laser 
pulses in succession: 

A x/2 pulse is applied on the spin carrier transition. For a certain choice of 
Stial phase, this corresponds to the operator VH(x/2) of Ref. 47. 
A 2x pulse is applied on the first blue sideband transition between levels 
I 1) and an auxiliary level laux) in the ion (the IF=2, MF+> level in %e+ ). 
This operator is analogous to the operator q' of Ref 47. This operation 
provides the conditional dynamics for the controlled-not operation in that it 
changes the sign of the I 1) (n=l) component of the wavefinction but leaves 
the sign of the I 1 )In+) component of the wavefinction unchanged. 
A x/2 pulse is applied to the spin carrier transition with a 180" phase shif? 
relative to step (la). This corresponds to the operator VH(-x/2) of Ref. 47. 

Steps (la) and (1 c) can be regarded as two resonant pulses (of opposite phase) in 
the Ramsey separated-field method ofspectroscopy [52]. We can see that if step 
@) is active (thereby changing the sign of the I 1) In=1) component of the wave 
function) then a spin flip is produced by the Ramsey fields. If step (lb) is inactive, 
the net effect of the Ramsey fields is to leave the spin state unchanged. This CN 
operation can be incorporated to provide an overall CN operation between two 
ions in an ensemble of N ions ifwe choose the ion oscillator mode to be the center- 
of-mass (COW mode of the ensemble. Specifically, to realize a controlled-not 
C,, between two ions (m = control bit, k = target bit), we first assume the COM is 
prepared in the zero-point state. The initial state of the system is therefore given 
bY 

C,, can be accomplished with the following steps: 

(2a) Apply a x pulse on the red sideband of ion m (the assumption is that ions 
can be addressed separately [47]). This accomplishes the mapping (a I I ), 
+ p I 1 )J IO) - I 1 ),(a 10) - e*p I 1)) , and corresponds to the operator ULo 
of Ref. 47. In our experiments, we prepare states of the form (a I 1 ) + 
PI 1))lO) using the carrier transition (Sec. 5.1). We can then implement the 
mapping (all>+Plt>)lO> - Il),,,(aIO)-e*pIl>>byapplyingared 
sideband x pulse. This is the "keyboard" operation for preparation of 
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arbitrary motional input states for the CN gate of steps la-lc above. 
Analogous mapping of intemal state superpositions to motional state 
superpositions was demonstrated in Ref 49. 

(2b) Apply the CN operation (steps la-lc above) between the COM motion and 
ion k. 

(2c) Repeat step (2a). 

Overd, C m k p r o ~ d e s t h e ~ p P i n g s  ~ ~ ) m ~ ~ ) k ~ o ) *  ~ ~ ) m ~ ~ ) k ~ o ) ,  I1),It)klo) - 
I1),1T>klo>. IT>,ll)klo>- Il),lt)k10),and IT>,lT)klO)- IT),I~)k10)WhiChiSthe 
desired logic of Eq. (14). Effectively, c,k works by mapping the intemal state of 
ion m onto the COM motion, performing a CN between the motion and ion n, and 
then mapping the COM state back onto ion m. The resulting CN between ions m 
and k is not really different from the CN described by Cirac and Zoller, because the 
operations V"'(0) and Uko commute. 

8.2 Quantum Registers and SchrMinger Cats 

The state represented by Eq. (15) is ofthe same form as that ofEq. (10). Both 
involve entangled superpositions and both are subject to the destructive effects of 
decoherence. Creation of Schredinger cats like Eq. (10) is particularly relevant to 
the ion-based quantum computer because the primary source of decoherence will 
probably be due to decoherence of the I n=O, 1) motional states during the logic 
operations. 

8.3 Perspective on ion quantum computation and quantum logic 

To be usehl for factorization, a quantum computer must be able to factorize a 200 
digit or larger decimal number. This will require a few thousand ions and perhaps 
lo9 or more elementary operations [46]. Therefore, given the current state of the 
art (one ion and about 10 operations before decoherence), we should be skeptical. 
Decoherence will be most decisive in determining the fate of quantum 
computation. Already, decoherence from spontaneous emission appears to limit 
the number of operations possible [53,54]. The experiments can be expected to 
improve dramatically, but we must hope for more efficient algorithms or ways to 
patch them (such as error correction schemes [HI) before large scale factoring is 
possible. Possibilities and limitations with the ion trap scheme are being explored 

Any quantum system that might be contemplated in quantum computation 
[53,56-591. 
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must be reproducible, stable, and well isolated from the environment. Quantum 
dots have the potential advantage of large-scale integration using microfabrication; 
however, at the present time, they suffer from lack of precise reproducibility and 
excessive decoherence. Trapped ions are reproducible and relatively immune to 
environmental perturbations - this is the reason they are candidates for advanced 
frequency standards [60]. In principle, higher information density could be 
achieved in ion traps by scaling down the size of the trap electrodes; however, we 
must then wony about excessive environmental coupling such as magnetic field 
perturbations caused by impurities andor currents in the (nearby) trap electrodes. 
similarly, electric field perturbations will also become important as the size of the 
trap electrodes becomes smaller. To avoid excessive coupling to the surrounding 
environment in any quantum logic scheme, the supporting matrix for quantum bits 
must therefore be reasonably separated from the qubits. In any scheme which uses 
atomic transitions, a scale sue represented by present ion traps might be close to 
optimum. 

Factorization, discrete logs, and certain other mathematical computations 
appear to be the hardest problems that quantum logic might be applied to. One of 
the applications for quantum computation that Richard Feynman originally had in 
mind was to simulate quantum mechanical calculations [61]. This idea is being 
explored again with new possibilities in mind [62]. Other potential applications 
might also be realized. At NIST, the original motivation for creation of entangled 
states was to kndamentally improve the signal-to-noise ratio in ion spectroscopy 
and frequency standards; we discuss this possibility in the next section. 

9. QUANTUM LOGIC APPLIED TO SPECTROSCOPY 

We conclude by discussing a possible application of quantum logic in the realm of 
atomic physics. This application has the advantage of being usekl with a relatively 
small number of ions and logic operations. 

ratio in spectroscopy [ 19,63,64]. In spectroscopy experiments on N atoms, in 
which changes in atomic populations are detected, we can view the problem in the 
following way using the sp in4  analogy for two-level atoms. We assume that 
spectroscopy is performed by applying (classical) fields of frequency o for a time 
TR according to the Ramsey method of separated fields [52]. After applying these 
fields, we measure the final state populations. For example, we might measure the 
operator fi, corresponding to the number of atoms in the I 1 ) state. In the spin-% 
analogy, this is equivalent to measuring the operator J, , since R, = fi - J, where f 

Entangled atomic states can improve the quantum-limited signal-to-noise 
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is the identity operator. 
If all sources of technical noise are eliminated, the signal-to-noise ratio (for 

repeated measurements) is findamentally limited by the quantum fluctuations in the 
number of atoms which are observed to be in the I 1 } state. These fluctuations can 
be called quantum "projection" noise [65]. If spectroscopy is performed on N 
initially uncorrelated atoms (for example, Y( t4 )  = &I1 >i ), the imprecision in a 
determination of the frequency of the transition is limited by projection noise to 
(A@)- = l/(NTRz)H where r >> TR is the total averaging time. If the atoms can 
be initially prepared in entangled states, it is possible to achieve (Am)-, < 
1/(NTR~)!". Initial theoretical investigations [ 19,631 examined the use of correlated 
states which could achieve (Am), < I/(NTRr)' when the population (J3 was 
measured. More recent theoretical investigations [64] consider the initial state to 
be one where, after the first Ramsey pulse, the intemal state is the maximally 
entangled state of Eq. (5). After applying the Ramsey fields, we measure the 
operator d = IIpS instead of J, (or fi,). For unit detection efficiency, we can 
achieve (Am)- = I/WTRr)% which is the maximum signal-to-noise ratio 
possible. The main reason for the reduced value of (Am),,. is that (6) = 
(-l)Ncosm(m - mo)TJ; the derivative of this finction with respect to applied -- 
frequency is N times larger than for the uncorrelated atom case. For an atomic 
clock where TR is fixed by other constraints, this means that the time required to 
reach a certain measurement precision (stability) is reduced by a factor of N 
relative to the uncorrelated-atom case. In terms of quantum computation, this 
amounts to a computation of the finction cos(N(m - oo)T). Of course, this 
computation has special significance for the measurement of m,, (an intrinsic 
computer parameter) but otherwise is much better suited for a classical computer! 

Eq.(5) using quantum logic gates. Using the notation of Sec. 5.1, we would first 
prepare the atom in the state T(t=O) = IIJ 1 >i and then apply a n/2 rotation to ion 
1 tocreatethestateY=2"A(11), +e*l t ) , ) ~ l ) 2 ~ l ) 3 . . . ~ l ) w  WethenapplytheCN 
gate of Eq. (14) sequentially between ion 1 and ions 2 through N to achieve the 
state of Eq. (5).  An alternative method for generating this state, without the need 
of addressing individual ions, is described in Ref 64. 

. 

Ciac and Zoller [47] have outlined a scheme for producing the state in 
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