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Time Synchronization Using the Internet
Judah Levine

Abstract—This paper discusses a new algorithm for syn-
chronizing the clocks of networked computers using mes-
sages transmitted over the network itself. The design is
based on a statistical model of the clock and the network,
and uses this model to define the parameters of a frequency-
lock loop which is used to discipline the local oscillator. The
design was tested by synchronizing a standard workstation
to a time server located 1200 km away; the time offset be-
tween the clock synchronized in this way and UTC is 2 ms
rms. This analysis also can be used to design algorithms
that provide lower accuracy at lower cost.

I. INTRODUCTION

HIS PAPER discusses synchronizing the clocks of com-
Tputers using messages transmitted over a packet net-
work guch as the Internet. Such algorithms are useful be-
cause the network infrastructure is often already installed
and available so that it can be used for time synchroniza-
tion with little or no additional cost.

The current algorithm, which we call “interlock,” is a
generalization of the “lockclock” algorithm which was dis-
cussed in a previous paper [1]. It is similar to “lockclock”
in that it uses the rms clock error as a measure of per-
formance and the average time between calibrations as a
meagsure of cost. Either algorithm can be used to study the
trade-off between cost and performance (as these quanti-
ties have been defined) or to compare the performance of
different methods whose costs are the same.

The performance of “lockclock” depends on calibration
messages transmitted over relatively stable dial-up voice-
grade telephone lines from a telephone time server (such
as the Automated Computer Time Service operated by
NIST). The current algorithm can function with messages
transmitted over packet networks (such as the Internet)
where the transmission delay is less stable and predictable.
The two algorithms can provide comparable performance
in spite of this, although “interlock” may require more
frequent calibrations than “lockclock” for the same level
of performance.

The “interlock” procedure uses messages transmitted
in network time protocol (NTP) format [2] and can be
used in a heterogeneous environment with other NTP-
synchronized systems. It does not depend on the details
of the message format, however, and other message for-
mats could be substituted with only minor modifications.
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A number of other performance metrics have been dis-
cussed in the literature; some try to provide a determin-
istic, guaranteed upper bound to the error in the time of
the local clock [3], [4], and others use delay and disper-
sion data from several servers to select the synchronization
source [2]. These methods have clear advantages in some
cases—using several servers is probably the surest way of
detecting a glitch and identifying its origin, but it will
be more expensive than using data from a single server.
If glitches are relatively infrequent events, using multiple
servers improves the worst-case performance but may have
little impact on the average. As will be discussed below,
deterministic upper bounds are often not as iron-clad as
they first appear to be and may not be achievable at all in
some configurations.

A complete procedure based on either the “lockclock”
or “interlock” algorithms is comprised of two parts: a com-
ponent that estimates the performance of the local clock
based on external calibration information and a compo-
nent that uses this information to adjust the local clock.
The algorithms characterize the local clock in terms of its
time difference and rate offset with respect to the external
reference; both of these parameters are then used to adjust
the local clock.

Time differences larger than about 0.5 s (which are nor-
mally encountered only during a cold-start or in the case
of an error) are corrected in a single step by changing the
value in the clock register; smaller ones are realized by
temporarily adjusting the effective frequency of the oscil-
lator by about 1% of its nominal value until the time
adjustment has been amortized. The estimated rate offset
modifies the effective frequency of the clock oscillator by
changing the size of the software tick—the value added to
the clock register on each hardware interrupt. A correction
for a rate offset, therefore, is equivalent to a periodic series
of small time adjustments. The following discussion is lim-
ited to how the parameters of the local clock are estimated
when the Internet is used as the channel to the calibration
source. These parameters are then used to steer the local
clock as I described in [1].

The design of the algorithm is based on a model with
three components: a clock model, a model of the measure-
ment process, and a model of the delay in the network.
Fach of these models is further subdivided into determin-
istic and stochastic components. (A deterministic param-
eter has a well-defined value that may evolve slowly with
time; a stochastic parameter can only be specified using
a statistical measure such as a variance or a spectral den-

sity.)
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II. TuE CLoCK MODEL

The clock in a computer usually consists of two parts:
an oscillator that generates periodic interrupts and a soft-
ware driver that counts these interrupts in a register. Sim-
ple systems simply increment the register by one on each
interrupt, while more sophisticated systems add the nomi-
nal period of the oscillator to the register on each “tick.” In
either case, the register measures elapsed time from some
system-defined origin. In some systems, the hardware also
provides a way of interpolating between clock ticks to im-
prove the resolution (but not the accuracy) of the system
time. It is also possible to interpolate between clock ticks
using software timing loops, although this method is less
accurate because it is affected by variations in the system
load.

In almost all systems the oscillator hardware is free-
running and is not under program control. Software pro-
cesses of the type to be discussed can adjust the time of
the clock by changing the value in the system register;
in some systems it is also possible to adjust the effective
rate of the clock by changing the value that is added to
the register on each increment. In the following discussion,
a reference to a computer clock always refers to the clock
register maintained by the system, possibly combined with
a method of interpolating between ticks using either the
system hardware or a software timing loop. Furthermore,
all time messages and clock comparisons are made using
UTC; conversions to and from the local time zone (includ-
ing a correction for daylight saving time, if necessary) are
made by other processes and are outside of the scope of
this discussion.

A clock with two deterministic parameters is charac-
terized using a time offset, which specifies the difference
between its time at some epoch and UTC, and a rate off-
set, which specifies how this time offset evolves. If x5, and
yr specify the time offset and rate offset at some epoch t,
then these parameters can be used to predict the time at
the next epoch, 41 using:

Tpr1 = 2k + YrAt, (1)
where
Al =ty — te. (2)

Many quartz-crystal oscillators (which are the type almost
always used in computer clocks) also have significant fre-
quency aging—that is the frequency changes nearly lin-
early with time. However, adding aging to (1):

(ik+1 =T + ykAt + 0.5d;, (At)2, (3)
where
Yot1 = Yr + At (4)

often does not improve the accuracy of the model in pre-
dicting zx+1. The problem is that the aging parameter it-
self must be estimated from the measured values of z, and
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this estimate usually is very uncertain because of the pres-
ence of large stochastic frequency fluctuations that mask
the aging. For this reason, the deterministic frequency ag-
ing and stochastic frequency modulation are estimated
together, and the combination is treated as producing a
stochastic variation in .

In addition to these deterministic parameters, the fre-
quency of the oscillator fluctuates stochastically. These
fluctuations can be characterized as a “white” process for
relatively short averaging times, but the spectrum of these
fluctuations exhibits a divergence as 1/f (or faster) at
lower Fourier frequencies (i.e., longer averaging times).

Unfortunately, stochastic fluctuations in the oscillator
frequency can be observed only through their effect on
the time. Because the clock integrates these stochastic fre-
quency fluctuations, the spectral density of the resulting
time fluctuations is almost never white. In other words, the
time fluctuations produced by frequency noise can never
be characterized by a mean and a standard deviation;
although these parameters always will exist in a formal
sense, their values will not necessarily correspond to intu-
itive expectations. In particular, when the performance is
dominated by frequency noise (even white frequency noise)
the rms prediction error of the time-difference will not be
improved by averaging repeated observations of zy.

III. THE MEASUREMENT PROCESS

The measurement process involves comparing the time
of the clock with the time transmitted over the network.
There is a jitter associated with this measurement that is
comprised of hardware and software components. Both of
these components have mean values that are characteris-
tic of the system. The overall mean delay is usually on the
order of microseconds in a well-designed system—a value
that is small compared to the error budget of the synchro-
nization process. (Strictly speaking, there are also delays
in the clock hardware itself; any fluctuations in this delay
appear as phase noise.) In addition, there are fluctuations
in the measurement delay that are due to variations in
the software latency, the instantaneous load, and similar
factors. Assume that the factors that drive these fluctu-
ations vary rapidly with time, so that the variations in
these delays are largely uncorrelated with each other even
for measurements made only a few seconds apart. This jit-
ter about the mean, therefore, is a random variable with
a reasonably well-defined mean and standard deviation;
this jitter is called white phase noise, by analogy with the
analogous fluctuations in hardware clocks. In fact, the jit-
ter will probably have a distribution that is not completely
symmetric about its mean, system-specific value: the dis-
tribution is likely to have a relatively sharp cut-off at val-
ues smaller than the mean, and larger values are likely to
be more numerous than the symmetrical distribution func-
tion would predict because of short-term increases in the
system load or the software latency. In fact, this problem
tends to be more serious in the delay through the network;
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a strategy for addressing this problem is discussed below.

These fluctuations exact a price from any client pro-
cess that uses the clock to time-tag an event. Because a
time-tag involves a single reading of the clock, a knowledge
of the distribution of an ensemble of such measurements
cannot be exploited. However, this knowledge does have an
important consequence for prediction applications: it sug-
gests that the average of N rapid-fire measurements will
have a standard deviation that is smaller than that of a sin-
gle measurement by a factor of 1/4/(N — 1). This improve-
ment depends, of course, on the assurmption that the mea-
surements are dominated by white phase noise—in other
words, the deterministic parameters of the other compo-
nents of the model must not change during the course of
the N measurements, and the contributions of any non-
white noise source must be small.

IV. THE NETWORK DELAY

The network delay enters directly into the measurement
of the time difference. It is usually estimated from the mea-
surements themselves using the usual round-trip method.
The client machine requests a time-packet at time £1; the
request arrives at the time server at time ty; the server
responds at time ¢3 and the response is received at time
t4. The round-trip delay due to the network path is:

A= (ts —t1) — (t3 — t2). (5)

The first bracket measures the total time that has elapsed
from when the request was sent until the reply was received
as measured by the clock in the client. The second is the
processing delay in the server as measured by its clock.
If the one-way outbound delay is d, the time difference
between the client and the server is:

z = (1 +d) —to. (6)
If the path delay is symmetrical, then d = A/2, and

G t2) ;L (ts —13) (7)

If the path delay is not exactly symmetrical, this estimate
will be wrong by an amount proportional to the asymme-
try. If the actual outbound delay is given by d = kA, where
0 < k < 1, then the estimate above is wrong by:

e=(k—0.5)A, (8)

which depends both on the path delay and on its asym-
metry. Paths with short delays are clearly advantageous.
Networks are usually configured so that the inbound
and outbound paths are symmetrical, although there is no
physical reason why this must be true. There is no way
of detecting such a static asymmetry using only timing
information transmitted over the network itself. Therefore,
it can be assumed that either the static configuration is
symmetrical or else that any static asymmetry is calibrated
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using some external means. In either case, it is unlikely
that € has a normal distribution about this mean value so
that

0% ~ (e%) = () (9)

will not have any simple interpretation analogous to the
variance or standard deviation of a traditional distribu-
tion. The problem is not in A, because we measure it for
each transmission—it is in the degree of asymmetry, spec-
ified by (k — 0.5), and the fact that this asymmetry varies
from one transmission to the next one. Another way of de-
scribing the problem is that the distribution function for
the asymmetry cannot be deduced from the magnitude of
the variance.

The situation is more favorable if we consider the dis-
tribution of the mean of a group of closely spaced calibra-
tion messages. If the spacing between the messages in the
group is close enough so that the deterministic parame-
ters of the clock model are essentially constant, while at
the same time being far enough apart so that the varia-
tions in the network delays between consecutive messages
are independent of each other, then the central limit theo-
rem guarantees that the distribution of these group-means
will have a normal distribution, independent of the distri-
bution of the individual messages [5]. A typical computer
clock will take at least several seconds to gain or lose 1 ms,
while a typical packet network will have processed tens of
thousands of messages in the same time interval. The re-
quirement, therefore, is easily satisfied, even if the consec-
utive requests are separated by only 100 ms. Furthermore,
the Lindeberg condition [6], which, loosely speaking, re-
quires that the time-differences be finite and bounded, is
automatically satisfied by the time-out constraints that are
incorporated into the design of all networks.

Once we have computed the mean of the group of mea-
surements, it is possible to look for gross outliers within
the group by examining the distribution of the individual
measurements about the mean. There is no robust inter-
pretation of the standard deviation in this case, because
the distribution of the measurements is not a normal one.
If the true asymmetry varies randomly between the two
asymptotic values k = 0 and k = 1, then the mean value
is not a bad estimate of the actual time difference, but the
situation is less clear when there are a few outliers, with
all of the other values clustering about a single value. We
generally choose to reject the outliers in this case if they
differ from the mean by more than 3 standard deviations
of the points that remain after they have been rejected.
(Alternatively, we have used the difference between the
outliers and the median in the same manner, because the
median is less sensitive than the mean to the presence of
outliers.) We reject the entire group of measurements if
more than 5% of the measurements are rejected using this
procedure—either our notion of the standard deviation is
too optimistic or the asymmetry is too variable to make a
robust estimate of the time difference.
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V. DETERMINISTIC GUARANTEES

If the clock on our client system must be synchronized
to a server with a maximum time offset of E, and if we can
find a server such that ¢ < F (at least for some reasonable
fraction of the messages), then we can be certain that our
requirement has been met by simply using any one of those
messages to set our clock. If we can find a server such
that this requirement can only be satisfied by averaging N
messages, then we can assert a somewhat weaker guarantee
that is now limited by the validity of the assumption that
the averaging is meaningful [3], [4].

This strategy may not be usable in general. There may
be no server satisfying this requirement for a given client,
and providing enough servers to do so for every potential
client may be prohibitively expensive, especially as the In-
ternet becomes more crowded and its delays become more
variable and less predictable.

The real limitation of this method is that the guaran-
tee is only valid at the instant of synchronization. Even
assuming that we estimate and remove the deterministic
frequency offset of the clock, the guarantee issued at the
instant of synchronization becomes weaker with time be-
cause of stochastic frequency noise. The Allan deviation
can estimate the rms magnitude of these frequency fluc-
tuations, but this estimate is only statistical and does not
come with any guarantees whatsoever about the maximum
frequency offset and its associated time error.

We can reduce the time dispersion of this frequency
noise by more frequent calibrations. Eventually, we will
reach a limit given by e—the noise in the measurement
process itself. Effectively, we are not using the local clock
at all in this limit—the price for removing the time disper-
sion due to its frequency noise is to remove its frequency
stability as well.

VI. SEPARATION OF THE VARIANCE

Any method of clock synchronization usually has only
one type of observation to work with: the series zg, giv-
ing the time differences at consecutive epochs between the
clock we are trying to control and some distant server. It
is very important that we separate the contributions to
the variance of this time series arising from the different
components which we identified above. The reason is that
we must not adjust the clock because of noise in the mea-
surement process that did not arise from the clock in the
first place. While both (1) and elementary considerations
might suggest that, if the time of the clock is wrong, then
its frequency must be wrong as well, this is not true in
the environment being considered. Both the network and
the measurement process make contributions to the time
difference and its variance. In other words, it is possible to
observe a time error that is not due to the frequency offset
of the clock—indeed it may have nothing to do with the
clock at all, and correcting the clock for this error (either
in time or in frequency) will simply make matters worse.
(This conclusion is true no matter how we choose to cor-
rect the clock.)
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Fig. 1. The Allan deviation of a computer clock measured using the
ACTS dial-up system (+) and via a direct connection to the com-
puter bus (x). The straight lines have slopes of —1, —0.5, and 0 to
illustrate the various noise types. The relationship between slope and
noise type is explained in [1] and [4].

The Allan variance [7], usually denoted by o2(7), is a
time-domain analysis tool which is very useful in charac-
terizing the spectral density of a time series. This charac-
terization is very important because there are statistically
optimum measurement strategies for each type of noise,
and knowing the noise type, therefore, is crucial to design-
ing an optimum synchronization procedure. In addition,
the spectral density of the noise is often an important in-
dication of its source (see [1] for more details).

The power of the Allan variance is illustrated by the
measurements shown in Fig. 1. We have monitored the
time of a computer named gpshub using two techniques:
the “x” show the square root of the Allan variance (often
called the Allan deviation) when the time of the clock is
compared to the time of a cesium frequency standard us-
ing an interface connected directly to the computer bus.
The “+” data shows the Allan deviation for the same clock
when the time differences are measured using periodic dial-
up connections to the NIST Automated Computer Time
Service. {The lines on the figure are to assist in the discus-
sion and are not otherwise significant.} In both cases the
computer clock is not adjusted. We also did not use any
of the outlier-rejection schemes discussed above.

For both measurement techniques, the initial slope is
—1, showing that both are limited by white and/or flicker
phase noise at short times. The magnitudes are quite dif-
ferent in the two cases. The directly connected hardware
device has a near white phase noise level of about 80 us,
and the link to the ACTS system has a noise level of about
1 ms.! T am not looking at the oscillator in either case. This

!Here and in what follows, I use oy, (7)7 to estimate the phase noise
corresponding to an Allan deviation whose magnitude is oy (7). If the
spectrum is pure white phase noise, this estimate is too big; a more
exact estimate would be oy(7)7/4/3. My estimate is more likely to
be appropriate for real-world systems which often have contributions
from both white and flicker processes.
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is measurement noise; it arises from the jitter in the mea-
surement process and has nothing to do with the clock.
The measurements made using the ACTS system have ad-
ditional jitter because of the hardware and software that
are required to receive data using a modem and a serial
line, and the directly connected device is limited primar-
ily by the much smaller latency in processing an interrupt
request to read a hardware device on the bus.

Because this is near white measurement noise, it would
be a mistake to use these data to adjust the clock; as we
mentioned above, this is time jitter with no corresponding
frequency variations. The uncertainty of the time differ-
ence can be decreased by averaging consecutive readings
because we are sampling a near white random process.
The limit to this improvement comes at about 100 s for
the measurements made via the bus device and at about
3000 s for the ACTS comparisons. The improvement in ei-
ther case would be proportional to the square root of the
number of measurements in the average, but this improve-
ment is only available to a process that can benefit from an
average time offset. Furthermore the cost of adding more
data to the average increases linearly with the number of
points so that the cost/benefit ratio becomes increasingly
unfavorable as the uncertainty is decreased.

The Allan variance is not sensitive to deterministic rate
offsets, because it is computed using the second-difference
of the time-difference measurements. However, a rate off-
set between the client and the server will result in a deter-
ministic trend in the time-difference measurements. This
trend will introduce a bias into the averaging procedure if
it is not removed beforehand. Because the frequency offset
between the client and the server may not be known very
accurately, the averaging procedure may need to be limited
in practice to intervals where the effect of its uncertainty
on the time predictions is not significant.

Even if these measurements are used to predict the fu-
ture performance of the clock, the uncertainty of a single
time-tag will remain unchanged at the value specified by
the white phase noise level of the measurement process. A
prediction procedure cannot improve on this limit because
the fact that the slope of the Allan deviation as a func-
tion of averaging time on a log-log plot is —1 implies that
oy (7)7 is a constant. This is the essence of a process with
a normal distribution: the previous data are of no help in
predicting the magnitude of the next observation.

Adjustments to the clock made using measurements ac-
quired in the near white phase-noise domain will degrade
the stability of the clock on the average because these ad-
justments convert measurement noise into frequency noise.
There are only two strategies that can improve matters
in this domain: either the measurement noise of a single
time-tag must be decreased or the process that uses the
time-tags must be designed so that it can benefit from
averaging a number of them.

In both data sets, the slope changes to —0.5 at longer
averaging times showing a transition to white frequency
noise. The time differences can no longer be characterized
as a random variable with a white spectrum. Now it is
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the frequency that has this distribution. We can continue
to improve our knowledge by averaging, but we must now
average the frequency (i.e., the first difference of the time
measurements) rather than the time measurements them-
selves.

We have made a transition from a domain in which
measurement noise dominates the spectral density to one
where clock frequency noise plays the major role. The tran-
sitions occur at different values for the two measurement
schemes, but the two data sets lie on almost exactly the
same line in this regime. In fact, the two sets of points
become essentially indistinguishable for measurement in-
tervals longer than about 4000 s, and only one data set is
shown after that point for clarity. This is to be expected.
Once we are looking at the frequency stability of the lo-
cal oscillator, the method that we use to evaluate it must
not matter once the noise of the method falls below the
inherent noise of the oscillator hardware itself.

Another way of describing this is that the cesium ref-
erence and the bus interface improved the variance only
when the averaging time between measurements was short
enough that it is measurement noise that counts. The
performance of the clock for averaging times longer than
about 4000 s is not improved at all because it is dominated
by the frequency noise of the oscillator itself—the spectral
density of the calibration process has been pretty much
“forgotten.” Conversely, using a reference whose measure-
ment noise was larger than that of the ACTS system would
not degrade the long-period performance of the computer
clock until the contribution of the phase-noise to the vari-
ance was larger than that of the oscillator frequency noise
for all averaging times.

If we operate our synchronization loop in the white-
frequency domain, then the optimum strategy would be
to acquire xp data as fast as possible, average these data
until we reach the transition to the white-frequency do-
main, then average the first-difference of these averages
to reduce the uncertainty of the frequency estimate. This
process could continue until the end of the white-frequency
domain, where it is no longer optimum. For the system
whose Allan deviation is shown in Fig. 1, the upper end of
the white-frequency domain is at an averaging interval of
about 12 hours.

In contrast to the white phase noise domain, where the
prediction error for a single measurement is independent
of the averaging time, the prediction error for time dif-
ferences in this domain is proportional to 79-°—there is
now an explicit trade-off between the time accuracy of a
single time-tag and the cost of obtaining the synchroniza-
tion data. The cost of averaging increases linearly with
the number of points that are averaged, whereas the un-
certainty decreases only as the square root of this number.
Incremental improvements in the accuracy of a single time-
tag therefore become more and more expensive.

Just as correcting the time of a clock is not optimum in
the domain where the spectrum of its fluctuations is domi-
nated by near white phase noise, correcting its frequency is
equally inappropriate in the domain where that spectrum
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is dominated by white frequency noise. As above, the pre-
diction of the future performance of a parameter whose
fluctuations are given by a normal distribution cannot be
improved by a linear combination of previous observations.
The optimum strategy is to average the frequency observa-
tions until their spectral density can no longer be charac-
terized by a normal distribution. This is usually done with
a recursive filter that realizes an exponential response in
the time domain. [1], (3). The time constant of this filter
is set to the point at which the noise spectrum is no longer
dominated by white frequency noise. This time constant is
independent of the rate at which data are acquired or the
phase noise of the measurement process; it is determined
only by the characteristics of the oscillator itself.

VII. THE NETWORK

It is not difficult in principle to incorporate the effect of
the network delay using this framework. The first step is
to understand the spectrum of its fluctuations. As pointed
out above, the distribution of the means of groups of rel-
atively closely spaced messages will have a normal distri-
bution even though the distribution of the individual mes-
sages is almost never Gaussian. A series of experiments
was conducted to verify that this is true.

Packets were sent in the network time protocol for-
mat between two time servers whose clocks were both in-
dependently synchronized to UTC. For each packet, we
computed the time-difference between the two systems us-
ing (7). This process was repeated 25 times with requests
spaced one second apart; we averaged these results to form
a single time-difference point. This entire process was then
repeated every 5 minutes for several days. These data are
not used to discipline either clock; that is accomplished by
procedures that are outside of the scope of the experiment.

As discussed above, these averages should have a normal
distribution with a mean value of 0 (because the clocks at
both ends are synchronized) and a variance that is deter-
mined by the characteristics of the network delay. The Al-
lan deviations of these measurements are shown in Fig. 2.

The bottom set of points (with the symbol “+”) show
the results of a loop-back test. (A straight line with a slope
of —1 is shown superimposed on these data for reference.)
The source and destination machines are the same for this
experiment, so that the fluctuations in the clock itself are
irrelevant. The data are characterized by near white phase
noise over the entire time domain; the magnitude is about
5 ps, which is an estimate of the fluctuations in the delay
in the machine itself (the actual loop-back delay is a func-
tion of the load on the system and was about 240 us in
these tests). Strictly speaking, the near white phase noise
in the loop-back experiments is a measure of the fluctua-
tions in the asymmetry of the measurement delay, because
we correct for the delay itself using the round-trip method
described above. This effective asymmetry could arise from
a rapid change in the processing delay between the time
the message was sent and when it was received.
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Fig. 2. The Allan deviation of the network delay between two ma-
chines that are independently synchronized to UTC. In the plot with
“+” symbols, the packets are looped back to the sending machine;
the plot with “x” symbols are for two machines on the same local
area network and the plot with the “x” symbols are for two machines
on the Internet and separated by 1200 km. The line of slope —1 is
shown for reference and the line of slope —0.5 is copied from Fig 1.

The top two plots on Fig. 2 show the Allan deviation of
the measurements between two time-servers on the same
local area network (shown by the symbol “x”) and two ma-
chines on the Internet separated by about 1200 km (shown
with the symbol “¢”). The mean time difference in these
experiments was typically about 1.5 ms—a value consis-
tent with the jitter in the independent “lockclock” pro-
cesses used to synchronize the servers themselves. All of
the data are clearly limited by near white phase noise at
short periods. The magnitude of the noise increases with
the length of the network path, but its character does not
change until we reach periods longer than about 6 hours
where large, correlated fluctuations in the network delay
become important. (Such correlated fluctuations violate
the conditions needed for the validity of the central limit
theorem. )

Superimposed on these upper two plots is a line with
a slope of —0.5 copied from Fig. 1. As discussed above,
that line represented an estimate of the magnitude of the
frequency noise in the clock oscillator of machine gpshub.
The parameters of an algorithm to synchronize the clock of
this machine can be deduced from the figure by comparing
the noise associated with the network with the frequency
noise of the clock itself.

The goal of the synchronization procedure is to improve
the stability and accuracy of the local clock. Therefore,
adjustments of its time or frequency are limited to those
portions of the spectral domain where the calibration data
adds information, that is, where its noise spectrum is bet-
ter than that of the free-running local oscillator. The spec-
tral density of the noise of the local clock is almost always
less than the noise of the time server when seen through a
noisy channel and measurement process, so that some kind
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of averaging of the calibration messages is usually neces-
sary to realize an optimum design. The data of Fig. 2 can
be used to design a quantitative algorithm based on this
general principle.

If we plan to synchronize gpshub using a time server
that is connected to the same local area network, for ex-
ample, then the variance of the calibration signals will
be given by the data shown by “x” on the plot. The
variance of these calibration signals falls below the vari-
ance due to the frequency noise of the clock for averaging
times longer than about 150 s. This is the minimum time-
constant that we should use in correcting the time of the
clock so as to not degrade its inherent stability with net-
work noise. It is also the maximum time over which the
time-differences are dominated by near white phase noise
and so could be improved by averaging them. The Allan
deviation results shown on the plot were obtained by aver-
aging 25 consecutive time-difference measurements spaced
1 s apart, so that these data are well within the white
phase-noise regime where averaging them is justified. Be-
cause the cross-over point is a function of network load and
other factors, we could estimate the frequency of the local
clock using consecutive groups of time-differences spaced
no less than about 180 s apart to be sure that we are
well into the domain where the spectrum is dominated by
white frequency noise. These frequency estimates would
be averaged using a time-constant of about 14000 s—the
upper-end of the domain in which white frequency noise
dominates the spectrum as seen from Fig. 1. This average
frequency could then be used to correct the clock using the
method described in [1]. The exact values of these param-
eters would be determined based on a trade-off between
how well we want to synchronize the clock and how much
we are willing to pay in terms of computer cycles and net-
work bandwidth. This trade-off enters at two points: how
many consecutive time requests we choose to average to
build each mean time-difference, and how long we wait be-
tween each group once we are in the white frequency noise
regime of the clock. Using the choices above, the minimum
uncertainty in the clock synchronization would be about
/20, (180)180 =~ 200 us, assuming, of course, that the time
of the server was known this well. .

This is an impressive performance, but it is pretty ex-
pensive; it requires groups of 25 time packets every 180 s
or about 1 packet every 7 s on the average. Note, however,
that replacing this procedure with the “simpler” one of re-
questing a single packet every 7 s will not necessarily result
in the same level of performance, even though the average
cost is the same in both cases. The uneven spacing that was
described is an important concept—the members of each
group are close enough together that these intervals are in
the domain where white phase noise is the dominant prob-
lem so that averaging them is appropriate. At the same
time the separation between groups is chosen so that it is
in the domain where white frequency noise dominates the
spectrum so that the difference between consecutive means
is optimum for estimating the frequency offset of the local
clock. Neither of these requirements would be adequately
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addressed using single requests at equally spaced intervals.

The same analysis would determine the parameters for a
synchronization loop using the distant server on the Inter-
net. These data are much noisier and so we would have to
average for a much longer time; the noise of the network-
based time-difference measurements does not fall below
the noise of the clock itself until an averaging time of al-
most 5.3 h, and this would set the minimum time-constant
for the time clock-correction loop. This value is about the
same as the upper limit for the domain in which white fre-
quency noise dominates the spectrum. The performance of
this loop would not be as good as the first one, of course,
because the loop operates almost completely in the white-
frequency noise domain, and the prediction error there in-
creases as 70°. In other words, the network noise is so
high that the clock would be essentially free running for
averaging times less than about 5 hours.

Matters could be improved by averaging more than
25 time-differences in each group. The spectral density
of the time-difference measurements would only improve
as the square root of this number, so that significant im-
provements become expensive pretty quickly. Assuming 25
time-differences were kept in each group, the best that
could be done would be to estimate the frequency using
measurements about every 5.3 hours (which is the ear-
liest time that the measurement noise due to the net-
work fluctuations becomes small enough that we can begin
to see the fluctuations in the clock oscillator itself). The
prediction error using this time-constant would be about
V20, (19000)19000 ~ 2 ms. This is comparable to the un-
certainty achieved with “lockclock,” which is not surpris-
ing. As pointed out above, the source of synchronization
does not matter very much once the fluctuations are dom-
inated by the frequency noise of the local oscillator. Note
that this performance is just about at the edge of what can
be achieved with this clock hardware, because the cross-
over point at which the network noise drops below the
time dispersion due to the frequency noise of the clock
is very close to the upper end of the region in which the
clock noise is still white frequency noise. If the network
noise was greater or the frequency stability of the clock
oscillator was worse, we could still go through the motions
of averaging, but the mean value no longer has the nice
properties expected from a normal distribution, and the
prediction variance degrades accordingly.

In summary, the analysis using the Allan deviation can
be used to evaluate the trade-off between the synchro-
nization accuracy obtained and the cost of realizing it. As
the noise in the channel used to transmit calibration data
gets worse, we must compensate by adding more measure-
ments to each group of time-differences and by increasing
the time interval between groups so that the equivalent
frequency-measurement noise of the channel drops below
the inherent frequency noise of the clock. The local clock
is better than its calibration source (as seen through the
network) for times shorter than this cross-over, so that cor-
recting it in this domain (either in time or in frequency) is
a mistake. Because averaging improves matters only by a
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factor that is proportional to the square root of the num-
ber of measurements, improvements realized by including
more time differences in each group become expensive very
quickly. Conversely, the cost/benefit ratio becomes much
more favorable if we can settle for poorer time synchroniza-
tion (in an rms sense). Using 3 time-differences in each
group instead of 25 and increasing the interval between
measurements from 5.3 to 12 hours would decrease the
cost by a factor of about 20, while still providing synchro-
nization with an uncertainty of better than 30 ms rms.

It is possible to further decrease the cost by further in-
creasing the interval between measurements, but the algo-
rithm may have to be modified should we choose to do so.
Once the interval between calibrations exceeds the value
for which the frequency of the oscillator is dominated by
white frequency noise, averaging consecutive frequency es-
timates is the wrong thing to do. The optimum estimate
for an oscillator dominated by a random-walk of its fre-
quency is the most recent value (with no averaging at all);
the frequency aging would have a white spectrum in this
case, but it is difficult to exploit this fact using standard
hardware. In spite of these problems, using calibration in-
tervals of a day or longer might be interesting for clients
whose accuracy requirements were very modest—on the
order of 1 s, for example.

VIII. DETECTING FALSE-TICKERS

A false-ticker is a server that is transmitting the wrong
time even though its status is shown as healthy. This
should never happen, but a client must be prepared for it
nevertheless. The simplest strategy for detecting this prob-
lem is to use data from several independent time-servers. A
false-ticker can be detected by comparing the time of each
server with a weighted average of all of the measurements
(as is commonly done in time-scale algorithms [8], [9]), or
the “best” server can be selected using various criteria [2].

In this work we develop a strategy that uses only a
single server and the time of the local clock itself to vali-
date the received data. The reason for this is that a false-
ticking server should be a relatively rare event, so that
querying several servers on every cycle is unnecessary most
of the time. Using only a single server initially, therefore,
will decrease the average load on the servers by confining
multiple-server requests to those cycles when the prelimi-
nary analysis suggests that something has gone wrong,.

If it has been 7 seconds since our last calibration, then
the time dispersion of the local clock is of order /20, ()7,
and a time correction that is much bigger than this is
suspect—something has changed in the interval since the
last calibration cycle. Deciding what “much bigger” means
is a matter of probabilities: we can choose to classify small
conforming fluctuations as errors by setting the thresh-
old too low or we can include glitches as acceptable data
by setting it too high. We have found that a threshold
of 3 times the standard deviation of the running mean
is a reasonable compromise above which we assume that
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something has gone wrong. (This threshold implies a false-
alarm limit of < 1% which is small but not negligible. If
the interval between calibrations is 1 hour, for example,
there will be about one false alarm per week.) If the data
pass this test, then we can assume that nothing strange
has happened, and we can use the data as part of our up-
date procedure. If; on the other hand, this threshold has
been crossed, there are four possibilities:

o The server is broken.

« Our clock has experienced a time-step.

« Our clock has experienced a frequency step.

e There has been a large change in the parameters of

the network delay.

We can differentiate among these possibilities by switch-
ing to another server and seeing if its data are consistent
with the time of our local clock using the procedure out-
lined above. If yes, then we vote the first server as sick
by a vote of 2-1, including ourselves in the decision. If the
two servers agree (within the uncertainty of the network
noise), then we vote ourselves as sick. We cannot yet dis-
tinguish between possibilities the second and third and so
we correct our clock based on the time measurements and
wait for the next cycle.

If another error of comparable magnitude is found
(again, within the network noise) on the next calibration
cycle, then we assume that our clock has had a change
in its frequency rather than a simple time step. This is
a rather rare event and may be a signal that a hardware
failure is imminent. We would adjust the frequency in our
prediction model in this case. Again, we would wait to see
what happened on the next cycle. If the change to the
frequency results in agreement between our clock and the
time of the server on the next cycle, then the diagnosis of
a frequency step is probably correct. If not, then we prob-
ably have a hardware problem which may require outside
assistance.

If the data from neither server agrees with our time
prediction, then either two of the systems are sick or the
network delay has become very asymmetric. The current
algorithm does nothing in this case; it waits for the next
calibration cycle, assuming that doing nothing is the best
strategy when the problem cannot be well specified.

In summary, there is no guaranteed way of detecting a
false-ticker, unless its time error is much larger than any
of the other noise sources. It is generally easier to detect
time-steps if we increase the sample rate because this al-
lows us to reduce the measurement noise (by averaging)
so that they are easier to see. This strategy contains the
usual trade-off between cost and accuracy. Small frequency
steps, on the other hand, are much more difficult to de-
tect; at some point they become indistinguishable from
the background of stochastic frequency fluctuations. Even
a deterministic step in frequency is masked by the white
frequency noise of the oscillator in the short term and can
be detected only when that noise has been reduced by av-
eraging. The same thing is true for frequency aging. The
Allan deviations for the oscillators typically found in com-
puter clocks tend to increase for averaging times longer
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Fig. 3. The rms prediction error in ms when the clock on strain is
synchronized to the server in Seattle. The long-period structure may
be due to slow changes in the ambient temperature of our laboratory
or to long-period fluctuations in the network delay.

than about a day (see Fig. 1), and this sets an upper-limit
to how much can be achieved by averaging.

IX. TESTS AND RESULTS

The methods described above have been used to syn-
chronize the clock of a workstation named strain, which
is located in our laboratory in Boulder, CO. We chose a
network time servers located about 1200 km away in Seat-
tle, WA, as a time reference. The one-way delay is about
48 ms and is quite variable; although the delay to another
server in Gaithersburg, MD is about 80 ms, that delay
is somewhat more stable because the path contains fewer
routers.

The clock oscillator in strain has a level of white fre-
quency noise that is about a factor of two smaller than
that of gpshub, which was shown in Fig. 1; the statistics
of the network delay are about the same as the “Internet”
data of Fig. 2. The synchronization algorithm used groups
of 50 messages separated by 3000 s. The time differences
in each group were averaged and the resulting averages
were examined for outliers as described above. These av-
erages were then used to compute the average frequency
offset of the local clock as described in [1]; this average
frequency was used to schedule periodic adjustments to
the local time. The time adjustments were performed in
the usual way by changing the value added to the clock
register on each interrupt (i.e., the effective frequency of
the oscillator) for a set number of times until the time
adjustment had been amortized. The magnitude of these
frequency adjustments was limited to less than 1% of the
clock rate to provide very small time adjustments, and also
to ensure that the clock did not stop or run backwards.

Fig. 3 shows the prediction error, €, as a function of
time when the algorithm is running in steady-state. This
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Fig. 4. The time offset of the clock on strain with respect to UTC as
measured using the NIST ACTS time signals. The ACTS compar-
isons are characterized by white phase noise of about 1 ms, so that
fluctuations of that order or smaller are not significant.

error is e,(k) = [(zx — &1)|, L.e., the difference between
the average measured time-difference at some epoch and
the value predicted using (1). These data have a mean of
0.92 ms; they are somewhat better than the noise level ex-
pected using the “Internet” delay characteristics of Fig. 2
because we increased the size of each group to 50 messages
rather than 25.

Fig. 4 shows the time of the clock on strain with respect
to the local ACTS system while that clock is being syn-
chronized using the time server in Seattle as a reference.
Both the noise and the accuracy of the ACTS comparison
are about 1 ms, so that differences on this order are not sta-
tistically significant. The Allan deviation of these data are
shown in Fig. 5, with the usual straight line with a slope
of —1 for comparison. The rms time error is about 2 ms
for all averaging times, but the large 10 ms spikes make an
appreciable contribution to the variance. In addition, there
is some indication in both figures of a long-period fluctua-
tion. This is probably due to a combination of long-period
fluctuations in the network asymmetry (perhaps having a
7-day period) and changes in the ambient temperature of
the client machine (which will affect the frequency of the
quartz-crystal oscillator).

X. Accuracy/CosT TRADEOFF

The procedures I have discussed can be used to inves-
tigate the tradeoff between synchronization accuracy and
the cost of achieving it. These considerations are especially
important for users who do not need millisecond-level ac-
curacy, because even a moderate relaxation in the accuracy
requirement results in a significant decrease in the cost of
achieving it.

The cost of synchronizing a client clock is roughly pro-
portional to the average number of network packets/s that
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Fig. 5. The Allan deviation of the data shown in Fig. 4. The straight
line has a slope of —1. The points deviate from this straight line
starting at a period of about 1 day, which is caused by the long-
period fluctuations that are visible in the data set.

must be exchanged with the server. This number, in turn,
is driven by several considerations: the number of rapid-
fire messages that are averaged to reduce the measure-
ment noise and the network asymmetry; the interval be-
tween groups of messages that is chosen to estimate the
frequency noise in the local oscillator; and the importance
of detecting a failure either in the local clock or in one of
the servers. Deciding how to balance the cost and the ac-
curacy involves estimating the importance of these factors.

If the server selected is on a local-area network or is on
the Internet but is not too far away, then the impact of any
network asymmetry is likely to be small. Local-area net-
works tend to be symmetric, and the asymmetry in a short
path is bounded by the round-trip delay (8). The number
of rapid-fire message could be reduced in each group in this
case, and this reduction would have only a small impact on
the overall accuracy. Groups of 3 messages are about right
for this case; this size provides some protection against
glitches, but is a factor of almost 20 less expensive than
the groups of 50 that used in our experiments. Groups
larger than about 50 are not practical, because the stan-
dard deviation of the mean improves only as the square
root of this number. The goal is to use the minimum num-
ber of messages so that the mean of the group has a normal
distribution; using a value smaller than this will make it
difficult to protect the client against time-difference out-
liers due to large network asymmetries. Using a group that
is larger than necessary increases the cost without signif-
icantly improving the performance. At least in principle,
it would be possible to adjust the number of messages in
each group dynamically by comparing a desired perfor-
mance level with a real-time estimate of the variance in
the network delay.

The effect of adjusting the interval between groups can
be evaluated more quantitatively. The highest synchro-
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nization accuracy will be realized when this interval is set
to the start of the domain in which the Allan deviation is
dominated by the frequency noise of the local clock. The
synchronization error for any other time interval 7 is ap-
proximately /20, (7)7, which can be calculated from the
free-running Allan deviation data shown in Fig. 1. Using
an interval of 3.5 days (the right-most point in Fig. 1)
between calibrations, for example, would result in a syn-
chronization error of about 40 ms rms. The Allan deviation
of an oscillator is determined by its design, so that these
parameters are likely to be the same for all machines of a
given type.

If a synchronization error of 40 ms rms is adequate,
then measuring the asymmetry of the network delay may
be less of a problem in some cases. If the server and the
client are on the same local-area network, the fluctuations
in the asymmetry are usually substantially less than 40 ms,
so that this level of synchronization could be achieved by
exchanging an average of less than 1 message/day with the
server (1 group containing 3 packets every 3.5 days). The
maximum synchronization error would almost always be
less than 120 ms (3 ¢), which is likely to be adequate for
most applications.

The final consideration in choosing the interval between
calibration messages is the desire to detect a problem as
quickly as possible. Using a time interval of 3.5 days be-
tween calibrations, for example, means that a glitch in the
local clock will persist (on the average) for 1.75 days before
being detected. It is very difficult to estimate the proba-
bility of finding a large time-step, because, by definition,
they are glitches that do not conform to the statistical
meagures discussed. Nevertheless, the cost of such a rare
event might be high enough to drive the interval between
messages to a value significantly smaller than that which
would be required to realize a given synchronization un-
certainty.

XI. CONCLUSIONS

The considerations that govern the design of algorithms
used to synchronize computer clocks using messages trans-
mitted over a packet network such as the Internet have
been discussed. This method was used to design an algo-
rithm for synchronizing the clock of a standard worksta-
tion using a server about 1200 km away. Both the client
and the server are connected to local area networks, which
are in turn connected to the Internet using standard meth-
ods and hardware. The client system operated in a stan-
dard office environment with no special control of the am-
bient temperature or any other environmental parameter.

The communication between the client and the server
used the standard protocols and format of the network
time protocol (NTP), but the remainder of the algorithm
is completely different. Only one server for this study was
used, although procedures for querying a second server
when the first one seems to be broken were outlined. The
procedures for adjusting the time of the local clock are the
same as described previously in [1].
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The performance of the algorithm is comparable to that
obtained with the “lockclock” algorithm or with the net-
work time protocol using a directly connected radio clock.
This algorithm, therefore, can provide near “stratum-1”
performance using only network data.

Although “lockclock” and “interlock” share a common
design philosophy, there are important differences between
them. These differences can be traced to the method of
receiving time calibrations: “lockclock” depends on ACTS
while “interlock” can work with data transmitted over the
noisier Internet.

The dial-up telephone lines that are used to connect
a machine using “lockclock” to the NIST ACTS system
have delays that are stable and highly symmetric. In ad-
dition, the NIST server hardware measures and automati-
cally corrects for the transmission delay. The result is that
the time-differences estimated using the ACTS data are
characterized by almost pure white phase noise for all av-
eraging times. Furthermore, the level of these fluctuations
is on the order of milliseconds, so that the ACTS data
can be used “as is” with little or no averaging or anal-
ysis. This greatly simplifies the algorithm because there
is no need for the cumbersome separation-of-variance ma-
chinery. Furthermore, the probability that the ACTS sys-
tem will transmit the wrong time is small enough that the
“lockclock” algorithm need not make provision for testing
this possibility. This simplifies the procedure and improves
the performance because an estimate based on ACTS data
is not limited by the statistical uncertainties that charac-
terize the separation of variance procedures.

In addition, the procedures discussed provide a quanti-
tative way of evaluating the trade-off between synchro-
nization accuracy and cost. As has been shown, the
cost/benefit ratio is not linear; an increase in accuracy
by a factor N requires an increase in cost proportional to
N?. A moderate relaxation in the synchronization accu-
racy, therefore, can result in substantial savings both in
the network bandwidth that is required to realize it and
in the number of public servers that must be supported.
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