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Abstract - This is a draft revision of IEEE Std 1139-
1988 Standard Definitions of Physical Quantities for
Fundamental Frequency and Time Metrology. This
draft standard covers the fundamental metrology for
describing random instabilities of importance to
frequency and time metrology. Quantities covered
include frequency, amplitude, and phase
instabilities; spectral densities of frequency,
amplitude, and phase fluctuations; variances of
frequency and phase fluctuations; time prediction;
and confidence limits when estimating the variance
from a finite data set. The standard unit of measure
for characterizing phase and frequency instabilities
in the frequency domain is i(f), defined as one half
of the double-sideband spectral density of phase
fluctuations. In the time domain, the standard unit
of measure of frequency and phase instabilities is the
fully overlapped Allan deviation oy(t) or the fully
overlapped modified Allan deviation Mod c,(t).

1. Introduction

This is a draft revision of IEEE Std 1139-1988
Standard Definitions of Physical Quantitics for
Fundamental Frequency and Time Metrology which
had been prepared by a previous SCC 27 consisting
of Helmut Hellwig, Chairman; David Allan; Peter

* Work of U.S. government. Not subject to copyright.
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Kartaschoff, Jacques Vanier; John Vig; Gernot M.R.
Winkler; and Nicholas Yannoni. Some sections of
the 1988 standard have remained unchanged. This
standard covers the fundamental metrology for
describing random instabilitics of importance to
frequency and time metrology. Quantities covered
include frequency, amplitude, and phase
instabilities; spectral densities of frequency,
amplitude, and phase fluctuations; variances of
frequency and phase fluctuations; time prediction;
and confidence limits when estimating the variance
from a finite data set. In addition, recommendations
are made for the reporting of measurements of
frequency and phase instabilities, especially as
regards the recording of experimental parameters,
experimental conditions and calculation techniques.
This standard also covers translation between the
frequency domain and time domain terminology and
provides an extensive bibliography of the relevant
literature. Systematic instabilities, such as
environmental effects and aging, are discussed in
IEEE Std 1193-1994.

2. Measures of Frequency. Amplitude and Phase
Instabilities

The instantaneous output voltage of a precision
oscillator can be expressed as



V(@©) = (Vo + &) sinQnrvot + (1)),  (Eq. 1)

where V, is the nominal peak voltage amplitude, &(t)
is the deviation from the nominal amplitude, v, is
the nominal frequency, and ¢(t) is the phase
deviation from the nominal phase 2nv,t. Figure 1
illustrates a signal with frequency, amplitude, and
phase instabilities. As shown, frequency instability
is the result of fluctuations in the period of
oscillation. Fluctuations in the phase result in
instability of the zero crossing. Fluctuations in the
peak value of the signal (Vp.a) result in amplitude
instability.

+

Time
Figure 1. Instantancous output voltage of an
oscillator.!

Frequency instability of a precision oscillator is
defined in terms of the instantanecous, normalized
frequency deviation, y(t), as follows

O 10!

>
27mv,

y(t) (Eq. 2)

o
where v(t) is the instantaneous frequency (time
derivative of the phase divided by 27), and

_ o)

dt Eq. 3)

(1)
Amplitude instability is defined in terms of the

instantancous, normalized amplitude deviation

a(t) = e(t)/ Vs (Eq. 4)

1 .

In the signal shown the frequency components of
the noise are higher than the carrier frequency. This
is for illustration pm;goses only. In general, this
standard applies to the frequency components of
amplitude, phase and frequency instabilities which
are lower in frequency than the carrier frequency.
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Phasc instability, defined in terms of the
instantancous phase deviation ¢(t), can also be
expressed in units of time, as

X(t) = §()/2nve. (Eq. 5)
With this definition, the instantaneous, normalized
frequency deviation is

y(t) = dx(t)/dt. (Eq. 6)

Other random phenomena observed in certain
oscillators are frequency jumps, that is,
discontinuities in the frequency of oscillation. These
phenomena are not repetitive or well understood and
thus cannot be characterized by standard statistical
methods.

3. Characterization of Frequency, Amplitude and
Phase Instabilities

3.1 Frequency Domain. In the frequency domain,
frequency, amplitude and phase instabilities can be
defined or measured by one-sided spectral densities.

The unit of measure of frequency instability is
the spectral density of fractional frequency
fluctuations, S,(f), given by

=2 () 7
Sy(f)=y (f)BW, (Eq. 7)
where y(f) is the root mean squared fractional
frequency deviation as a function of Fourier
frequency, BW is the measurement system
bandwidth in Hz, and the units of Sy(f) are 1/Hz.

The unit of measure of amplitude instability is
the spectral density of fractional amplitude
fluctuations, S,(f), given by

JZ

Phase instability can be characterized by the
spectral density of phase fluctuations, S,(f), given by

1

BW’

s()
v,

[+]

Su () =( (Eq. 8)

The units of Sy(f) are 1/Hz.
= 2 1 9
S¢(f) ¢ (f)Bw. (Eq. 9)

The units of Sy(f) are rad*/Hz.



These spectral densities, S(f), S«(f), and S(®,
are one-sided since the Fourier frequency f ranges
from 0 to oo; nevertheless, they include fluctuations

from both the upper and the lower sidebands of the

carrier,

S¢(D is the quantity that is generally measured
in frequency metrology; however, /(f) (pronounced
script ell of f) has become the prevailing measure of
phase noise among manufacturers and users of
frequency standards. According to the old definition
[Kartaschoff, 1978}, i(f) is the ratio of the power in
one sideband due to phase modulation by noise (for
a 1 Hz bandwidth) to the total signal power (carrier
plus sidebands); that is,

power density in one phase noise
modulation sideband , per Hz

. (Eq. 10)
total signal power

AU =

Usually £(f) is expressed in decibels (dB) as 10
log (£(f)), and its units are dB below the carrier in a
1 Hz bandwidth, generally abbreviated as dBc/Hz.

The old definition of £(f) is related to Sy(f) by

2

Se ()

()= (Eq. 11)

This definition breaks down when the mean
squared phase deviation, <¢*(t)> = the integral of
S¢(f) from f to oo, exceeds about 0.1 rad® or
whenever there is a correlation between the power in
the upper and lower sidebands. To circumvent this
difficulty, £(f) is redefined as

2(f) = (Eq. 12)

Sy (f)
—5

This redefinition is intended to avoid difficulties
in the use of £(f) in situations where the small angle
approximation is not valid and the correlation
between the upper and lower sidebands is not
measured. #(f), as defined by Eq. (12), is hereby
designated as the standard measure of phase
instability in the frequency domain. The reasons
are that (1) it can always be measured
unambiguously, and (2) it conforms to the
prevailing usage.
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Phase instability has sometimes been expressed
in units of time by S.(f), the one-sided spectral
density of the phase fluctuations expressed in units
of time (x(t)),

S(M=X(Mzr @1

From Eq. (5), S¢(f) and Si(f) are related by

S(D=m Sy (D). Ea 19

(2mv,

Since phase and frequency are directly related,
that is, angular frequency is the time derivative of
the phase, spectral densities of frequency and phase
instabilities are also related:

£2

(o]

(Eq. 15)

A device or signal should be characterized by a
plot of i(f). In some applications, providing {(f) vs.
discrete values of Fourier frequency is sufficient.
(See Appendix A for further discussion.)

Other quantities related to phase instability are
phase jitter and wander. Phase jitter is the integral
of Syf) over the Fourier frequencies of the
application (usually above 10 Hz). When reporting
phase jitter the range of Fourier frequencies and the
slope of the discriminator used should be specified.
Wander refers to the integral of S(f) at Fourier
frequencies below 10 Hz. It is possible to convert
Se(f) to phase jitter by using the relation

f
Oder = [ Sy ()df, (Eq. 16)
fi

1
where ¢;‘~’mer refers to the phase jitter. It is not

possible to obtain Sy(f) from phase jitter, unless the
shape of Sy(f) is known.

3.2 Time-Domain. In the time domain, sequential
average frequency instabilities are defined by a two-
sample deviation o,(t), also called the Allan
deviation, which is the square root of a two-sample
variance &,%(t), also called the Allan variance. This
variance 6,%(t) has no account of dead-time between
adjacent frequency samples. (Dead time refers to
the time between time-ordered data sets when no




measurement of frequency is taken) For the
sampling interval T
1
1 _ %
cy(r)=[5((y(t+r)—y(r))2)]
(Eq. 17)

= [%((ykﬂ -%)? >]% ,

where

_ 143" x(ty +1)~-x(t Xpp1 —X

Fe=a | y(tydt= (b +T) - X(ty) _ Xkat =Xic
Ty T T

(Eq. 18)

The symbol < > denotes an infinite time
average, and < is the sampling interval. In practice,
the requirement of infinite time average is never
fulfilled, and the Allan deviation is estimated by

1 M-1 y

2
- G = 2
GY(T)=[2(M—I) kZ=:1 (Y Yk)] » (Eq. 19)

where M is the number of frequency measurements.

The Allan deviation can also be expressed in
terms of time difference (or time residual)
measurements by combining Eqs. 18 and 19:

1
2(N-2)1?

N-2 2 Y
2 (X2 = 2% + %) 172,
k=1

oy(t) =
(Eq. 20)

where X, Xy, and x4 are time residual
measurements made at t, g = t+r, and tu, =
t+2t, k=1, 2, 3, ..., N is the number of time
measurcments, and 1/t is the nominal fixed
sampling rate which gives zero dead time between
frequency measurements.  Residual implies the
consistent, systematic effects such as frequency drift
have been removed (see section 3.3).

If there is dead time between the frequency
departure measurements and it is ignored in the
computation of o,(t), resulting instability values will
be biased (except for white frequency noise). Some
of the biascs have been studied and some correction
tables published [Barnes, 1969; Lesage, 1983;
Barnes and Allan, 1988]. Therefore, the term o,(7)
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shall not be used to describe such biased
measurements without stating the bias together with
o,(t). The unbiased cy(t) can be calculated from the
biased, using information in the references.
Considering that {x,} can be routinely measured, it
is preferred that {x} is used to compute c,(t) since
the problem of dead-time is solved.

If the initial sampling rate is specified as 1/7,,
then, in general, we may obtain an estimate of c,(t)
with better confidence using what is called
overlapping estimates. This estimate is obtained by
computing

1
2(N-2m)<?
N-2Zm 2
kz:l(xk+2m —2Xpym +X¢))2,

o, (1) =I
(Eq. 21)

where N is the number of original time residual
measurements spaced by T, N =M + 1, where M is
the number of original frequency measurements of
sample time t,) and T = mrt,. Examples of
overlapped o,(t) estimates are given in Appendix B.

Equation 21 shows that o,() acts like a second-
difference operator on the time deviation residuals
usually providing a stationary measure of the
stochastic behavior even for nonstationary processes.
An efficient spacing of T values in a plot of
log[o,(t)] vs. log[t] sets m = 2P, where p =0, 1, 2,
3, ...

The frequency stability of an oscillator should
be characterized by a plot of 5,(t) vs. sampling time
(t). In some applications, providing discrete values
of oy(t) vs. sampling time 7t is sufficient. The
measurement system bandwidth should always be
specified. (See Appendix A for further discussion.)

When differentiating between white and flicker
PM noise is desirable, a modified deviation, denoted
as Mod o,(t), may be used to characterize frequency
instabilities [Allan and Barnes, 1981; Stein, 1985].
Unlike oy(t), Mod o,(t) has the property of yielding
different dependence on t for white phase noise and
flicker phase noise; the dependencies are v>2 and
v, respectively. (The dependence for oy(v) is v for
both white and flicker phase noise.)  Another
advantage is that Mod oy(tr) averages wideband
phase noise faster than . Mod o,(1) is defined as



1
272m?(N -3m+1)

Modcy(‘c)={

2
N-3m+1 | m+j-1 1
2 2 (Xip2m = 2Xjem +Xj) }A- (Eq. 22)

oL

For examples of o,(t) and Mod oy(t) see Appendix
B.

A unit of measure that is often used in time

transfer systems, such as GPS, is o,(1). ox(1) is
defined as
cx(‘c)=% Mod 5, (7). (Eq. 23)

This quantity is useful when white and flicker of
phase modulation noise dominate a synchronization
system.

Another approach to distinguish different noise
types is to use multivariance analysis [Vernotte, et
al., 1993]. By using several variances to analyze the
same data it is possible to estimate the coefficients
for the 5 noise types. For a description of noise
types see Appendix A.

At long averaging times, when the number of
samples is small (N < 5), o(7) has a bias related to
its insensitivity to noise processes which appear as
“odd” or antisymmetric functions over a finite
measurement of x(t) (odd with respect to the middle
point of the data). An extension of the Allan
deviation (Gy1oTAL(T)) Which circularizes the

original data provides a better estimate of frequency
stability which is most noticeable at long averaging

times and is recommended [Howe, 1995]. Details
on &y toTAL(7) are given in Appendix B.
3.3 Systematic Instabilities. The long-term

frequency change of a source is called frequency
drift. Drift includes frequency changes caused by
changes in the components of the oscillator, in
addition to sensitivities to the oscillator’s changing
environment and changes caused by load and power

supply changes [Vig and Mecker, 1991].

The frequency aging of an oscillator refers to
the change in the frequency of oscillation caused by
changes in the components of the oscillator, either
in the resonant unit or in the accompanying
electronics. Aging differs from drift in that it does

342

not include frequency changes due to changes in the
environment such as temperature changes. Aging is
thus a measure of the long-term stability of the
oscillator, independent of its environment. The
frequency aging of a source (positive or negative) is
typically maximum immediately after turn-on.

Aging can be specified by the normalized rate
of change in frequency at a specified time after turn-
on (for example, 1 x 10™'° per day after 30 days), or
by the total normalized change in frequency in a
period of time (for example, 1 x 10° per month)
[Vig and Mecker, 1991].

3.4 Clock-Time Prediction, The variation of the
time difference between a real clock and an ideal
uniform time scale, also known as time interval
error TIE, observed over a time interval starting at
time t, and ending at t, + t is defined as

TIE(t) =x(tg +1)~x(tg) = [y (t)dt'. (Eq. 24)

0

For fairly simple models, regression analysis
can provide efficient estimates of the TIE [Draper
and Smith, 1966; CCIR, 1986]. In general, there
are many estimators possible for any statistical
quantity. Ideally, we would like an efficient and
unbiased estimator. Using the time domain measure
o,(t) defined in section 3.2, the following estimate
of the standard deviation (RMS) of TIE and its
associated systematic departure due to a lincar
frequency drift (plus its uncertainty) can be used to
predict a probable time interval error of a clock
synchronized at t = t, = 0 and left free running
thereafter

x(t) T, 2
RMS TIE o (t) = t(l:—T—] +o3,
(Eq. 25)
2 a® 2.2
+oy(t= t)+Tt )
where

x(tp) = initial synchronization
uncertainty,

oy, = two-sample deviation of
the initial frequency
adjustment,

o,(1) = the two-sample
deviation describing the
random frequency instability of
theclockatt=t,



a = normalized linear frequency
drift per unit of time plus the
uncertainty in the drift estimate.

The third term in the brackets provides an
optimum and unbiased estimate (under the condition
of an optimum (RMS) prediction method) in the
cases of white noise FM and/or random walk FM.
The third term is too optimistic, by about a factor of
1.4, for flicker noisc FM, and too pessimistic, by
about a factor of 3, for white noise PM.

This estimate is a useful and fairly simple
approximation. A more complete error analysis
becomes difficult; if carricd out, such an analysis
needs to include the methods of time prediction, the
uncertainties of the clock parameters using the
confidence limits of measurements defined below,
the detailed clock noise models, systematic effects,
etc.

A quantity often used to characterize the
stability of clocks in telecommunication systems is
the maximum time interval error (MTIE). MTIE is
defined as the maximum time difference between a
clock and an ideal reference [Bregni, 1996].

4. Confidence Limits of Measurements

A simple method to compute the confidence
interval for o,(t) [Lesage and Audoin, 1973], which
assumes a symmetric (Gaussian) distribution, uses
the relation

I, =0y (T)xk M2, (Eq. 26)
where I, is the confidence interval, x is a constant,
o is an integer that depends on the type of noise (see
Appendix A), and M is the total number of data
points used in the estimate. For a lo or 68 %
confidence interval the values for x, are

k2= 0.99,
K = 099,
Ko = 087,
xq =0.77,
k.2 =0.75.

As an example of the Gaussian model with M =
100, o = -1 (flicker frequency noise) and ,(t =1 s)
=1 x 102, we may write
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I, = 6,(7)(0.77)(100)* = 5,(7) (0.077),
which gives

oy(t=15)=(1£0.08) 102

This analysis for oy(t) is valid only for M > 10.
If M is small, then the plus and minus confidence
intervals become sufficiently asymmetric and the x,
cocfficients are not valid; however, these confidence
intervals can be calculated [Lesage and Audoin,
1973].

Another way of computing confidence intervals
for o,(7) is to use the chi-squared distribution. The
estimated Allan variance has a chi-squared
distribution function given by Eq. 27. The number
of degrees of freedom for a specific noise process
and number of samples can be computed and then
used in Eq. 27 to compute the confidence interval
[Howe, 1981}:

~2
o
1= ()=,
Oy
where df is the number of degrees of freedom, 8§ is

(Eq. 27)

the estimated (measured) Allan variance, and o, is
the true Allan variance. Table Cl1 (Appendix C)
shows empirical equations to compute the number of
degrees of freedom for different types of noise
processes (N number of samples, and m = 1/1,).
Examples of this method are shown in Appendix C.

Other methods have been developed for
calculating confidence intervals for Mod oy(t). For
a detailed description see [Walter, 1994; Greenhall,
1995]. Comparison of confidence intervals for cy(1)
(no-overlap, full-overlap) and Mod o,(t) are given
in Appendix C (Table C2) ].

5. Standards for Characterizing or Reporting
Measurements of Frequency and Phase Instabilitics

The standard unit of measure for characterizing
phase and frequency instabilities in the frequency
domain is {(f), defined as onc half of the double-
sideband spectral density of phase fluctuations (see
Eq. 12). When expressed in decibels its units are
dBc/Hz (dB below the carrier in a 1 Hz bandwidth).
A device should be characterized by a plot of 4(f)
versus f. In the time domain, the standard unit of



measure of frequency and phase instabilities is the
fully overlapped Allan deviation oy(t) or the fully
overlapped modified Allan deviation Mod c,(t). A
device should be characterized by a plot of o,(t) or
Mod oy(t) versus 7. The measurement system
bandwidth (f,) and the total measurement time
should be indicated.

In addition the following provisions are
reccommended when reporting measurements on
frequency and phase instabilities.

5.1 Nonrandom phenomena should be recognized,
for example:

(1) Any observed time dependence of the
statistical measures should be stated.
The method of modeling systematic behavior
should be specified (for example, an estimate
of the linear frequency drift was obtained
from the coefficients of a linear least-squares
regression to M frequency measurements,
each with a specified averaging or sample
time t and measurement bandwidth f,).
The environmental sensitivities should be
stated (for example, the dependence of
frequency and/or phase on temperature,

@

(€))

magnetic  field, barometric  pressure,
vibration, etc.).
5.2 Relevant measurement or specification

parameters should be given:

(4) The method of measurements,

(5) The characteristics of the reference signal
(equal noise or much lower noise assumed).
The nominal signal frequency v,

The measurement system bandwidth £, and

the corresponding low pass filter response.

The total measurement time and the number

of measurements M.

The caiculation techniques (for example,

details of the window function when

estimating power spectral densities from

time domain data, or the assumptions about

effects of dead time when estimating the two-

sample deviation G,(D)).

(10) The confidence of the estimate (or error bar)
and its statistical probability (for example,
1o for 68%, 20 for 95%).

(11) The environment during measurement.

(12) If a passive element, such as a crystal filter,
is being measured in contrast to a frequency
and/or time generator.

©)
)

®
®
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Appendix A

Power-Laws and Conversion between Frequency
and Time Domain

Al. Power-Law Spectral Densities. Power-law
spectral densities serve as reasonable and accurate
models of the random fluctuations in precision
oscillators. In practice, these random fluctuations
can often be represented by the sum of five such
noise processes assumed to be independent, as

+2
S h,f* for O<f <fy,

Sy(f) =1 a=2 (Eq. Al)
0 forf 21,
where
h, = constant,
o = integer,

f, = high-frequency cut-off of an
infinitely sharp low pass filter.

High frequency divergence is eliminated by the
restrictions on f in this equation. The identification
and characterization of the five noise processes are
given in Table Al, and shown in Fig, Al.

A2. Conversion between Frequency and Time
Domain. The operation of the counter, averaging the
frequency for a time T, may be thought of as a
filtering operation. The transfer function H(f) of
this equivalent filter is then the Fourier transform of
the impulse response of the filter, The time domain
frequency instability is then given by

oF(M,T,7) = [S,(D[HI,  Eq A

where Sy(f) is the spectral density of frequency
fluctuations. 1/T is the measurement rate (T-t is the
dead time between measurements). In the case of
the two-sample variance H®H[ is
2(sin*nef)/(ntf)®. The two-sample variance can thus
be computed from

sin* (nif)

f)
2(v)y=2 S, (f)———=df . . A3
o2 (%) z 05 (Eq. A3)



Specifically, for the power law model given,
the time domain measure also follows a power
law:

2
c?,(t)=h_2 27) t+h_1210ge2+h0—1—
6 27
1.038+3log, (27f, 7) 3f,
+h S +h. .(Eq.A4
! (2m)22 2 (2n)*e? )

Equation A4 assumes that f, is the high
frequency cut-off of an infinitely sharp low pass
filter and that 2=fit >> 1. This equation also
implicitly assumes that the random driving
mechanism for each term is independent of the
others, and that the mechanism is valid over all
Fourier frequencies, which may not always be
true.

The values of h, are characteristic models of
oscillator frequency noise. For integer values (as
often seems to be the case for reasonable models),

p=-o-1 for-3<a<l,
px-2forazl,

The modified two-sample variance can also
be computed from S,(f) by using

sin® (nf)
(mrof )2 sin? (mrof)
(Eq. A5)

f)
Modc%:):ijhs (f)
Yy n4 0 y

Table A2 gives the coefficients of the
translation from S(f) (frequency domain) to o,%(t)
(time domain). In general computation of S,(f) or
related frequency domain measurements from
oy(t) or Mod o,(t) are not permitted unless only
one power law noise type is present.
Nevertheless, when several noise types are
present, special analysis can be made on the time
domain data to obtain the coefficients (in the
frequency domain) for each power law [Vernotte,
etal, 1993 ].

The slope characteristics of the five
independent noise processes are plotted in the
frequency and time domains in Fig. Al (log-log
scale).

where
o, (1) ~ T
Table Al
The Functional Characteristics of the Independent Noise Processes Used in Modeling Frequency Instability of
Oscillators
Slope Characteristics of Log Log Plot
Frequency Domain Time-Domain
Description of Noise Process S,(®) or Se(®) or Mod
$4(f) S.() 5,’(1) Sy(7) 5,(1)
o B B w2 y
Random walk frequency modulation -2 -4 1 1/2 172
Flicker frequency modulation -1 -3 0 0 0
White frequency modulation 0 -2 -1 -1/2 -1/2
Flicker phase modulation 1 -1 -2 -1 -1
White phase modulation 2 0 -2 -1 -3/2
(2nf)? 2 u
Sy (f) = ———=-8; (f) = h f* oi(t)~|t
y(H) (27vg)? 6 hy y | |
_ /2
Se(£) = Vihaf*? = vih P (B=u-2) oy (v) ~|1*
1 -2 1 B '
S, (f)=—=h f*“=——hf Mod o, () ~|t
x(D= e y (O~
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-2 £ 2
Log S -1
g y(t) ¢ o
f
Log Fourier Frequency f
\i*
¢ -3
Log S
g S,® \
-2
-1
f
¢ 0
Log Fourier Frequency f
-1
1
Log cy U] ;1/2 10 . 172,
Log Sample Time

Fig. Al Slope Characteristics of the Five Independent Noise Process

Table A2. Translation of Frequency Instability Measures from Spectral Densities in
Frequency Domain to Variances in Time Domain for an Infinitely Sharp Low Pass Filter with 2nfit>>1.

Description of Noise Process Sy(f) = S R )= 03 ()=

Random walk frequency modulation h_,f 2 h_pvif Ah_,1!

Flicker frequency modulation h_yf! b33 Bh_lto

White frequency modulation hof® hov2f? Chyr™!

Flicker phase modulation hyf! hyv?f! Dhyt2

White phase modulation hyf? hyv?f° Ehyt ™
A2 Bloma co1/2 D - 1:038+3In(2nf;7) e
3 47 4n?
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Appendix B

Examples and Additional Variances that may be

used to Describe Frequency Instabilities in the Time
Domain

This appendix contains basic examples on how
to compute the variances used to describe frequency
instabilitics in the time domain. For more
information on this topic and on how to assess the
validity of the computations when using larger
number of samples see [Riley, 1993; Riley, 1996].

Bl. oy(z) - Examples. Fig. Bl shows a plot of the
time deviation between a pair of oscillators as a
function of time. The recorded time samples for t =
1 s are shown in the first column of Table Bl. To
compute 6,(t = 1 s) we need to compute the average
fractional frequency deviation for x,s separated by 1
s, then calculate the difference between adjacent Vs

and use Eq. 19 to obtain o,(t). See Table B1.

Figure B1. Plot of x(t) between a pair of oscillators.

For v = 2 s ( = 2t,) the procedure is similar:
compute the fractional frequency deviation for xs
separated by 2 s, then calculate the difference
between adjacent s and use Eq. 19 to obtain oy(t).
See Table B2.

Table B2. Steps for computing 6,(2 s).

Table B1. Steps to compute 5.(1 s).

Xy V= (et - X/t Vin - Vi
(10 (10%) (10°%)
0 - -
43.6 V1= (Xx1)t=43.6 -
89.7 V2= (Xs-X2)/t=46.1 25
121.6 V3= (X4-X3)/t = 31.9 -14.2
163.7 V4= (Xs-Xg)/t=42.1 10.2
208.4 Vs = (Xe=Xs)/T = 44.7 2.6
248 V6= (X1-Xs)/t = 39.6 -5.1
289 Y1 = (Xs-X7)lt = 41.0 1.4
319.8 ¥ s = (Xo-Xg)/1 = 30.8 -10.2

In this example N = 9 (number of time samples)
and M = 8; therefore

Xk S’_k = (Xys2 - Xp)/T yk+2 - Yk
(10 (10) (10)

0 - -
43.6 - -
89.7 Y 1=(x5-X)/2=44.85 -
121.6 - -
163.7 ?3=(x5-x3)/2=37 -7.85
208.4 - -
248 ¥ s=(X7-Xs)/2=42.15 5.15
289 — -
319.8 ¥ 7=(Xo-X7)/2=35.9 -6.25

For this example M = 4 since there are a total of
four ys. Therefore

1

1 3, _ w2
o, (1=25) =[— ¥ (Fiem —Yk)z]z » (Eq. B2)

2(3) k=1

1

oy(25)=[2.12x10711]2 = 4.6 x 1075.

1o, _ 21/2
oy(r—ls)-[%—) E}(ykﬂ—yk) } , (Eq. B)

oy (1s) =[3.2x101V2 = 5.67 x 1075,
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As mentioned in Section 3.2, it is usually more
efficient to use overlapped estimates when possible
since it results in a better confidence interval.
Figure B2 illustrates how to compute the Vs for an
overlapped estimate of oy(t = 2 s). In this case m =
2 (r = 2t;) and M = 8. The V;s and the second
difference values are shown in Table B3.



@©s)

Time deviation, x(t)

Figure B2. Computation of Vs for overlapped
estimates.

There are a total of N - 2m = 5) second
difference values (Yim-Y); therefore the Allan
deviation equation becomes

1

N-2m

- - =22
Gy(T)_[Z(N—Zm) EI(Ykﬂn Yi) ,» (Eq. B3)

where ¥ = (X - X1)/T. Equation B3 becomes Eq.
21 when the ¥ ;s are expressed in terms of the initial
time residual measurements, It is used in this
example to help explain the origin of Eq. 21. Using
the values in Table B3 (last column), Eq. B3 yields

TR 2,442 2
cy(2s)—{2(5)[( 7.85)° +4.4°+5.15
1

+(=3.1% +(-6.252]32,
1
0y (25)=[1.56 x 107"1]2 =3.95 x 1075

B2. Mod oy (1) - Example. The Modified Allan
deviation can also be used to characterize frequency
stability in the time domain. This deviation uses the
average of m adjacent x5 when computing the
stability for © = mrt,. The fractional frequency
deviations are then obtained using the X,s. See Fig.
B3 for computation of X ,s and Y i's.

Table B4 shows the computed X s, and y's for

1t = 2s. The Modified Allan deviation can then be
obtained by using Eq. 19 and the fact that m = 2
and the equivalent Mis N - 3m + 1:
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1
2(N-3m+1)
N-3m+1 1 (e BY

kz Flheem =71)%312,
=]

Mod Gy(‘t) ={

IR T 2 2
Modoy(2s)—{—2(4)[( 1.73)% +4.78
1 1

+1.032 +(—4.68)2 32 =[6.1x10712]2,
Mod 6y (2 5)=2.47x10°°.

Note that Eq. B4 becomes Eq. 22 when
expressing the yi's in terms of the initial time
residual measurements. It is used in this example to
help explain the origin of Eq. 22.

Table B3. Steps for computing an overlapped
estimate of 6,(2 s).

Xk Vi = (Xs2 - X))/t Yi2- Yk
(10°) (10) (10%)
0 . .
436 - -
89.7 V1 =X/t =449 -
121.6 Y 2 = (X4=X2)/t = 39 -
163.7 | ¥3=(xs-xs)lx=37 -7.85
208.4 V4= (Xe-Xa)t =434 4.4
248 | Ys=(xxs)t=422| 515
289 | Fo=(xgxe)t=403 | 3.
319.8 Y1 =(Xo=x7)t =359 -6.25

[ Yk 1

Figure B3. Method for calculating X s, and y,s for
Mod oy(7).



Table B4. Computed X, and Y’ values for Mod 6,(2 s).

Xk Xk = (X +%)/2 Vi =Xz Xt Vi2'-Yi
(10°) (10°) (109 (10
0 - - -
43.6 21.8 -- -
89.7 66.65 -
121.6 105.65 Vi =(X3-X1)2=41.93 -
163.7 142.65 Yo =(X4-X)2=38 -
208.4 186.05 Vi =(Xs5-X3)/2=40.2 -1.73
248 2282 Y 4/=(Xs-X)/2=42.78 4,78
289 268.5 Ys5'=(X7-Xs)/2=41.23 1.03
319.8 304.4 Veé=(Xs5-Xg)l2=38.1 -4.68
B3. Extension of the Allan Deviation For this reason, when N < 5, we recommend

6y,TOTAL(?). In section 3.2 we noted that when

the number of samples is small (N < 5), the Allan
deviation has a bias related to its insensitivity to odd
(antisymmetric) noise processes in x(t) (odd about
the midpoint of the x(t) data or even in terms of
average Yy ). This is illustrated in Fig. B4. Figure
B4.1 shows three phase samples of a noise process
which is odd about x,. The calculated fractional
frequency deviations according to Eq. 19 are shown
in Fig. B4.2. Since ¥, and ¥y, are equal,
contributions due to this noise process will not show
up in oy(T).

1 B4.1
X(©) .
X
: 3
"C time
B4.2
7 - _
7 )
l
I‘C time

Figure B4. Odd noise process about x;.
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using an extension of the 2-sample (Allan) deviation
which adds the odd (3-sample) component [Howe,
1995]. The estimate to this deviation,
6y, ToTAL(T), Wraps the x, data to provide a better

estimate of frequency stability. The advantages of

A

oy,roTAL(?) arc outlined in several references

[Howe, 1995; Howe, 1997] and its generalized form
is given by

) 172
Oy 1oTAL () = (1_2m)

(Eq. BS)

N—m-1 1/2
2
( Z [x'k+2m _Zx’k+m+x'k] ) >
k=1

where the Xxs represent the time residual
measurements after the linear trend (or slope in
phase) has been removed (matching the endpoints of
the data set {xg}). 6y,TOTAL(T) can also be

represented in terms of fractional frequency
fluctuation averages as

R 1 N-2m+1
Oy 1oTAL (T) = {m ZJ:
Mo , (Eaq. B6)
1 “m o - 2,2
[Z(N—-Zm) k%l (Yk+m,_| Yk,J) ]} >

where the series of ¥y ; (fractional frequency
fluctuations averages) goes as Vi1, ¥j+2, - YN-1-
Vi - ¥j-



As an example we will compute Gy 1oTAL(2S)
for x(t) in Fig. B5. Notice that this data set is
different from the one used in the previous
examples. In this case x;, x3, and x5 almost fall into
a line; thercfore the value for oy (t) will be
negatively biased (too optimistic).

5

468 &7
4 i v
’,‘,:? 3 ) 329 ¢
" 1 '1'()—8 o .‘" :
VL8 05
0

0 1 2 3 4 5
Time (s)

Figure B5. x(t) as a function of time.

Starting with the time difference measurements
{x}, the first step is to compute the overall
frequency difference (OFD = (xy - Xx;)/(N-1)1,) and
remove it from each x,, the result being that x; and
xs will have the same value. This is necessary in
order to be able to wrap the data without a
discontinuous phase step (xs—Xx;). Therefore,

Xs—x; _3.29-1.08
4

=0.5525x107°,
(Eq. B7)

OFD =

Now remove the OFD from x,s:

x'; =1.08 ns,

x> =0.5 - OFD = -0.0525 ns,
x'3=2.2 - 2(OFD) = 1.095 ns,
x'4 =4.68 - 3(OFD) = 3.0225 ns,
x's = 3.29 - 4(OFD) = 1.08 ns.

6y,1oTAL(2S) can then be computed using Eq. BS:

1 _ -
m[(h,l —Y1,1)2
1

+(F22-12)° 32, (Eq.B8)

Gy, toTaL (256¢) = {

where
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5o = X37X1_1095-LO8 s 0
’ 2 2

?2’1 - X's ;X3 - 108;1095 = —0.0075)(10.-9,

5, X4y 3025400525 | oo
’ 2 2

Gy, = XaTX's _T0.0525-3.0225 | oo oo
’ 2 2

Therefore,

1
6y 10TAL (25) = {%[(—0.015)2 +(-3.075)2]x10718}2

1
=[2.364 x 10132,

&y,TOTAL(2S) =154 x 1077,

This value can be compared to the value
obtained for the Allan deviation:
1

0,29 = 175~ 12

1

(X2t X,

{2[ 5 I3
1
={%[3.29—2(2.2)+1.08)]2}5,

6/(25)=106x 10",

G,(2 s) is seriously negatively biased by two
orders of magnitude compared to Gy 1oTAL(2S).
(In the computation of the Allan deviation the OFD
was not subtracted from the x,s since the Allan
deviation is insensitive to linear trends in the time
domain).

A slight negative bias in 6y ToTar(T) has been

found for flicker FM noise and random walk FM
noise. The bias for random walk FM noise can be
removed by adjusting Eq. B5 [Howe, 1997].

B4. Other Variances. Several other variances have
been introduced by workers in this field. 1In
particular, before the introduction of the two-sample
variance, it was standard practice to use the sample
variance s°, defined as




sinnfr

T)df.

In practice it may be obtained from a set of
measurements of the frequency of the oscillator as

=, (f)( (Eq. BY)

2 =~If; > (5 -9)%. (Eq. B10)

The sample variance diverges for some types of
noise and, therefore, is not generally useful.

Other variances based on the structure function
approach can also be defined [Lindsey and Chi,
1976]. For example, there are the Hadamard
variance, the three-sample variance and the high-
pass variance [Rutman 1978)]. They are occasionally
used in research and scientific works for specific
purposes, such as differentiating between different
types of noise and for dealing with systematics and
sidebands in the spectrum.

Appendix C
Confidence Intervals for o,(t) - Examples

As discussed in section 4, the Allan variance
has a chi-squared distribution function. Therefore,
one way to obtain the confidence interval for a
certain number of samples is to use

“2
X = (df)—_y
y

(Eq. CD)

where df is the number of degrees of freedom (given
in Table C1) [Howe, 1981]. This table is valid only
for overlapped estimates of the Allan variance.

To compute the confidence interval for &y (t =

1 s) = 10" for flicker frequency noise, N = 101,
and 1, = 0.5 s (m = 2), we first find the number of
degrees of freedom using Table C1:

5N?

= am(N+3m) a- €2)
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5101
T 4(2)(101+3(2))

For a lo (68%) confidence interval, the y>
values needed are %*(0.16) and %’(1-0.16). These
values can be obtained from numerical tables of the
chi-squared distribution function or from various
computer programs. For this example %%(0.16) =
48.25, and *(0.84) = 69.73.

Therefore
) 59.662
22(0.16) <——L <x2(0.84), (Eq. C3)
(o}
y
or
59.662  ,  59.651 (Eq. C)
<oy < , q.
x2(0.84) 7 42(0.16)
0.8553 <02 <1.2462. (Eq. C5)
Other methods have been developed for

computing the confidence interval of Mod oy(t)
[Walter, 1994; Greenhall, 1995]. Table C2 shows a
comparison of confidence intervals for cy(t) (no
overlap and full overlap) and Mod () for white
PM, flicker PM, and white FM noisc processes
[Walls, 1995]. As shown in Table C2, overlapped
estimates improve the confidence intervals for
specific values of M and m. Although o,(t) usually
provides a better estimate (confidence interval) than
Mod oy(7) for fractional fluctuations (see Table C2
for white PM and flicker PM), the confidence
interval for absolute fluctuations is approximately
similar. The reason is that the value of Mod oy(t) is
typically much smaller than oy (t) for white and
flicker PM noise processes; therefore Mod o,(t)
provides a better estimate of stability.



Table C1. Empirical equations for the number of degrees of freedom of the Allan Variance estimate. From

[Howe, 1981].

Noise Type Degrees of Freedom
white phase N+D(N-2m)
2(N-m)
flicker phase N-1 Q2m+1)(N-1) %
exp ln( )ln( )
2m 4
white frequency [3(N-1)_2(N—2)] 4m?
2m N J4m?+5
flicker frequency 2(N-2)?
————— form=1
2.3N-4.9
2
_ N form>2
4m(N +3m)
random-walk frequency N-2 (N-1)?-3m(N-1)+4m?
m (N-3)?

Table C2. Confidence intervals for 6,(1) (no overlap and full overlap) and Mod ,(1). From [Walls, 1995].

No Overlap Full Overlap Full Overlap Full Overlap Full Overlap
+ for 68% - for 68% + for 68% - for 68% + for 68%
oy(T) Gy(7) 6,(T) Mod o,(7) Mod oy(t)
n=1025 White PM White PM White PM White PM White PM
m=2 4.4% 2.9% 3.2% 3.1% 3.4%
m= 8.7% 2.9% 3.2% 5.2% 6.1%
m=32 17.4% 3.0% 3.4% 9.7% 14%
m=128 34.9% 3.1% 3.6% 18% 41%
n=1025 Flicker PM Flicker PM Flicker PM Flicker PM Flicker PM
m=2 4.4% 2.9% 3.1% 3.0% 3.3%
m= 8.7% 3.6% 4.0% 5.7% 6.8%
m=32 17.4% 5.2% 6.1% 11% 16%
m=128 34.9% 8.4% 11% 20% 50%
n=1025 White FM White FM White FM White FM White FM
m= 3.8% 2.8% 3.0% 3.0% 3.2%
m=8 7.7% 4.8% 5.6% 5.8% 7.0%
m=32 15.3% 8.8% 12% 11% 16%
m=128 30.6% 16% 32% 20% 51%
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NOTE: Appendix D does not repeat the
references given in Section 7 of the main text.

Appendix E
Definitions

The standard definitions given in the main body
of the text are repeated here in narrative form. If
ambiguities are created between the narrative
definition given here and the mathematical equation
given in the text, the text has priority.

Frequency Deviation y(t): instantaneous, normalized
frequency departure from a nominal frequency.

Phase Deviation ¢(t): instantaneous phase departure
from a nominal phase.



Time Deviation x(t): instantancous time departure
from a nominal time.

Frequency Instability S,(f): one-sided spectral
density of the frequency deviation.

Phase Instability S,(f): one-sided spectral density of
the phase deviation.

Time Instability S,(f): one-sided spectral density of
the time deviation.

Two-Sample Variance, 6,°(1), also called the Allan
variance: time average over the sum of the squares
of the differences between successive readings of the
frequency departure sampled over the sampling time
7, under the assumption that there is no dead time
between the frequency departure samples.

Two-Sample Deviation, o,(t), also called the square
root of the Allan variance: this is the square root of
the two-sample variance as defined above.

Time Interval Error TIE: the variation of the time
difference between a real clock and an ideal uniform
time scale following a time period t after perfect
synchronization,

Confidence Limit I,: the uncertainty associated with
the estimate of the two-sample deviation from a
finite data sct with a finite number of measurements.
Typically, I, refers to a 1o (68%) confidence level or
error bar.  However, other confidence intervals, in
particular larger ones, are frequently used.
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