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PRECISION SYNCHRONIZATION OF 
COMPUTER NETWORK CLOCKS 

INTRODUCTION 

In this article, we consider methods for controlling the clocks in computers so as to 
keep them synchronized to some external source of time information. We will 
discuss the statistical principles that govern the design of the control algorithms, 
and we will illustrate these principles using several examples. 

There are two types of system for which time synchronization is important: 

Processes which handle time-sensitive data where the time stamps must be 
traceable to a national timing center for legal or commercial reasons. 
Although it is possible for such a process to query an external time server 
whenever a time stamp is required, this is usually not an optimum strat- 
egy. More sophisticated algorithms can usually deliver higher-accuracy 
time tags at lower cost. 
Processes which handle time-sensitive data and which are implemented in 
a networked environment using a number of independent machines. Keep- 
ing the times of all of the machines synchronized to each other (without 
having them necessarily synchronized to a national timing center) may be 
sufficient in this case in principle, but this simplification may be difficult 
to exploit if the machines are widely separated. Synchronizing the ma- 
chines to a common external time reference may be easier to implement 
and may result in a synchronization algorithm that is more accurate, in 
general, and more robust in the event of a partial failure of the network. 

It is difficult to specify a single accuracy requirement that will satisfy the wide 
range of client processes that are encountered in practice. As we will discuss, a 
number of problems make it difficult to synchronize the time of the clock in a 
general-purpose computer to much better than 1 millisecond (0.001 s) or to deliver 
time information to a client process while maintaining this accuracy (even if the 
client process is running on the same machine). Higher-accuracy time information 
can be obtained in a number of ways, but using the full accuracy of these time 
tags generally requires special-purpose equipment, and we will not discuss these 
special-purpose configurations in this article. We will confine our discussion to 
synchronization of general-purpose computers running essentially standard soft- 
ware. 

The author is an employee ofthe U S .  Government. This chapter is not subject to copyright 
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STANDARDS OF TIME 

The international standard of time is called Coordinated Universal Time (UTC); its 
definition is traceable to the Convention du Metre, which was signed in Paris in 
1875 (1). It is maintained by the Bureau International des Poids et Mesures (BIPM) 
in Sevres, France using data from a worldwide ensemble of clocks whose frequencies 
are locked to  a specified transition in cesium (2). (Data from hydrogen masers have 
recently been included in the computation as well.) 

The rate of the UTC time scale is defined in terms of the quantum-mechanical 
properties of cesium and hydrogen, and its time was initially set to correspond as 
closely as possible to the older astronomical definition (3). The UTC time scale is 
adjusted (“coordinated”) by adding “leap” seconds as needed so as to keep it within 
hO.9 s of UT1, a time scale based on the rotation rate of the earth. At the present 
time, leap seconds are added about every 18 months-usually on the last day of 
June or December. Although it is possible, in principle, to drop a second instead of 
adding one (a “negative” leap second), this has never been done and is unlikely to be 
required for the foreseeable future because the rate of UTC is fast with respect to  
UT1 by about 0.03 ppm. This difference is larger than the typical variations in the 
length of the day as determined from the rotation of the earth. 

The computation of UTC by the BIPM is done almost 2 months after the fact, 
so that real-time users must get time information from a national timing center. 
In the United States, time information is provided by the National Institute of 
Standards and Technology [UTC(NIST)] and by the U.S. Naval Observatory 
[UTC(USNO)]. The differences between UTC and the real-time scales UTC(N1ST) 
and UTC(USN0) are published by the BIPM in its Circular T. These differences are 
typically on the order of tens of nanoseconds (i.e., lO-’s), and we can take them to 
be zero for the purposes of the current discussion. Time information is also pro- 
vided by timing centers in other countries; the offsets between these time signals and 
UTC are generally less than a few microseconds (i.e., s) in almost all cases. 

SYNCHRONIZATION SOURCES 

In addition to the problems of time-scale definition (which are largely theoretical in 
the context of this discussion), most users must correct the time information that 
they receive for the delay due to the finite transit time of the information along the 
transmission channel between the timing center and their location. This delay is on 
the order of at least 3 x s/km and can, therefore, be tens of milliseconds for a 
typical user who may be 1000 km or more from a timing center. 

There are three general methods for dealing with the propagation delay: 

1. One-way transmission methods with or without an ancillary model of the 
delay 
Two-way methods which measure the round-trip delay and estimate the 
one-way delay as one-half of this measurement 

Common-view methods which use simultaneous one-way transmissions 
to  two (or more) sites that are approximately equally distant from the 
transmitter 

2. 

3. 
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Each of these methods has advantages and limitations, and all of them are widely 
used for distributing time and frequency information at the present time. 

The one-way method is the easiest one to use. A timing source broadcasts 
messages periodically, and any number of users can receive the information. Each 
user may correct the received messages for the propagation delay using parameters 
derived from the distance back to the transmitter and possibly other parameters 
such as ambient temperature. The transmitter can supply information to any num- 
ber of users, so this type of server does not saturate as the load increases. (As the 
operating costs are essentially independent of the load, the cost per user may actu- 
ally decrease as the load increases.) The primary limitation of the method is that the 
delay is estimated from a model rather than actually measured - how well these 
estimates will work in any particular situation is difficult to judge a priori. In 
general, the method will be least useful if the delay varies appreciably with time, 
because such variation may be difficult to incorporate into a static model unless a 
significant effort to measure the properties of the path in real time is included in the 
measurement protocol. 

There are two methods that are often used to estimate the properties of the 
transmission path. The simpler method is to combine end-point measurements of 
the relevant parameters with a model of the delay. The propagation delay through 
the atmosphere, for example, is primarily a function of the ambient pressure, tem- 
perature, and water-vapor density (4,5). The end-point measurements of these pa- 
rameters can be combined with the physical distance and a theoretical expression 
for the refractivity to yield a real-time estimate of the propagation delay. The 
accuracy of this procedure is limited by atmospheric homogeneity: by how well the 
end-point measurements represent the average conditions along the path (6). 

The second method uses simultaneous transmissions of the timing information 
using two different carrier frequencies. This is a useful technique if the path is 
dispersive: if the propagation delay depends on the carrier frequency and if the 
dispersion can be separated into the product of a function that depends only on the 
carrier frequency and a second function that depends only on atmospheric proper- 
ties. The refractivity (the excess path length due to the presence of the atmosphere) 
can be estimated from the dispersion in this case, and this estimate can be combined 
with the physical length to compute the path delay (7). In addition to optical trans- 
missions through the atmosphere, this method is also used by the Global Positioning 
Satellites (see below) to measure the propagation delay of the signals through the 
ionosphere (8). 

Two-way methods directly measure the round-trip delay and estimate the one- 
way delay as one-half of this value (9). The method is more complicated than a 
one-way technique because a second, reverse channel is required and because the 
receiver must actively collaborate with the transmitter in the two-way data ex- 
change. Instead of a client-server model, the relationship between the two stations 
is more like two peers. 

The accuracy of the delay estimate is limited by the symmetry in the path 
delay (10). Any static inequality between the inbound and outbound delays can be 
measured and administratively removed in principle, so the real problem is with 
uncorrelated fluctuations in the delays in the two directions. Even when the path 
itself has a symmetric delay (as is generally true in the atmosphere), there may be a 
significant asymmetry in the inbound and outbound channels of the station hard- 
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ware. Many standard telephone modems exhibit this unfortunate characteristic, for 
example. 

In addition to the complexity of the method, two-way systems have a finite 
capacity, so that the operating costs increase with increasing load. The load on the 
server increases linearly with the number of clients requesting service, and both ends 
must “know” about each other. The casual, one-sided association that is possible 
with broadcast services is not adequate. 

Two-way methods may have an additional problem depending on how the 
reverse channel is implemented. There are three commonly used methods: 

1. 

2. 

3.  

In 

Time-Division Multiplexing. A single “half-duplex” channel is alternately 
used in opposite directions. The measurements in the two directions use 
mostly the same hardware, but they are not simultaneous and they may, 
therefore, be corrupted by temporal fluctuations in the channel delay. 
Any such fluctuations are potentially troublesome, but those whose peri- 
ods are comparable to the “turnaround” time of the channel are particu- 
larly serious because they produce offsets that appear to be static; such 
asymmetries are not removed by averaging. The transmission of time over 
the Internet is a common example of this signaling protocol. 

Frequency-Division Multiplexing. A single “full-duplex” channel is used 
in both directions simultaneously using signals at two different frequen- 
cies. The measurements in the two directions are now simultaneous, but 
any dispersion in the channel or any imbalance in the inbound and out- 
bound hardware (which process different frequencies and are therefore 
likely to be different) produces a first-order error. Telephone modems and 
many satellite systems use this type of signaling protocol. 
Two One- Way Circuits. The data in the two directions are carried on two 
independent, nominally identical one-way circuits. The limitation here is 
balance-how well the properties of the two one-way channels can be 
balanced and how well their fluctuations will track each other. Many 
long-distance telephone circuits are implemented in this way. 

summary, the conceptual simplicity of the two-way method often causes L i  

designers to  underestimate the difficulty of realizing the potential power of the 
technique in a real-world environment. 

In common-view methods, any number of receivers simultaneously listen to  a 
single transmitter that is approximately equidistant from all of them (11). Unlike 
two-way methods which depend on the equality of the propagation delays in oppo- 
site directions along the same path, the common-view method depends on the equal- 
ity of the propagation delays along different outbound paths. Two clients can 
synchronize to each other using the common-view method with an accuracy that is 
limited by the imbalance in the different paths back to  the server and independent 
(to a good approximation) of the accuracy of the time messages themselves. In 
fact, the server need not even “know” that it is being used for synchronization- 
common-view systems have been built using the synchronization pulses of ordinary 
television signals or the zero-crossings of the AC power line. Signals from LORAN 
stations, which are widely used for navigation, have also been used for time syn- 
chronization in the common-view mode. 
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Although a common-view time server can operate in broadcast mode and need 
not know who is listening, the clients must know about each other - they must agree 
on a common observation schedule so that they all observe the signal simultane- 
ously, and they may have to apply corrections t o  the data if the paths are not exactly 
equal. As with two-way methods, the station hardware may make an appreciable 
contribution to the overall delay. A constant difference in the delays through two 
receivers can be measured and removed, so that the limitation is ultimately from 
uncorrelated fluctuations in the properties of the two different paths or in the 
station hardware. Because the paths are different, and may be widely separated, 
uncorrelated fluctuations in the delays are often more of a problem here than in 
two-way methods, where the delays in the two directions along the same path (or 
two adjacent one-way paths) are more likely to be correlated. 

None of the methods offers any independent check on the adequacy of the 
delay correction. Residual fluctuations in the corrected time signals provide some 
indication of the statistics of the estimate of the propagation delay (see below), but 
there is no good way of detecting a static offset in the delay estimate without using 
some independent check on the synchronization. 

We now discuss several widely used distribution systems that are based on the 
general principles we have described. 

Radio Clocks 
Although many other more sophisticated distribution methods have been devel- 
oped, radio-based transmissions are still widely used for distributing time to many 
clients who need only moderate accuracy. Most computer clocks fall into this cate- 
gory, so that radio transmissions play a central role in computer network synchroni- 
zation. 

The first transmissions used standard short-wave equipment. In the United 
States, the National Bureau of Standards began transmitting time and frequency 
information in 1923 from radio station WWV. This station currently transmits on 
standard frequencies of 2.5, 5, 10, 15, and 20 MHz. The transmitter is located in 
Fort Collins, Colorado. A second transmitter, named WWVH and located in 
Hawaii, was added in 1948 (12). Similar equipment is operated by other countries 
(13). 

The accuracy of short-wave time-signal broadcasts is limited primarily by 
uncertainties in the propagation delay between the transmitter and the user. (Delays 
in the receiving equipment are also important, but these can be minimized by careful 
design and tend to be stable with time so that they can be removed by calibration.) 
The propagation delay depends on the straight-line distance between the transmitter 
and receiver but is also a function of the height of the ionosphere, the time of the 
day, the season, the sunspot cycle, and other factors (14). Propagation delays on 
the order of milliseconds are quite commonly found; as we will show below, it is the 
variability of this delay (and especially the variability at periods of a few hours and 
longer) that causes the most problems in computer synchronization. The variability 
in the delay at these periods can be significant, and so most computer networks no 
longer use short-wave broadcasts for synchronization. 

The National Bureau of Standards added a third, low-frequency transmitter 
named WWVB in 1956 (12). Similar low-frequency services are also operated by 
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other countries (15). The purpose of this station is to  take advantage of the more 
stable propagation delay that is usual at this lower frequency. The reason for this 
stability in the propagation delay is that waves at these low frequencies tend to 
propagate in a “waveguide” mode between the earth and the ionosphere. The main 
problem with this signal is that both the transmitting and receiving antennas are 
relatively inefficient because they are small compared to  the very long wavelength 
(about 5 km) of the carrier that is used. Station WWVB transmits using a frequency 
of 60 kHz; similar frequencies are used by the low-frequency stations operated by 
other timing centers ( 1  5). 

Although low-frequency transmissions are less affected by atmospheric effects 
than short-wave signals, there are residual effects that may be important. The most 
important fluctuation often has a period of 24 h; the path delay changes in one 
direction during sunset and the other way during sunrise. The average fluctuation 
over the full 24-h period is a small fraction of the peak-to-peak fluctuation, but, as 
we will discuss below, this is not of much help for time synchronization because the 
clocks in most computer are not stable enough to support this long an averaging 
time. 

Signals from radio station WWVB are widely used to synchronize computer 
clocks, and machines synchronized in this way are often used as time servers to 
redistribute the time to a larger number of “stratum-2” clients. 

The diurnal fluctuations in the propagation delay of the signal from WWVB 
are usually significantly less than 1 ms, but the interface between the receiver and 
the computer must be carefully designed so that fluctuations in the 110 path delay 
do not degrade the accuracy of the data. This is often not a trivial problem. Finally, 
the signal is often weak and hard to receive at some locations; an outside antenna is 
often required. 

In summary, signals from WWVB are sufficiently accurate for most computer 
synchronization applications, provided that the signal is strong enough at the re- 
ceiver location and the interface to  the computer is designed with care. 

Another approach to  making the propagation delay more stable is to use much 
higher transmission frequencies. These signals tend to travel along “line-of-sight” 
paths so that the variations in the delay (due to ionospheric or tropospheric effects) 
tend to be smaller. These signals are usually transmitted from satellites because 
ground-base transmitters would have too limited a range to  be useful. (This may 
change in the future as cellular telephone service becomes more widely available.) 

There are two satellite systems that can be used to obtain time and frequency 
information: the GOES (Geostationary Operational Environmental Satellites) sys- 
tem, which is operated by the U.S. National Oceanic and Atmospheric Administra- 
tion (NOAA) (16) and the Global Positioning Satellites (GPS) operated by the U.S. 
Department of Defense (17). The two systems differ in many technical details: The 
GOES satellites relay a time code that is generated in the control station at Wallops 
Island, Virginia, whereas the GPS satellites generate the time-code message onboard 
using information that is uploaded to the satellite periodically. There are normally 
two operational GOES vehicles in geostationary orbits located roughly above the 
Western Hemisphere. These satellites are called “GOES East” and “GOES West” 
and are located at 7 5 O  and 1 3 5 O  west longitude, respectively. A third satellite is 
located at 1 0 5 O  west longitude and is an orbiting spare. The GPS constellation 
provides worldwide coverage using 24 satellites in 3 orbital planes. The GPS satel- 
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lites are not in geostationary orbits, so the suite of satellites visible from any location 
varies with time. 

In spite of these significant technical differences, they are conceptually similar 
systems from the point of view of the current discussion. Both transit a complex 
message containing both time information and orbital parameters, and both require 
rather sophisticated receivers to parse the message and to correct the received time 
signal for the propagation delay through the atmosphere. The GPS system is more 
sophisticated than GOES, and the accuracy that can be achieved using it is consider- 
ably higher as a result. The corrected GPS time code is specified to be within 100 ns 
of UTC(USN0) at all times and is generally much closer to UTC(USN0) than this. 
The uncertainty in the fully corrected received signal may therefore be taken to be 
negligible in the context of the current discussion. This may not be true for the 
GOES system - station-keeping may occasionally cause temporary time offsets ap- 
proaching 1 ms. 

All of the broadcast services can be used in one-way mode with or without a 
model to correct for the propagation delay from the transmitter to the receiver. The 
delays from the satellite to the ground are significantly larger than 1 ms, so that 
correcting for the transit time is essential in these cases; satellite-based services 
transmit an extensive set of parameters to facilitate the computation of this correc- 
tion for this reason. 

Any broadcast service can also be used in the common-view mode to reduce 
the effect of the fluctuations in the satellite clock and in the common components 
of the path delay. The GPS signals are often used in this way, but this additional 
complication is usually not needed when synchronizing computer clocks because 
adequate accuracy can be achieved without it. The fluctuations in the unmodeled 
portion of the channel delay are negligible in our context under normal operating 
conditions. 

Cable Systems 
There are a number of time-distribution systems that are based on sending time 
information over communication networks. An example is the Automated Com- 
puter Time Service (ACTS) that is operated by the National Institute of Standards 
and Technology (NIST) in Boulder, Colorado (18). This service transmits time using 
standard modems and dial-up telephone circuits. The server transmits a time code 
every second using standard ASCII characters. The last character of each message 
is an on-time marker character (OTM); it is initially sent 45 ms early to  compensate 
approximately for the typical transit time through modems and telephone circuits. 
If the user echoes the OTM back to NIST, the server measures the round-trip delay, 
estimates the one-way delay as one-half of this value, and adjusts the advance of 
subsequent OTM characters accordingly. This system is a standard two-way system; 
as we discussed earlier, its accuracy will be limited by any inequality in the inbound 
and outbound delays. Some modems have substantial asymmetries of this kind, and 
the accuracy of the ACTS system is limited to several milliseconds for this reason. 
The asymmetry depends on the details of the modem circuitry, and nominally identi- 
cal and otherwise fully compatible modems from different vendors may have signifi- 
cantly different delays. Because the delay asymmetry tends to be dominated by the 
modem design, using the same hardware tends to result in a time offset that is 
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constant from one connection to the next. The asymmetries are often worse at 
speeds above 1200 bits/s, as these higher-speed connections often require dynamic 
equalizers to  compensate for the characteristics of an individual telephone circuit. 
We have observed asymmetries of up to  20 ms using different 9600-bit/s modems 
and standard telephone circuits. The equalizers may change the group delay from 
second to  second and degrade the stability of the OTM advance as well. This effect 
is observed as a large variation in the measured delay value from one message to  the 
next. If this effect is large enough, the server hardware may conclude that the client 
is not working properly and may revert to  the default advance of 45 ms. Other 
agencies, both in the United States and elsewhere, operate services that are quite 
similar to ACTS, and the accuracies are typically of the same order as we have 
discussed (19,20). 

There are also a number of protocols that transmit time information over local 
and wide-area packet networks. The Internet versions are usually two-way methods 
and use message protocols based on udp/ip or  tcp/ip. The most widely used is the 
Network Time Protocol (NTP), which is based on udp/ip (21,22). The accuracy of 
network-based time distribution is usually limited by the fact that both the total 
delay and its asymmetry are likely to  vary much more rapidly than for any of the 
other methods we have discussed so far, and the variations are often difficult to 
characterize statistically. As we might expect, these problems tend to become more 
serious as the network load or the distance between the client and the server in- 
crease. 

COMPUTER CLOCKS 

Most computers keep time using a combination of hardware and software. The 
hardware generates periodic interrupts, and the system responds to these interrupts 
by incrementing a register or memory location. Some systems simply add one to  the 
register at every interrupt so that the time is maintained in units of “ticks”; others 
increment the register by the nominal time interval between ticks. In either case, the 
time is kept with respect to  some arbitrary origin, and the conversion to the more 
conventional civil date and time is performed by the software whenever a time tag is 
requested. 

Some older machines used the zero-crossings of the input power line to gener- 
ate the time interrupts, so that the interval between ticks was 1/60 s (or 1/50 s in 
many places outside of the United States) or some multiple of this interval. Most 
newer machines use an internal quartz-crystal oscillator to  generate the interrupts. 
The size of each “tick” is on the order of milliseconds in most systems. This value is 
chosen as a compromise between time resolution, which would favor shorter peri- 
ods, and minimizing the time spent on interrupt service, which would favor fewer, 
less frequent interrupts. Some hardware environments provide much finer time 
resolution using ancillary hardware t o  interpolate between ticks and some software 
environments make this enhanced resolution available to user processes. It is also 
possible for a client process to interpolate between ticks using calibrated software 
timing loops. The accuracy of this strategy depends on the system load, but it is 
generally quite difficult to  reliably interpolate to better than about 5% of the tick 
period. 



Synchronization of Computer Network Clocks 289 

The raw accuracy and resolution of a computer clock set the lower bound on 
the uncertainty of the time tags that can be provided to a client process, but they are 
not the whole story. A client process normally requests a time tag in response to 
some event - the completion of an input/output request, for example. The delay 
between when the request for time is posted and when it is satisfied is a function of 
system load and operating system design, but it can be an appreciable fraction of a 
millisecond, even in lightly loaded systems. In some systems, requests of this type 
may be processed by a daemon process that is not started until the next clock 
tick, so that the average system latency may be 0.5 ticks, which is usually several 
milliseconds. 

It is possible to  minimize these latency issues by using a dedicated processor 
with a tightly controlled interrupt structure, but such configurations generally re- 
quire special-purpose hardware and software. Thus, although it may be technically 
feasible to synchronize the time of a general-purpose computer to substantially 
better than 1 x s,  this improved synchronization may not be available to the 
average client process without special, possibly heroic, measures. 

CHARACTERIZING CLOCKS 

The accuracy of the time of a clock is usually limited by two classes of problems: 

1. Phase noise, which is due to the fact that it takes a finite time to  transmit, 
read, or process a time-tag. The servicing of a timer interrupt can be 
delayed because the processor is busy doing something else, for example, 
so that the actual advance of the internal clock is late with respect to the 
hardware tick that triggered it. In an extreme case, the interrupt might be 
lost altogether. The clock would appear slow to a client in this situation. 
Alternatively, the request for a time tag may spend some time on a queue 
before it can be satisfied; in an extreme situation, an additional clock 
interrupt may be processed while the request is pending. The time tag that 
is returned in this case specifies a time after the event which triggered the 
request. The oscillator hardware can also contribute to the phase noise 
budget, due to jitter in the zero-crossing detector, for example. This con- 
tribution is usually small compared to the software issues we have just 
described. 
Frequency noise, which is caused by fluctuations in the frequency of the 
oscillator which triggers the time interrupts. The frequency fluctuations 
can be further separated into deterministic effects and stochastic effects. 
Examples of deterministic effects are frequency drift due to aging of the 
oscillator components or fluctuations driven by changes in the ambient 
temperature. Stochastic effects are of unknown origin and can only be 
characterized statistically. 

Although we can identify the different underlying causes of phase noise and 
frequency noise, it is far more difficult to separate the two in a real device. This 
difficulty arises from the fact that the frequency of the clock oscillator is not directly 
observable-we see it only through the time data, which average the frequency 
fluctuations over the interval between readings and which are, of course, also con- 

2. 
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taminated with phase noise at each reading. It is important to try to separate these 
effects for a number of reasons-identifying the noise type might suggest how the 
system might be improved, for example, but the most important reason is that there 
are optimum statistical procedures for dealing with each type of noise. Therefore, 
knowing the cause helps define the solution (23,24). 

Deterministic time or frequency offsets are relatively easy to detect and re- 
move. The limitation in how well this can be done is usually set by the magnitude of 
the corresponding stochastic components, so that understanding them is really the 
central problem of time synchronization. 

The underlying noise type can often be identified by examining how the power 
spectral density of the fluctuations varies with Fourier frequency. This description 
is particularly simple for most oscillators because the dependence on Fourier fre- 
quency can be approximated by a sum of five power-law processes (25): 

In this equation, Syu> is the power spectral density at Fourier frequency f and the 
parameters h, are the constant coefficients of its polynomial expansion. Each term 
in the expansion corresponds to a physical process: 

a = - 2 Random-walk frequency modulation 
a = - 1 Flicker frequency modulation 
a = 0 White frequency modulation 
a = + 1 Flicker phase modulation 
a = + 2 White phase modulation 

The adjectives, such as “flicker,” associated with each of the noise processes 
are formally defined by their association with a particular value of a,  but they are 
also descriptive of the underlying physical mechanisms that dominate each type of 
noise process. 

A “white” process implies that the corresponding parameter is a Gaussian 
random variable that can be completely characterized using a mean and a standard 
deviation. Consecutive observations are randomly distributed about the mean and 
are not correlated - knowing any number of previous values does not improve our 
ability to  predict the next observation. Both flicker and random-walk processes have 
some correlation between consecutive observations. They differ in degree. As we 
will discuss below, the next observation in a random-walk process is randomly 
distributed about the current value (rather than about the mean as in a Gaussian 
process). A plot of consecutive values therefore looks more like noise superimposed 
on a slowly varying function rather than like plain white noise. From the mathemati- 
cal point of view, this effect is due to the fact that the very lowest Fourier frequen- 
cies dominate the power spectrum. Although a number of models for flicker noise 
have been proposed, none of them provides a simple physical picture of the pro- 
cess-in some sense, it is simply intermediate between the random-walk and Gauss- 
ian processes and could be thought of as a mixture of the two. 

The first step in computing the power spectral density is to measure the time 
difference x between the clock being tested and some calibration signal at equally 
spaced times to, t i ,  . . . , t,, where tj = to + j A t .  The difference at  time ti is x(tJ) or 
just xJ. For the moment, we will assume that the calibration information is received 
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from a trusted source without degradation, so that our observations characterize 
the oscillator itself without the complicating effects of any noise in the transmission 
path. 

Our goal is to parametrize the spectrum as a polynomial in Fourier frequency 
and, in particular, to see if it is possible to divide the Fourier frequency domain into 
regions where the power spectral density in each region can be approximated by an 
equation of the form of Eq. (1) with only a single polynomial term. It turns out that 
this can be done for most oscillators so that, to a good approximation, we can 
speak of the Fourier regime in which the system is dominated by white frequency 
modulation, and so forth. This characterization is particularly useful because there 
is a statistically optimum strategy for dealing with each type of noise process (26).  

In order to decide which noise process is dominant in any Fourier frequency 
domain, we estimate the variation of the power spectral density there. More specifi- 
cally, we estimate the slope of a log-log plot of the power spectral density as a 
function of Fourier frequency. Conventional fast-Fourier transform techniques can 
be used to compute these estimates, but they are not optimum for this purpose 
because they provide estimates that are linear in Fourier frequency, which means 
that they provide much more information than is really needed to estimate which 
value of a dominates the spectrum, especially at higher Fourier frequencies. 

The Allan variance, usually denoted by u:(T), is an alternative, time-domain 
measure of the noise of an oscillator. It is proportional to the time-averaged value 
of the square of the second differences of xJ as a function of averaging time T, 
where 7 is some multiple of the sample interval A f .  Specifically, if there are N time 
differences, the Allan variance for an averaging time of 7 = kAt is (25) 

, = N - Z k  
1 

u ; ( k A f )  = 
2 ( N  - 2 / ~ ) ( k A f ) ~  

c 
i = I  

It is most useful for this discussion because its variation with sampling time T can 
also be approximated by a polynomial expansion in 7: 

If the expansion of the spectral density in Eq. (1) can be approximated by a single 
term, then the expansion of Eq. (3) becomes a single term as well. If a I 1, the 
exponents of the single surviving terms in each expansion are related by a = - p - 1 
so that determining p determines a and allows us to identify the underlying physical 
process that dominates the stochastic variation. [If a > 1, the one-to-one relation- 
ship between a and p can be preserved by computing the “modified” Allan variance 
as described in the literature (25,27).]  

The relationship between a and p assumes that the xJ are measurements of a 
clock whose time differences with respect to the calibration source are dominated 
by stochastic effects. A statistically significant peak in the Fourier spectrum will add 
complexity to the Allan variance for averaging times comparable to the inverse of 
its Fourier frequency. Neither the spectral density nor the Allan variance will obey 
the simple polynomial expansion we have assumed for it in the vicinity of the 
spectral peak, and the methods we will discuss are not really appropriate to deal 
with it. Statistically significant peaks are generally caused by some well-defined 
source (diurnal variations in ambient temperature, for example), so that dealing 



292 Synchronization of Computer Network Clocks 

with these effects means either attenuating the cause of the fluctuations or measur- 
ing them and removing their effects from the data. 

The general principle, which underlies most of the following discussion, is that 
averaging a quantity will only be an optimum strategy when its underlying noise 
spectrum is white, and these sorts of analyses delineate the time-domain regime in 
which such averaging converges to  a statistically robust estimate of the underlying 
physical parameter and is therefore appropriate. (Averaging will also attenuate 
bright lines in the noise spectrum and may remove them completely if the averaging 
period exactly matches the period of the perturbation. This in not the optimum way 
of doing this in general because it depends on an exact match between the averaging 
and noise periods and will fail if the phase of the noise is not stable. Standard 
regression and correlation techniques will usually do  a better job.) 

The coefficients in the polynomial expansion for the spectral density tend to 
vary very slowly in time, so that the evaluation procedure need not be repeated very 
often. The parameters vary somewhat among nominally identical machines, and we 
have found a much larger variation between machines made by different companies. 
Although all of these companies use clocks that are driven by quartz-crystal oscilla- 
tors, the quality of the clocks varies widely. As we will show, an optimum statistical 
procedure can get the best the hardware can deliver, but there is really no way to  
make a good clock from low-quality hardware. 

SYNCHRONIZATION STRATEGIES 

We now turn to the principal topic of this article-how to combine calibration data 
from a time server with the current reading of the local clock so as to  optimize the 
accuracy of the time on  the local machine. The basis of our strategy is “separation 
of variance,” by which we mean extracting from the calibration signal information 
only in the Fourier frequency domains where its performance is better than that of 
the local clock. Our primary tool is the power spectral density as a function of 
Fourier frequency or, equivalently, the Allan variance as a function of averaging 
time. 

The Statistical Characteristics of Clocks 
Figure 1 shows the square root of the Allan variance (often called the Allan devia- 
tion) as a function of averaging time for two typical computer clocks. These plots 
are computed as discussed earlier: The time difference between the local clock and 
some external calibration signal is periodically measured, and the Allan deviation is 
the square root of the variance computed using Eq. (2). The points plotted using 
“+” are for a relatively good clock, whereas those plotted using “*” were obtained 
from a computer with a much poorer quality oscillator. In both cases, the data can 
be divided into three regions, each of which is approximately characterized by a 
single slope when the data are plotted on a log-log plot as a function of averaging 
time (as is done in Fig. 1). These slopes are indicated in Fig. 1 by straight lines 
drawn through the observations obtained from the better device, whose data follow 
the model quite closely. 

The slope of the deviation at short times is -1, so that the variance would 
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FIGURE 1 Allan deviations of free-running computer clocks. The points plotted using 
“+” are typical of better clocks, whereas those plotted using “*” are typical of machines with 
lower-quality oscillators. The reference lines drawn through the points have slopes of - 1, 
-0.5, and 0 as discussed in the text. (Based on data from Ref. 28.) 

have a slope of - 2 .  Using the results of the previous section, we see that the 
dominant noise process in this domain is white or flicker phase modulation. A 
computation of the modified Allan deviation shows that the process is, in fact, 
white phase modulation. Physically speaking, the noise in the data is due to the 
noise introduced by the measurement process itself rather than by fluctuations in 
the underlying frequency of the device. It would be a mistake to use these time 
difference data “as is” to adjust the clock because the underlying frequency of the 
clock is more stable than the observed fluctuations in the time data would indicate. 
Because the observed time differences show a nearly white spectrum, an underlying 
mean time difference exists and is well defined statistically. The average of consecu- 
tive data points converges to and provides an unbiased estimate of this mean, and 
the standard deviation of the estimate of the mean will improve as more data are 
included in the average. The most accurate way to read the time of this clock is to 
compute the average of many closely spaced observations. 

It is important to remember that what we are discussing here is dealing with 
stochastic effects - by definition, the Allan variance is insensitive to a static fre- 
quency offset even though such an offset produces monotonically increasing time 
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differences and must be removed. The averaging process that we have described in 
the last paragraph must therefore be performed on time-difference data from which 
a mean slope has been subtracted. The physical significance of this mean slope is 
the static frequency offset of the clock; we determine this parameter as discussed 
below. 

As the averaging time increase, we soon find that this strategy no longer works 
well. The slope of the Allan variance is now more like - 1 ,  which means that it is 
white frequency noise that is now the dominant problem. Physically speaking, aver- 
aging the time-difference data has reduced the measurement (phase) noise to the 
point that the time-difference data are now dominated by the random fluctuations 
in the frequency of the oscillator itself. The time differences, which are the integral 
of the frequency over the averaging time, are no longer white, and a simple average 
of them over this longer averaging time is now the wrong thing to  do-in other 
words, a mean time difference and a constant rate offset no longer suffice to  
characterize the observations. 

The frequency, on the other hand, is now a white random variable, so that its 
mean is now well defined statistically. The average of consecutive frequency esti- 
mates would now converge to the underlying mean frequency without bias. The 
frequency estimate at time tj (wherej > 0)  isf, and is computed using 

The average after N estimates, denoted by F N ,  is computed using the usual method: 
, J=N FN = - I f,. 

N j = l  
[51 

It is often useful to compute the estimates of the average frequency as the time 
differences are obtained, in which case the average can be rewritten in the recursive 
form 

or 

FN-I  + G f N  
F N  = 

l + G  ' 
[71 

where 

Note that the parameter G ,  the weight of the Nth estimate in the average, tends to 0 
monotonically as the number of observations increases. This happens because the 
Nth estimate represents a smaller and smaller fraction of the total number of obser- 
vations, all of which have equal weight in the white-noise regime. 

As in the previous situation, the standard deviation of the mean of these 
estimates improves as more estimates are added. It is important to  remember that 
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what we are estimating is the underlying mean frequency of the device so that these 
data must be used in a frequency-lock loop. The phase noise is no longer a white 
random variable at these averaging times, so that a phase-lock loop can no longer 
be used in this time domain-the averaging implied by the integrator in such a loop 
no longer converges to an underlying, well-defined mean value. 

As we discussed earlier, the average offset frequency of the clock must be 
removed from observations in the white phase noise domain if the average is to 
converge to a statistically robust mean value. The average frequency, however, can 
only be determined using observations in the white frequency noise domain, so that 
the frequency of the device must usually be determined first before the phase data 
can be properly averaged. This results in a startup procedure that is perhaps coun- 
terintuitive- an uncharacterized clock must be allowed to free-run for several thou- 
sand seconds so that its frequency can be determined in a robust manner (28). 
During this evaluation process, the clock will drift off-time, of course, so that the 
algorithm appears to be doing nothing. This free-running evaluation is usually not 
needed on subsequent cold starts, as the previously estimated frequency is usually 
adequately accurate for the averaging procedure to converge. 

As before, the strategy of averaging the frequency estimates begins to fail at 
longer times - the frequency average no longer predicts the time performance of the 
clock. Physically speaking, consecutive frequency estimates of the oscillator can no 
longer be characterized as having an underlying mean value. We could think of this 
as frequency “drift” or “aging,” but these terms imply a deterministic, predictable 
effect, whereas what we observe might be better characterized as a slow “wander” 
of the frequency with no discernible mean value. 

The wander is often approximated as a “random walk.” At each instant, the 
frequency evolves by adding a small increment to its current value, where the sign 
of the increment is random. The best guess for where the frequency will be in the 
next instant is, therefore, the current value with no averaging of older data because, 
by assumption, the possible suite of next values is symmetrically distributed around 
the current value. The mean value of such a process is zero because negative and 
positive steps have equal probability, but consecutive values are clearly correlated in 
a way that is not present for a normal Gaussian process. 

As in the previous case, the transition between the different domains of aver- 
aging time is gradual rather than sharply defined, and the previously optimum 
strategy becomes increasingly less optimum as the averaging time increases. As the 
averaging time increases, the frequency estimator must cope with this transition by 
starting to “forget” older estimates, until, in the limit, all older estimates are forgot- 
ten and only the most recent measurement is used. 

One way of achieving this transition is to change the definition of G in Eq. (8) 
so that it remains finite as N increases. It is relatively easy to show that Eq. (7) 
implies that approximately 1/G values make a significant contribution to the current 
estimate of the average; keeping G finite, therefore, weights more recent data more 
heavily than older values. Using this picture, the value if G is determined so that the 
time interval needed to acquire l / G  observations is roughly the point at which the 
dominant noise process begins to deviate from white frequency noise. In other 
words, the averaging time At/G corresponds approximately to the “break” in the 
slope of the plot of the Allan variance as a function of averaging time (28). 
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Things can get even worse at very long averaging times, as can be seen at the 
right side of Fig. 1. The slope is approaching + 1 ( + 2  for the variance), so that the 
frequency no longer evolves symmetrically around the current value, and the current 
state begins to lose its ability to predict the future. Physically speaking, there have 
been so many random frequency steps during these long averaging times that the 
frequency at the end of the interval bears essentially no deterministic relationship to  
the value at the start. Although this sounds like our description of a Gaussian 
process, in that the previous values do  not have any power to  predict the future, the 
similarity is misleading. A Gaussian process is bounded on the average to  variations 
about the mean that are only of the order of the standard deviation, whereas this 
process has no such constraint and has much wider tails. 

The slope of the Allan variance specifies the best strategy at any averaging 
time, but it is its magnitude that specifies how well the strategy will work in any 
given device. The variance of the mean of a white process improves as the number 
of observations contributing to the average increases, but this improvement is, 
of course, with respect to the variance of a single observation. The cost of the 
synchronization process clearly also increases with the number of observations, so 
that any real implementation must balance the level of accuracy that can be achieved 
with a given clock against the cost of achieving it. As we discussed earlier it is often 
difficult to  utilize the full potential of very accurate time tags because of latency and 
other system delays, so that there is no point in pushing synchronization to accura- 
cies that will not be useful in a general-purpose environment. 

In lower-accuracy applications, these considerations can be run in reverse - 
they can be used to determine the minimum cost for achieving a specified level of 
accuracy. Specifically, the product of the Allan deviation and the averaging time is a 
rough estimate of how well a synchronization algorithm can work using calibrations 
separated by a time interval equal to  that averaging time. Physically speaking, the 
Allan deviation is a measure of how well a previous frequency estimate (computed 
using a given averaging interval) will predict the performance an equal interval into 
the future. The product of this quantity and the time interval is a measure of how 
far the time of the clock will drift during the interval due to the imperfect nature of 
the prediction. A more rigorous derivation shows that this product must be scaled 
by a number that is a function of the underlying noise type. This number is typically 
of order 1 and so does not change the general conclusion. 

The Allan deviations of the two clocks whose data are shown in Fig. 1 are 
about the same at the shortest averaging times because the measurements are limited 
by white phase noise there. As we have discussed, this noise arises primarily from 
the measurement process and not from the statistics of the clock oscillator itself: 
The main contributions to  the variance come from latencies in reading the time and 
in responding to interrupts. Therefore, the deviations at shortest periods tell us more 
about software latency (and possibly clock resolution) than about hardware quality. 

The quality of the oscillator becomes important at longer averaging times, and 
it is here that the difference between the two systems becomes significant. The 
poorer oscillator leaves the white phase noise regime earlier, and its levels of flicker 
and random-walk frequency modulations are higher. There is a suggestion of a 
slight peak in the observations near an abscissa of 4.7, which is probably due to  
fluctuations in ambient temperature (or possibly power-line voltage) at approxi- 
mately diurnal periods. 



Synchronization of Computer Network Clocks 297 

The Statistical Characteristics of Calibration Data 
The second half of the technique of separation of variance is to characterize the 
calibration channel using the same method that we used for the clock oscillators. 
The ideal calibration channel would be one whose transmission delay was both 
known and stable to a fraction of a millisecond, so that its fluctuations could be 
ignored in the overall error budget of the system. The solution to the synchroniza- 
tion problem is relatively straightforward in this situation. The accuracy that can be 
realized is determined solely by the white phase noise of the oscillator-that is, by 
the unavoidable fluctuations in the delays associated with the measurement process 
itself. Because the calibration channel is essentially noise-free, we would focus on 
the properties of the oscillator alone and design an algorithm using the principles 
outlined in the previous section. 

The same kind of results can be achieved even if the channel noise is not 
negligibly small, provided only that it can be characterized as white phase noise at 
all averaging times. This is the “best” kind of noise to have because an underlying 
mean time difference exists and can be estimated arbitrarily well by averaging in- 
creasing amounts of data. The effect of increasing the white phase noise in the 
channel is, therefore, predominantly a matter of cost rather than accuracy. It simply 
takes more data from a noisier channel to achieve a given level of performance. The 
calibration rate must be set fast enough in order that the required averaging can be 
realized in a time that is short enough that the oscillator noise is also dominated by 
white phase noise. This region can be rather small for low-quality oscillators, which 
tend to have rather high levels of random-walk frequency noise. 

If the channel noise is high enough, it may dominate the noise budget for 
almost all averaging times. The optimum strategy is clear in this case-the local 
oscillator should be allowed to free-run until the averaging of the channel data 
causes its variance to fall below the free-running variance of the oscillator itself, and 
only then should a correction be applied. The resulting short-term performance may 
be quite poor in this case, but that is the best that can be accomplished using the 
data at hand - a faster correction time will degrade the clock stability by introducing 
channel noise into its free-running performance. Although this situation may seem 
pathological, it is, in fact, common-a good quartz-crystal oscillator is likely to be 
substantially quieter than most digital channels for averaging times on the order of 
seconds or less, and letting the oscillator free-run at short times is almost always the 
best strategy for this reason. 

The situation is more complicated when the channel noise is not white phase 
noise at all averaging times. Many channels exhibit this rather unfortunate behavior. 
The principle is the same in this case: The channel data should be used only in those 
regions of the Fourier frequency domain where its noise is less than the free-running 
noise of the oscillator itself. The details will depend on the specific situation, but 
there are some characteristics that tend to be common to many situations. The local 
clock is usually better than the channel at short times-on the order of a few 
thousand seconds or less, and making a loop that tries to apply corrections much 
faster than this is quite likely to add phase noise. Conversely, the channel is almost 
always better than the local clock at very long averaging times (assuming that the 
reference at the other end is that good, too) because its variations are bounded and 
the Allan variance of its fluctuations must eventually decrease at sufficiently long 
averaging times. The intermediate period-on the order of a few hours-is usually 
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the most difficult region because the variance does not separate cleanly. Both the 
clock and the channel tend to  have appreciable noise in this region of Fourier 
frequency, and there is no obviously optimum solution. Multiple clocks and chan- 
nels may help here by providing a way of independently estimating the performance 
of each device, and this leads naturally to a discussion of ensembles. 

ENSEMBLES OF CLOCKS 

In the simplest arrangement, a clock to be synchronized receives timing information 
from a single trusted source via a (possibly) noisy channel. The difference between 
the time received and UTC is a random variable with a complex statistical distribu- 
tion, but no long-term bias. 

This configuration places a heavy load on  the calibration source, especially if 
the measurement procedure involves some kind of active collaboration between the 
client and the server to  estimate the propagation delay. In addition, this topology 
has a single point of failure, and the lack of redundancy makes it difficult to 
evaluate the accuracy of the received data. 

One way of adding redundancy is to connect each client to several trusted 
sources - through independent channels, if possible. Two sources provide minimal 
redundancy and three sources provide the ability for error detection using majority- 
voting logic. These multiple connections are expensive in terms of the number of 
servers that are required to  serve a given number of clients. 

Some of the same redundancy and error detection can be realized by using 
data from other client machines (rather than from other servers), provided that 
these data can be combined in a statistically robust manner. The logical extension 
of this idea is an ensemble. Each member of the ensemble queries the others, 
requesting a time-difference datum. These time differences are corrected for any 
known systematic effects (such as a known rate offset, for example), and the result- 
ing data are combined into a weighted average to  yield an estimate of the time 
difference between the machine and the ensemble. 

This averaging procedure is a statistically valid process if the data being aver- 
aged are randomly distributed about an underlying mean, and this will be true only 
if any systematic effects have been removed first. This is an imperfect procedure, of 
course, because the systematic offsets must be estimated from the data themselves 
in the presence of the noise processes we have described. 

Each member of the ensemble is initially given equal weight in the computa- 
tion of the average, but these weights are usually adjusted dynamically based on the 
subsequent measurements. One way of doing this is to set the weight of a given 
contributor equal to the reciprocal of the prediction variance of its data (29). In 
other words, a machine whose data exhibit a smoothly varying time difference with 
respect to the ensemble average is given high weight, as its data can be characterized 
by a simple rate offset with respect to the ensemble. We recognize this criterion as 
related to the Allan deviation of the time of the machine with respect to  the ensem- 
ble average, so that the weights can also be characterized as proportional to  the 
reciprocal of the corresponding Allan variances. The observation that the time 
difference of a particular clock with respect to  the ensemble is smoothly varying is, 
of course, a statement about its level of phase noise in short term and frequency 
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noise at longer term, so that a clock that is given higher weight in the ensemble is 
“better” in the ways that we have discussed earlier. The sum of the weights of all of 
the clocks in an ensemble must be normalized to unity, of course, so that it is the 
relative Allan variances of the members that are important. 

One of the primary advantages of an ensemble is that there is no single point 
of failure. Another is that it is usually easier to detect the failure of a single machine, 
as the ensemble average is likely to provide a more robust baseline for this test than 
the data from any single member machine. These advantages do not come for 
free. The software is considerably more complex, and casual associations are not 
feasible-each member must know all of the others and must maintain state infor- 
mation for each. Each estimate of the ensemble time requires that each of the N 
members request N-1 time differences, so that the network traffic to support the 
ensemble grows as N 2 .  (The network traffic could be reduced by having these 
computations done in a single “master” machine, but this reintroduces a point of 
congestion and a single point of failure.) 

We introduced the concept of an ensemble as a way of providing additional 
redundancy and error detection without the need for additional trusted time-servers. 
It is also possible to operate an ensemble without any primary time-servers. Each 
member of the ensemble is steered t o  the ensemble time, which is computed from 
the weighted average of the times of each of the members. If there is no external 
input, the actual ensemble average is arbitrary; this procedure will only guarantee 
that the times of all of the members agree-not necessarily that the ensemble time 
scale will have any relationship to UTC either in time or in rate. 

This procedure will converge to  a meaningful quantity if the times of the 
members are uniformly distributed about the ensemble average time with the devia- 
tions being characterized by white phase noise. Any systematic rate or time offsets 
must be removed before the average is computed; these systematic effects are usu- 
ally estimated from the time differences themselves, and these estimates have inevi- 
table uncertainties due to the noise inherent in the estimation process. 

The time of each member clock in an ensemble is likely to be dominated by 
nonwhite processes at longer averaging times, and the ensemble average is likely to 
have the same statistical behavior. Thus, the frequency of the ensemble is likely to 
exhibit a random walk with respect to UTC at long averaging times, but this random 
walk will only characterize the behavior of the ensemble as a whole-the ensemble 
algorithm will keep the members synchronized to the average and, thus, to each 
other. This strategy might therefore be useful in a distributed environment where 
keeping the times of different machines synchronized to  each other was more impor- 
tant than keeping them synchronized to UTC. 

If the ensemble has only a few members and if one of them has significantly 
more weight than all of the others, then malfunctions in this clock (and especially 
changes in its frequency) may be very hard to detect. The ensemble tends to “follow” 
this clock because of its high weight, and the prediction error of the clock tends to 
be too small as a result. Therefore, any change in the parameters of the high-weight 
clock look like a change (with opposite sign) of the parameters of the other mem- 
bers. One solution is to  limit the maximum weight that any member can have in the 
ensemble average; another is to compute the weight of a high-weight clock explicitly 
including the correlation between it and the ensemble average (30). 

It is also important to keep in mind that each clock “sees” each of the other 
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members through a different, usually noisy channel. This noise must be taken into 
account using the procedures that we have outlined above. If the channel noise is 
asymmetrical or time varying and if each member computes its own ensemble aver- 
age (to avoid a single point of failure), then the different computations may not see 
the same channel noise and may not agree as a result. The “ensemble average” is 
then not a well-defined quantity, but it may still be more stable than a simple client- 
server estimator using the same paths because the averaging process will attenuate 
the random component of the fluctuations. 

RESET PROCEDURES 

All of the methods we have been describing are based on the premise that it is 
possible to  separate a data stream into two components - a deterministic portion 
derived from estimates of time and rate offsets, and a residual stochastic fluctuation 
than can only be described statistically. Many clocks and channels also exhibit 
occasional “glitches”- large deviations from the average statistical behavior. Such 
data could be treated as low-probability conforming events, but it is usually better 
to treat them as nonconforming glitches and to  develop a special algorithm for 
handling them. The motivation for doing this is not philosophical but practical- 
the prediction error is improved on the average by this procedure. 

The simplest glitch is a time step-a lost clock-interrupt, for example. It takes 
a minimum of three machines to detect the step and unambiguously decide which 
machine is at fault; therefore, glitch detectors are generally feasible only when some 
sort of ensemble software is being used or when one of the machines is a trusted 
server that is “never wrong.” 

The case for a time step is quite strong if a time-difference datum differs from 
what we would have expected based on our prediction algorithm by an integral 
number of ticks. This identification also depends on the assumption that the differ- 
ence is large compared to our estimate of the variance of the data, so that we can be 
reasonably confident that what we are seeing is really a glitch. The glitch must, 
therefore, be large both with respect to  the phase noise of the clock and with respect 
to the frequency noise multiplied by the averaging time. Because the latter quantity 
increases with averaging time, time steps are easier to  detect if the averaging time is 
kept short. 

Frequency steps - discrete changes in frequency that are considerably larger 
than would be predicted from the Allan deviation-are much more of a problem. 
Because we observe the time of the clock (rather than its frequency), it can take 
some time before the frequency step produces a noticeable time offset. Frequency 
steps are obviously easier to detect if we are willing to average for a longer time, 
provided that they remain larger than the Allan deviation at the longer averaging 
time. 

The situation is even more complicated if a frequency step and a time step 
happen at about the same time-the two effects will be eventually sorted out with 
additional data, but the resulting delay means that the system is not operating 
properly for some time. 

One possible strategy is to treat all glitches as time steps initially. The best 
strategy for a time step is to adjust the time of the local clock to remove it. (This 
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adjustment can be done slowly or quickly, depending on the needs of the client 
processes - whether smoothness or accuracy are more important considerations.) If  
the glitch recurs on the next cycle, then a frequency step is probably the cause, and 
some adjustment to the prediction frequency is necessary. 

Any approach to dealing with resets must be somewhat heuristic, because, by 
definition, they are events that cannot be characterized by some statistical function 
or distribution. A common strategy is to set the trigger for invoking the reset logic 
at three or  four times the standard deviation of the measurements. With this kind of 
definition, the number of resets is independent of the quality of the clock-poorer 
clocks have larger standard deviations, so it takes a bigger glitch to trigger a reset. 
With these parameters, a typical clock will trigger the reset logic about once every 
500 readings in normal operation (28). 

The reset logic also has an impact on the interval between calibration cycles. 
As we discussed above, time steps become easier to detect as the time between 
calibrations is made shorter. Depending on the needs of the client processes, this 
consideration may drive the interval between calibrations to a very short value- 
much shorter than would be appropriate based on the statistical considerations we 
have discussed. Synchronizing a clock which has many time steps may require two 
types of calibration cycles - a relatively frequent set to test for time steps and a less 
frequent subset that is used to evaluate the statistical parameters of the oscillator. 

FOREGROUND AND BACKGROUND PROCEDURES 

The simplest synchronization procedure is for the primary foreground process that 
needs a time stamp to simply request one from the calibration channel and to use it 
either directly in the time-sensitive algorithm or indirectly to set the local clock to 
UTC. There are a number of widely available protocols that can be used in this way, 
including all of the broadcast services and the telephone time services such as ACTS 
and its relatives which were described earlier. There are also a number of internet 
protocols that are intended for this type of service. Some examples are the daytime 
(31) and time (32) protocols. These programs are often invoked automatically dur- 
ing the bootstrap process. 

The accuracy of a time stamp received in this way is limited by the phase noise 
of the channel, and a clock set using this time stamp immediately begins to drift off 
the correct time at a rate given by its frequency offset. This rate offset is typically 
on the order of seconds per day, which is equivalent to milliseconds per minute. 
Unless the time stamp needs only to  be accurate to the nearest second, the local 
clock will drift off rather quickly, and frequent calibrations will be necessary. 

There are significant advantages to running a time-synchronization process 
continuously in the background as a “daemon” process. Because the process runs 
continuously, it can correct for the static rate offset of the local clock by making 
small time corrections which are invisible to the primary foreground activity. These 
corrections do not require additional calibrations and are made using the average 
frequency offset determined from previous measurements. In addition, such a pro- 
cess would schedule periodic calibration cycles to update its frequency estimate. 

The accuracy of this procedure would be limited not by the static frequency 
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offset of the clock but by its (usually much smaller) Allan deviation evaluated at the 
interval between calibrations, because this value determines the fluctuations in the 
underlying frequency and, therefore, how well the static-frequency correction algo- 
rithm will work. Physically speaking, the gain in efficiency arises from the fact that 
although the rate offset of the local clock may be large, it is usually quite stable and 
predictable- or at least its stochastic component is much smaller than its static 
value. Once the steady-state operation has been reached, the calibration information 
is used primarily to determine the fluctuations in the rate offset and not the offset 
itself. 

The Network Time Protocol that was mentioned earlier is widely used as a 
daemon process. The daemon actually consists of a number of logically independent 
procedures: a message format for interchanging time and clock-status information 
using udp/ip; a clock adjustment algorithm that applies periodic corrections to the 
local clock based on the information received and a daemon process that selects 
the servers, schedules the calibrations, and provides housekeeping functions. The 
algorithm can operate using a number of different calibration sources, including 
locally-connected radio clocks and network-based sources of time. In addition to 
synchronizing the local clock, the algorithm can act as a server, transmitting time to 
other client machines on the network. 

The second algorithm is “Lockclock.” The published version (28) is designed 
to  work using calibration data from the NIST ACTS telephone system, but it could 
be readily adapted to any other calibration source. 

The principle difference between the two is that NTP is fundamentally a 
phase-lock loop with a variable compliance and Lockclock is a frequency-lock loop 
with an adjustable averaging time [the “G” parameter of Eq. (7)]. Using the consid- 
erations discussed above, it is clear that Lockclock can provide comparable perfor- 
mance to NTP with less frequent calibration data, because NTP must operate in the 
white phase noise regime of averaging times, whereas Lockclock operates in the 
white frequency noise portion of the spectrum. The NTP algorithm, on the other 
hand, is better able to cope with noisy channels or poor clocks-especially when the 
noise is not the relatively well-behaved white phase noise that dominates the ACTS 
data. As should be clear by now, there is no uniformly optimum choice between the 
two methods. 

The methods we have discussed can also be used to evaluate any synchroniza- 
tion procedure. The ultimate limit of any procedure is the white phase noise associ- 
ated with reading the clock itself - this noise is a characteristic of the clock hardware 
and the latencies in the host software and cannot be changed by the synchronization. 
Therefore, an optimum synchronization procedure is one in which the residual time 
differences between the clock and a trusted source transmitted via a noise-free 
channel are characterized by white phase noise at all averaging times. As above, this 
test can be implemented by computing the spectral density of the residuals using 
conventional Fourier methods, but it is usually easier to  implement it by computing 
the Allan variance as a function of averaging time for the reasons we discussed 
earlier. 

Figure 2 shows the Lockclock algorithm evaluated in this way. The time of the 
“better” clock shown in Fig. 1 is synchronized using it, and the time of the synchro- 
nized clock is compared to UTC using an independent, quiet channel. Comparing 
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FIGURE 2 Allan deviation of a computer clock synchronized to ACTS using the Lock- 
clock algorithm as described in the text. The reference line drawn through the points has a 
slope of - 1, which is characteristic of white phase noise. See Fig. 2 of Ref. 28. 

the Allan deviation in Fig. 2 with the values in Fig. 1 illustrates the point and 
shows what a synchronization algorithm can and cannot do - there is essentially no 
improvement at the shortest periods because the algorithm cannot deal with the 
underlying white phase noise of the clock measurements. This noise might be mini- 
mized by averaging closely spaced time readings. Because the synchronization accu- 
racy is already on the order of 1 ms with the simpler version of the algorithm, the 
improvement that this averaging could realize would be unlikely to be reflected in 
any increase in the accuracy of the time tags that could be delivered to client 
processes because of the inherent latency in reading the clock by a client process. 
Note the improvement over the unsynchronized clock at longer times and that the 
slope of the Allan variance continues to show that white phase noise dominates at 
all averaging times. The algorithm is, therefore, doing as well as can be done with 
the hardware and software at hand. 

It is important to understand that the Lockclock algorithm could realize the 
same synchronization accuracy with the poorer clock shown in Fig. 1, because the 
limit to the synchronization accuracy is set by the level of white phase noise at the 
shortest times, and both clocks are essentially equivalent there. The difference 
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would be in the cost - the breakpoint in the Allan deviation plot for the poorer clock 
is at a smaller averaging time so that At/G must be smaller as well. Therefore, the 
clock would need more frequent calibrations to achieve the same level of perfor- 
mance. 

FUTURE DIRECTIONS 

The separation of variance principles we have discussed are optimum in the sense 
that they describe a framework that can be used to design an algorithm to synchro- 
nize a clock as well as can be done with the hardware and information at hand or, 
alternatively, to  find the minimum cost for achieving any lower level of synchroniza- 
tion. The method cannot be of much help in those Fourier domains where the 
variance does not separate cleanly- where it is not clear how much of the variance 
in a given region of Fourier frequency belongs to the local clock (and should there- 
fore be removed by a time adjustment) and how much to the channel (and should 
therefore be averaged, otherwise attenuated or ignored). This problem tends to  be 
most serious at intermediate periods on the order of several hours to 1 day, where 
almost all of the commonly used distribution channels have fluctuations in the 
propagation delay that are not white and often not even statistically stationary. 
Finding ways of characterizing these delays is an active research area at present. 

If robust statistical measures can be found to characterize both the clock and 
the channel for all averaging times, then it may be possible to combine these mea- 
sures into a single process which estimates both the channel noise and the clock 
performance simultaneously. The Kalman filter algorithm (33) provides a mathe- 
matical framework for doing this; its success depends on how well the statistical 
formulations can characterize the real-life performance of the hardware. As an 
example, Jones and Tryon (34) used the Kalman filter method to  estimate the time 
of cesium clocks. 

A second area of interest is the design of protocols that combine the simplicity 
and transmission efficiency of the one-way broadcast methods of time distribution 
with the increased accuracy than can only be achieved with two-way methods that 
measure the propagation delay directly. One way of accomplishing this might be to  
have a time-server that broadcasts time messages and is also willing to  enter into 
two-way peer-type relationships for calibrating the delays to  a number of individual 
clients. The broadcast and two-way modes could be supported simultaneously in the 
same hardware. Clients who did not need the increased accuracy that can be 
achieved by measuring the delay or who are unable to invest in the overhead needed 
to  determine it could simply use the broadcast message “as-is,” whereas those who 
need a measured-delay mode would use the broadcast message to  discover the name 
and address of the server and to make a preliminary estimate of their time offset. 

Experience with the ACTS system suggests that only a small fraction of the 
clients use the two-way estimate of the propagation delay of the telephone system 
and that a simpler one-way system would adequately meet their needs. The contin- 
ued popularity of the NIST radio broadcasts, which are simple one-way distribution 
systems, also confirms this idea. On the other hand, there is an increasing number 
of users who need more accuracy than can be provided by a simple one-way system, 
and finding ways of serving these customers economically is an important challenge 
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for the future (35). Satellite-based time services may provide part of the answer, but 
these are still quite costly to implement if many machines must be synchronized or 
if the antennas cannot be installed economically. 
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