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Velocity Distributions Calculated from the
Fourier Transforms of Ramsey Lineshapes

Jon H. Shirley

Abstract—A computerized method for finding velocity distribu-
tions from the Fourier transforms of Ramsey lineshapes has been
developed. Experimental and numerical tests of the method show
that it works very well for broad distributions and lineshapes
where the drift time is much longer than the excitation time.
The method is routinely used to find velocity distributions for the
primary frequency standard NIST-7. The second-order Doppler
shift is calculated from these distributions with an uncertainty of
a few tenths of 1 percent.

Index Terms—Fourier transform, frequency standard, NIST-
7, Ramsey lineshape, second-order Doppler shift, transit time,
velocity distribution.

I. INTRODUCTION

W HEN AN atomic resonance is observed using the
method of separated oscillating fields [1], the resulting

interference resonance curve is called a Ramsey lineshape
or Ramsey fringe. An early paper by Daams [2] first sug-
gested that information about the atomic velocity distribution
is contained in the Fourier transform of such a Ramsey
lineshape. The idea was further developed by the author with
the inclusion of data taken at different excitation powers [3].
Considerable experience in using the method has now been
obtained using both theoretical and experimental data.

A similar method was developed independently by Jarvis
[4]. He also starts with Ramsey lineshapes at several pow-
ers, but uses a lineshape-specific transform, rather than a
Fourier transform. This introduced some ambiguities. Other
methods for obtaining velocity distributions are based on
pulsed microwave excitation [5], [6] or power dependence
of the signal [7]. These methods use experimental data of
less accuracy. Hence they cannot obtain the precision required
for NIST-7. With optically-pumped standards a direct time-of-
flight method can be used [8]. It agrees well with the present
method, but requires correction for the frequency response of
the detector.

We describe below the basic theory of our method and first-
order corrections. The effect of the Rabi pedestal is discussed
briefly. We then describe results of several tests made with the
method. Finally we describe how the second-order Doppler
correction is obtained from the transit-time distribution.
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II. BASICS OF THE METHOD

A. The Fourier Transform Relation

We consider an atomic beam spectrometer with a horizon-
tal thermal beam traversing two identical excitation regions.
When the drift region length is much longer than the
excitation region length the Ramsey lineshape can be
represented approximately by the expression [1]

(1)

Here and are the transit times for an atom of
velocity across the excitation and drift regions respectively,

is the Rabi frequency (proportional to the microwave field
strength), and is the detuning of the exciting
frequency from the atomic resonance frequency The

factor represents the Rabi excitation probability
for the two excitation regions without a drift region. The

factor introduces the interference developed during
the drift time between excitations. The atomic velocity average
is represented by the integral over the distribution of
transit times Two sample Ramsey lineshapes are shown in
Fig. 1.

If we use the half-angle formula to expand the interference
factor in (1), we obtain

(2)

(3)

where is the Ramsey fringe pattern and is the
underlying Rabi pedestal. The coefficientis an abbreviation
for For a distribution of finite width,
approaches 0 for large Equation (3) shows that the Ramsey
fringe pattern is just the Fourier cosine transform of the
transit-time distribution times the transition probability [3]. By
inverting the transform we can recover the integrand. Fig. 2
shows the inverted transforms of the lineshapes shown in
Fig. 1.

To recover the transit-time distribution alone, we must
divide the inverse Fourier transform of by the transition
probability. There are two difficulties in doing so. First, the
transition probability is very small for certain transit times
making the result of division inaccurate. Second, the transition
probability is not well known because the Rabi frequency
is not well known. It can be determined approximately from
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Fig. 1. Experimental Ramsey lineshapes for NIST-7. (a) 1.85 dB above optimum power. (b) 3.13 dB below optimum power.

Fig. 2. Fourier transforms of the Ramsey lineshapes shown in Fig. 1. (a) 1.85 dB above optimum power. (b) 3.13 dB below optimum power.

the value of that makes the transition probability
vanish. But, as Fig. 2(a) shows, is not well determined
either. These difficulties will be resolved in the next section.

B. Use of Multiple Ramsey Lineshapes

The transform of a single Ramsey pattern gives an incom-
plete picture of since the factor suppresses
information about near To complete the
picture we use Ramsey fringe data at different microwave
excitation powers (different values). In these data, infor-
mation about different regions of will be suppressed. We
adopt the criterion that data will not be used in regions where

is less than a cutoff value typically 0.25. Fig. 3
illustrates how the powers used for taking Ramsey lineshape
data with NIST-7 then cover the range of The solid bars
show the regions in where the Ramsey fringe at that power
provides information about the velocity distribution. The gaps
correspond to regions where the data is not used because the
transition probability is small. There is always a gap at the
smallest values of But we expect to vanish there,

since small values correspond to high velocities which are
cut off by a Maxwell distribution in the beam source.

For most regions of we now have data from transforms at
several power levels. We combine the data as follows. Let the
index denote the power level. From each measured Ramsey
fringe , we obtain a Fourier transform We define
trial distributions by

(4)

We then form a weighted average of the trial distributions:

(5)

For a weighting function we choose the
square of the Rabi transition probability. When the transition
probability is less than our cutoff we set the weighting
function to zero. This weighting function softens the cutoff
edge.

In this combination process it is important to retain the
relative amplitudes of the Ramsey fringes and their transforms
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Fig. 3. Regions of transit timeT for which the transition probability is greater than 0.25. The corresponding power levels relative to optimum are
shown on the left.

at the various powers. Useful information is thereby preserved.
Absolute amplitudes are irrelevant since the final distribution

will be normalized so that its integral over is 1.

C. The Quality-of-Fit Parameter

To get a measure of how closely the trial distributions agree
with each other, we introduce the quality-of-fit parameter

(6)

where

(7)

is the mean square deviation of from at each value,
weighted by Our choice of weighting function makes

equivalent to the sum of the mean square errors between
the input lineshapes and lineshapes computed from the
fitted distribution

The quality-of-fit parameter can be used to determine the
power scale. If the ratio of microwave powers can be accu-
rately determined, then the ratios of the are known. When
the quality-of-fit parameter is plotted against one of the a
values, we obtain a curve like that shown by the broken line in
Fig. 4. The minimum is three orders of magnitude deep and
defines within 0.5%.

The depth of the minimum in the quality-of-fit parameter
reflects the noise on the lineshape data. It can be used as a
rough measure of the quality of the lineshape data, and hence
the accuracy of the distribution obtained.

III. CORRECTIONS TO THETHEORY

A. First Order in

The distributions obtained from the basic theory are system-
atically shifted in by an increment of order To correct
for this shift, we replace (3) by

(8)

Fig. 4. Variation of the quality-of-fit parameterE with the a value for
optimum power. The broken curve is without the`=L correction and the
solid curve is with the correction.

where is a dimensionless function. is twice the first-
order phase correction to the quantum-mechanical amplitude
that no transition occurs in one excitation region. This phase
correction also appears in the calculation of the frequency shift
of the Ramsey fringe when the atomic resonance frequency in
the excitation regions is different from the resonance frequency
in the drift region [9]. Correspondingly we replace (4) by

(9)

where is the derivative of
The function depends on the microwave field profile

seen by atoms as they traverse the excitation region. For a
rectangular profile found in most standards using transverse
magnetic fields we have

(10)
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Fig. 5. Transit time distribution for NIST-7 obtained from data including that shown in Figs. 1 and 2.

For a half-sine-wave profile found in most standards using
longitudinal -fields, we have

(11)

where is the Bessel function of zero order. For either profile
is close to 1 for small values of The singularity at

is not real; it occurs where the transition probability
has a zero.

When (9) is used in place of (4), the average distribution is
no longer shifted in The quality-of-fit parameter assumes
a shape like that shown by the solid line in Fig. 4. The
minimum is deeper, more sharply defined, and shifted to
the correct value. The corresponding transit-time distribution

is shown in Fig. 5. This distribution is typical of those
for NIST-7. It has fewer low velocity atoms than a thermal
distribution weighted by 1/ for detection by a cycling optical
transition.

B. Effect of the Rabi Pedestal

The Rabi pedestal is not actually constant across the Ramsey
fringe, as (2) implies, but curves up or down, depending on
the excitation power. Since the Ramsey fringe data extend
only to a cutoff frequency the pedestal curve is broken
there. Beyond the data are assumed constant. The Fourier
transform of the broken pedestal curve is a damped oscillation
like that shown in Fig. 2 at small The oscillation frequency
is and the damping is proportional to If we choose

large enough, we push the transform of the pedestal to small
enough that the residual oscillation underlying does
not seriously degrade it. The Fourier transforms of computer-
generated Ramsey fringes without the Rabi pedestal show a
similar, but smaller, residual oscillation at small

IV. TESTS OF THEMETHOD

A. Numerical Tests

The numerical method has been tested by starting with
known transit-time distributions. Ramsey lineshape data were
generated at four powers from theoretical formulas for the
complete lineshape. The lineshapes were then transformed and
transit-time distributions recovered. The recovered distribu-
tions agree very well with the originals. The agreement is
best for broad distributions of finite range, such as we actually
observe in NIST-7.

Errors in relative power were intentionally introduced.
Changes of 0.1 dB in one of the input powers caused the
quality-of-fit parameter to increase by factors between 2 and
10, but the mean and root-mean-square transit times changed
less than 0.1%. The distributions also were not significantly
affected when the cutoff was varied from 0.18 to 0.45.

A special test was made starting with an experimental distri-
bution. Ramsey lineshapes were computed theoretically, trans-
formed, and a reconstituted distribution obtained. This proce-
dure was then repeated two more times using the successive re-
constituted distributions as input to the next stage. Comparing
the final thrice-reconstituted distribution with the original we
found the major difference to be a small decrease near the ex-
tremes of the distribution. Mean transit times agreed to 0.2%.

Additional tests were made adding computer generated
noise to the lineshape data. The quality-of-fit parameter was
thus found to be proportional to the square of the amplitude
of the added noise.

B. Experimental Tests

The method has now been applied to lineshape data from
NIST-7 for over two years. Data are taken from 0 to 512 Hz
detuning on one side of the line at 4 Hz intervals. The powers
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are approximately and dB where 0 dB
is optimum power: that power maximizing the dc signal at
zero detuning. The Fourier cosine transform is performed on
512 points, corresponding to 1024 points if both sides of the
lineshape were used. The fitted distribution typically contains
about 100 points extending from to ms.

The transit-time distributions thus obtained from experi-
mental lineshape data have been remarkably consistent. No
significant change occurs when powers or data spacing are
varied. Changes in oven temperature of 5C can be eas-
ily seen when the corresponding distributions are compared.
Differences of 1% to 3% between the distributions for the
west-to-east beam and the east-to-west beam are routinely
seen and accounted for in processing frequency data. The
distributions also agree well with those measured by a pulsed
optical pumping technique [8]. The distributions have been
used to compute the shape of the Rabi pedestal at various
powers. Good agreement with experiment was found.

To test reproducibility, sixteen sets of Ramsey fringe data
for NIST-7 were taken consecutively in an hour’s time with no
change in operating conditions. The transit-time distributions
obtained differed by less than 1%. The mean transit times had
a scatter of only 0.1%.

V. COMPUTATION OF THE SECOND-ORDER DOPPLERSHIFT

The second-order Doppler shift is computed from the ratio
of two integrals over the transit-time distribution:

(12)

where is the velocity of light

(13)

and is the same integral with an additonal factor
in the integrand. The factor, where is the
modulation amplitude, takes into account the slow square-
wave modulation used for measuring the resonance frequency.
Because the shift is a ratio of two integrals, any errors in the
transit-time distribution partially compensate making the shift
less sensitive to The sixteen experimental distributions
gave shifts having a scatter of less than 0.2%, or of the
cesium frequency.

VI. CONCLUSIONS

The Fourier transform method of obtaining velocity distri-
butions from Ramsey lineshapes is capable of good accuracy
(less than 1%) for broad, smooth distributions and small
ratios. Our experience with the method and specific tests give
us confidence that average quantities like the mean transit time
and the second-order Doppler shift can be computed from
these transit-time distributions with an uncertainty of only a
few tenths of 1 percent.
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