IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 46, NO. 2, APRIL 1997 117

Velocity Distributions Calculated from the
Fourier Transforms of Ramsey Lineshapes

Jon H. Shirley

Abstract—A computerized method for finding velocity distribu- Il. BASICS OF THE METHOD
tions from the Fourier transforms of Ramsey lineshapes has been
developed. Experimental and numerical tests of the method show . .
that it works very well for broad distributions and lineshapes A. The Fourier Transform Relation
where the drift time is much longer than the excitation time. We consider an atomic beam spectrometer with a horizon-
gﬂﬁ?&t?rzzféﬁ%;“gg%’ dﬁzd’\hc’s‘}“g V?L%C';ég(')ﬁgbourté‘;rr‘stgggl‘eer tal thermal beam traversing two identical excitation regions.
shift is calculated from these distributions with an uncertainty of Wh_e” _the d”ft region lengthl, is much _Ionger than the
a few tenths of 1 percent. excitation region length?, the Ramsey lineshape can be

represented approximately by the expression [1
Index Terms—Fourier transform, frequency standard, NIST- P PP y by P [

7, Ramsey lineshape, second-order Doppler shift, transit time, e 9 91
velocity distribution. P(X) :/0 p(T) sin”(2b7) cos™(5AT) dT. (1)

Herer = ¢/v andT = L /v are the transit times for an atom of
velocity v across the excitation and drift regions respectively,
HEN AN atomic resonance is observed using thgj is the Rabi frequency (proportional to the microwave field
method of separated oscillating fields [1], the resultingtrength), and\ = w — wy is the detuning of the exciting
interference resonance curve is called a Ramsey linesh#gguencyw from the atomic resonance frequengy. The
or Ramsey fringe. An early paper by Daams [2] first sugin®(2br) factor represents the Rabi excitation probability
gested that information about the atomic velocity distributiofor the two excitation regions without a drift region. The
is contained in the Fourier transform of such a Ramseys?(AT) factor introduces the interference developed during
lineshape. The idea was further developed by the author witte drift time between excitations. The atomic velocity average
the inclusion of data taken at different excitation powers [3fs represented by the integral over the distributigfi”) of
Considerable experience in using the method has now beginsit timesI. Two sample Ramsey lineshapes are shown in
obtained using both theoretical and experimental data.  Fig. 1.
A similar method was developed independently by Jarvis If we use the half-angle formula to expand the interference
[4]. He also starts with Ramsey lineshapes at several pogsictor in (1), we obtain
ers, but uses a lineshape-specific transform, rather than a
Fourier transform. This introduced some ambiguities. Other P(X\) = 3R(0) + 3 R(N), (2)
methods for obtaining velocity distributions are based on A . 9
pulsed microwave excitation [5], [6] or power dependence R = /0 p(T)sin” al cos AT dT ®)
of the signal [7]. These methods use experimental data of . ) .
less accuracy. Hence they cannot obtain the precision requi re R()‘) IS _the Ramsey fringe _pgttern ank(0) IS the
for NIST-7. With optically-pumped standards a direct time-oi’:anIerIyIng Rabi ped_est_al. The coefﬁments_ an gbbrewaﬂon
flight method can be used [8]. It agrees well with the preseW[r 2bf/L. For a d|str|but|on_p(T) of finite width, R(})
method, but requires correction for the frequency responsea@proaChes 0 fqr Igrgle. Equatlon_ (3) Sh(.)WS that the Ramsey
the detector. fringe pattern is just the Fourier cosine transform of the
We describe below the basic theory of our method and ﬁréfgnsif[-time distribution times the transition pr_obability [3]. _By
order corrections. The effect of the Rabi pedestal is discusdBYerting the transform we can recover the integrand. Fig. 2
briefly. We then describe results of several tests made with (E°WS the inverted transforms of the lineshapes shown in
method. Finally we describe how the second-order DoppIElg' 1.

correction is obtained from the transit-time distribution. _To recover the transit-time distribution alone, we must
divide the inverse Fourier transform &f(\) by the transition
probability. There are two difficulties in doing so. First, the
transition probability is very small for certain transit times
Manuscript received June 20, 1996; revised October 1, 1996. making the result of division inaccurate. Second, the transition
The author is with the Time and Frequency Division, National Institute of e .
Standards and Technology, Boulder, CO 80303 USA. probability is not well known because the Rabi frequegiby
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Fig. 1. Experimental Ramsey lineshapes for NIST-7. (a) 1.85 dB above optimum power. (b) 3.13 dB below optimum power.
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Fig. 2. Fourier transforms of the Ramsey lineshapes shown in Fig. 1. (a) 1.85 dB above optimum power. (b) 3.13 dB below optimum power.

T,» = 7/a, the value ofl" that makes the transition probabilitysince smallZ” values correspond to high velocities which are

vanish. But, as Fig. 2(a) showd,,, is not well determined cut off by a Maxwell distribution in the beam source.

either. These difficulties will be resolved in the next section. For most regions of” we now have data from transforms at
several power levels. We combine the data as follows. Let the

B. Use of Multiple Ramsey Lineshapes index j denote the power level. From each measured Ramsey

The transform of a single Ramsey pattern gives an incorfﬁ!-nge £;(\), we obtain a Fourier transfordt;(T'). We define

plete picture ofp(7T") since thesin? o7 factor suppresses trial distributions by

information aboutp(T) nearT,,,2T,,,--- To complete the p;(T) = F;(T)/sin? a;T. (4)
picture we use Ramsey fringe data at different microwave ) S
excitation powers (different: values). In these data, infor-We then form a weighted average of the trial distributions:

mation about different regions @f{7") will be suppressed. We —y , , ,
adopt the criterion that data wiII(no)t be used in regions where P = Z Pi(TIWi(T)] Z Wil)- ®)

sin? oT is less than a cutoff valud/., typically 0.25. Fig. 3 ’ ’

illustrates how the powers used for taking Ramsey lineshaper a weighting function we choosé&;(T") = sin* a; T, the
data with NIST-7 then cover the range 6f The solid bars square of the Rabi transition probability. When the transition
show the regions ifi” where the Ramsey fringe at that poweprobability is less than our cutofiV,., we set the weighting
provides information about the velocity distribution. The gapfsinction to zero. This weighting function softens the cutoff
correspond to regions where the data is not used becausedtige.

transition probability is small. There is always a gap at the In this combination process it is important to retain the
smallest values ofl. But we expectp(T) to vanish there, relative amplitudes of the Ramsey fringes and their transforms
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Fig. 3. Regions of transit tim@" for which the transition probability is greater than 0.25. The corresponding power levels relative to optimum are
shown on the left.

at the various powers. Useful information is thereby preserved. -1 . — : -
Absolute amplitudes are irrelevant since the final distribution _~
p(T) will be normalized so that its integral ovét is 1. S Lz
oL X N / 7 |
C. The Quality-of-Fit Parameter N /5
N\
To get a measure of how closely the trial distributions agree \ /’
with each other, we introduce the quality-of-fit parameter ak ‘\ N ]
o w \ /
E(a) = / D(T) dT 6 Y W\ !
0 o W\
where -4 \‘ ~
f
D(T) =Y [pi(T) = B(DIPW(T) (7) !
j 5k .
is the mean square deviation pf from 7 at eachI” value,
weighted byW,(T’). Our choice of weighting function makes
E equivalent to the sum of the mean square errors between . ) ‘ .
the input lineshape&; (\) and lineshapes computed from the 25 30 35 40 45
fitted distributionp(7). al2n (Hz)

The quality-of-fit parameter can be used to determine the

; ; ig. 4. Variation of the quality-of-fit parametel’ with the « value for
power scale. If the ratio of microwave powers can be acc@ptimum power. The broken curve is without tid¢L correction and the

rately determined, then the ratios of the are known. When solid curve is with the correction.

the quality-of-fit paramete¥’ is plotted against one of the a

values, we obtain a curve like that shown by the broken line in , . . . . . .

Fig. 4. The minimum is three orders of magnitude deep a ereh is a d|mens_|onless functiorar is twme_the f'rSt'.
definesq within 0.5%. order phase correction to the quantum-mechanical amplitude

The depth of the minimum in the quality-of-fit paramete}hat no transition occurs in one excitation region. This phase
reflects the noise on the lineshape data. It can be used souection also appears in the calculation of the frequency shift

rough measure of the quality of the lineshape data, and heﬁ’éé e Ramsey fringe ‘_Nr:je_f? the alftomlchresonance fre}quency In
the accuracy of the distribution obtained. the excitation regions is different from the resonance frequency

in the drift region [9]. Correspondingly we replace (4) by

[ll. CORRECTIONS TO THETHEORY F;(T + hr)
pi(T) = L=

A. First Order in¢/L where i’ is the derivative ofh.

The distributions obtained from the basic theory are system-The functioni(b7) depends on the microwave field profile
atically shifted in?” by an increment of order. To correct seen by atoms as they traverse the excitation region. For a
for this shift, we replace (3) by rectangular profile found in most standards using transverse
magnetic fields we have

h(br) = tan(br)/br. (10)

L= (/L)h+brh)] ™ (9)

sin? aT

R\ = /000 p(T)sin? al cos T +h7)dl.  (8)
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Fig. 5. Transit time distribution for NIST-7 obtained from data including that shown in Figs. 1 and 2.

For a half-sine-wave profile found in most standards using IV. TESTS OF THEMETHOD
longitudinal C-fields, we have
A. Numerical Tests

h(br) = Jo(br) sec(br) (11) The numerical method has been tested by starting with
known transit-time distributions. Ramsey lineshape data were
generated at four powers from theoretical formulas for the
complete lineshape. The lineshapes were then transformed and
transit-time distributions recovered. The recovered distribu-
)fions agree very well with the originals. The agreement is

has a zero. S .
When (9) is used in place of (4), the average distribution llz)sgst for b_road distributions of finite range, such as we actually
observe in NIST-7.

no longer shifted inl’. The quality-of-fit parameter assumes : , : . .
9 9 y P Errors in relative power were intentionally introduced.

a shape like that shown by the solid line in Fig. 4. Th . .
minimum is deeper, more sharply defined, and shifted %hanges (.)f 0.1 dB in one of the input powers caused the
ality-of-fit parameter to increase by factors between 2 and

the correct value. The corresponding transit-time distributioqg o
10, but the mean and root-mean-square transit times changed

p(T) is shown in Fig. 5. This distribution is typical of thos o L
for NIST-7. It has fewer low velocity atoms than a thermgﬁss than 0.1%. The distributions also were not significantly

distribution weighted by 1/for detection by a cycling optical affected \_Nhen the cutofiV. was_varle_d from 0'18. to 0'45'. .
transition. A special test was made starting with an experimental distri-

bution. Ramsey lineshapes were computed theoretically, trans-
. formed, and a reconstituted distribution obtained. This proce-
B. Effect of the Rabi Pedestal dure was then repeated two more times using the successive re-

The Rabi pedestal is not actually constant across the Ramsegstituted distributions as input to the next stage. Comparing
fringe, as (2) implies, but curves up or down, depending dhe final thrice-reconstituted distribution with the original we
the excitation power. Since the Ramsey fringe data exteffind the major difference to be a small decrease near the ex-
only to a cutoff frequency., the pedestal curve is brokentremes of the distribution. Mean transit times agreed to 0.2%.
there. Beyond/, the data are assumed constant. The FourierAdditional tests were made adding computer generated
transform of the broken pedestal curve is a damped oscillatibgise to the lineshape data. The quality-of-fit parameter was
like that shown in Fig. 2 at small. The oscillation frequency thus found to be proportional to the square of the amplitude
is . and the damping is proportional ¢o. 7)) 2. If we choose of the added noise.

v, large enough, we push the transform of the pedestal to small _

enough that the residual oscillation underlyingT) does B- EXperimental Tests

not seriously degrade it. The Fourier transforms of computer-The method has now been applied to lineshape data from
generated Ramsey fringes without the Rabi pedestal shoviNEST-7 for over two years. Data are taken from 0 to 512 Hz
similar, but smaller, residual oscillation at smll detuning on one side of the line at 4 Hz intervals. The powers

where.Jy is the Bessel function of zero order. For either profil
h is close to 1 for small values ofr. The singularity at
br = /2 is not real; it occurs where the transition probabilit
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are approximately-2.5,0.0,—2.5, and —5.0 dB where 0 dB VI. CONCLUSIONS

is optimum power: that power maximizing the dc signal at the Fourier transform method of obtaining velocity distri-

zero detuning. The Fourier cosine transform is performed @fiyions from Ramsey lineshapes is capable of good accuracy

512 points, corresponding to 1024 points if both sides of thgyss than 19%) for broad, smooth distributions and sl

lineshape were used. The fitted distribution typically contaifg;ios Our experience with the method and specific tests give

about 100 points extending froffi = 2 to 7" = 28 ms. us confidence that average quantities like the mean transit time
The transit-time distributions thus obtained from experis g the second-order Doppler shift can be computed from

mental lineshape data have been remarkably consistent. {N@qe transit-time distributions with an uncertainty of only a

significant change occurs when powers or data spacing &, tenths of 1 percent.

varied. Changes in oven temperature ofG can be eas-

ily seen when the corresponding distributions are compared. REFERENCES
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My = / p(T)sin® aTsin w, T dT (13)
0
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