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Abstract 

We evaluate with simulated data a new type of sample variance for the 
characterization of frequency stability. The new statistic (referred to as 
TOTALVAR and its square root TOTALDEV) is a better predictor of long-term 
frequency varim'ons thun the present sample Allan deviation. The statistical 
model uses the assumption that a time series of phase orfiequency diJ6erences is 
wrapped beriodic) with overall frequency digerence removed. We find that the 
variabiliq at long averaging times is reduced considerably for the five models of 
power-law noise commonly encountered with frequency standards and oscillators. 

1. INTRODUCTION 

The most common method of quantifying frequency stability between oscillators is to 
evaluate the RMS of the fractional frequency changes vs. averaging time r,  dubbed the Allan 
deviation[']. For any sequence of average fractional frequency deviations {yt}, the widely 
used quantity 6,(r) is ideally suited as a reliable, easily interpretable statistic for the 
characterization of frequency stability for common kinds of FM oscillator 

There is a considerable literature on various methods and candidate statistics for the 
characterization of relative oscillator frequency stability. Suffice it to say that for a given 
system and noise, a statistic can be constructed to be nearly optimum. A single, unified 
approach will have its compromises. The Allan deviation, however, has a remarkable range 
of applicability in quantifying frequency and phase stability. This is because as a function of 
averaging time T ,  it is particularly well-suited in identifying the model of the trend in 
frequency stability or what is called the underlying "power-law" over a range of 7 values. 
The power-law is the slope on a typical log-log u,,(T) plot, and 6,,(r) is suitably the RMS 
prediction error of frequency stability. Predicting the long-term stability of a frequency 
reference rests ultimately on predicting (correctly identifying) its power-law behavior. For 
an estimate of stability longer or different than the measurement at hand, simply extrapolate 
from or directly apply an expected trend (power-law slope). Lastly, we can estimate the 
evolution of a squared phase error as proportional to ? times the modified Allan variance for 

Contribution of the U.S. Government, not subject to copyright. 



a uniquely identified power-law slope. This is the time variance or TVAR14]. 

A long-standing problem is that the best statistic, the two-sample Allan deviation, has rather 
poor confidence at longer and longer T-values, where confidence is often needed most. A 
new statistic has been developed which retains the intuitive simplicity of the RMS fractional 
frequency changes (Allan deviation) and which has improved confidence at long-term 
averaging timest51. The model for the new statistic uses the assumption that a time series of 
phase or frequency differences is wrapped (periodic) with overall frequency difference 
removedE6]. Figure 1 illustrates the procedure. This variance (thus its square root) reduces 
estimation errors universally seen in previous treatments, thereby providing a better estimate 
of frequency stability for measurement times longer than say 20% of the data length. 

We compare the response of the new statistic (as a variance) to the traditional Allan variance 
by simulation of the five models of power-law noises commonly encountered with oscillators 
and frequency standards. Results show that the new variance shows a promise for greatly 
reduced variability hence uncertainty compared to the traditional Allan variance. 

2. DISCUSSION 

The sample Allan deviation G T ( ~ )  and mod-G-(t) are square roots of two types of tau- 
domain sample variances (AVAR and WAR)['*$. They are recommended statistics in 
quantifying frequency stability between oscillators. In certain situations their responses have 
high variability at long averaging times T ,  as indicated by traditional simulation studies using 
common noise types, because the traditional sample Allan statistics are time-shift dependent. 
Therefore these statistics have degraded confidence at long averaging times. The method of 
complex demodulation motivates another statistic which is an improved sample variance for 
the characterization - - of frequency stability[']. For average fractional frequency fluctuations 
(yk,} = y 1, . . . , YN-1 with overall frequency difference removed, this sample variance is 
given by 

- - - - -  - - 
where (Ykrj} = yj+l, yj+;! ,..., YN-l,yl, y2 ,..., yj are spaced by 7o and (Yk'} is therefore 
wrapped and reindexed by j. Series (ykj) - with unprimed k - are averages implied over T 

= m7,. Hence as with traditional AVAR (and MVAR), the new sample variance G2- is 
implicitly dependent on dimensionless quantity m, a scale parameter which determines 7 and 
which for efficiency can be limited to rational powers of 2, that is, 2l=m, i=0,1,2,3, ... . 
Measurements of relative phase differences (xk,) are preferred to average frequency (ykt) as 
in eq (1). We have k' = 1,2,3, . . . , N and separated by interval T~ and overall frequency 
difference removed; therefore X l = x N .  Furthermore (xk,} is wrapped and assumed periodic; 
hence x1=xN+1 and we eliminate the increment xN to xN+1 to avoid bias (see figure 1). We 
have 



where the argument in the brackets “[*I” has stride k’-m and is time-shifted by jTo and 
averaged for all N-1 possible shifts. This notation centers the second-difference operation 
(argument in parenthesis) at k‘ with a span of +m which seems more intuitive especially 
considering the wrap procedure. 

3. STATISTICS COMPARFD 

The primary reasons for using B,(r) are that it is well-known, it is simple to calculate, it is 
the most efficient estimator for FM noise, and it has a unique value for all 7. The primary 
disadvantage of using By(r) is that the results can be too conservative, sometimes very 
optimistic at the long .r-values. It can take much longer than the longest reportable T-values 
(often orders of magnitude longer) to accurately quantify the underlying low-frequency 
variations between the frequency standards being evaluated[31. For example, quantifying the 
frequency stability at, say, .r equals two weeks often requires no less than two months of 
actual measurement time. 

We compare the new sample variance S&Jr) (also called TOTALVAR) to traditional 

AVAR B ~ T )  using simulation studies of five common integer power-law noise types. 
These noise types are white PM, flicker PM, white FM, flicker FM, and random walk FM. 

A version of BLdr)  called mod-B2w(r) exists for MVAR; however since our present 
emphasis is on confidence at long T-values, AVAR is of interest. MVAR’s advantage is in 
distinguishing white PM from flicker PM which usually are associated with short .r-values. 
W A R  has no advantage for flicker PM and beyond, which occur at long 7-values. 
Furthermore, a chief disadvantage to MVAR is that it only extends to 1/3 the total data 
length, whereas AVAR extends to 1/2 the same length. 

For highly divergent noise types, the new statistic is not expected to be 
However, this report indicates that the new statistic essentially estimates the same unbiased 
quantity as traditional AVAR for the five common integer power-law noise types but has 
better confidence than AVAR. 

4. GENEXATION OF SIMULATED (xk’) DATA 

Most high level computer program languages can return random variables which we then 
order as a time series (%}. The usual assumption is that variables are uncorrelated and 
normally (Gaussian) or uniformly distributed. Thus {a,,] forms the basis for a white-noise- 
of-phase process which is characterized by a constant power spectral density, S,(f)aP. We 
build from {%} the other four noise processes: flicker (a fl), random walk (a f2), flicker 
walk (a f3), and random run (a f4). The treatment of non-integer power law noise types 



has recently been explored[1o]. We limit our simulations to the five common integer power 
laws. 

Random walk of phase (RWM) is equivalent to white noise of frequency (WHFM) and is 
one integration (single summation) of 1%). Random run of phase (RRPM) is random walk 
in frequency (RWFM) and is two integrations (double summation) of (a,,]. These operations 
are among the simplest autoregressive (AR) procedures. 

Flicker processes can be generated using an AR operation but must also include an 
(integrated) moving average (MA). The ARIMA model used in generating the five integer 
noise processes is adequately described by 

x, = 41xn-l + 4fin-2 i- an-8a,-l, (3) 

where a,, is an input random variable and x, is an output. 

For flicker of phase (FLPM): 
41 = 1.549, 
42 = -0.56, 
e = 0.88. 

Flicker walk of phase is flicker of frequency (FLFM) and is one integration (single 
summation) of an FLPM Series. 

As mentioned, random run of phase (or random walk FM, RWFM) could be adequately 
realized as only a double summation of (aJ which means b1=2 and &=-1, and 8=0 in eq 
(3). Cleaner representations of RWFM are realized for 8 4 3  -2[11]. Thus we use: 

For the simulations here, some thought went into initializing each sequence to obtain a 
representation for the flicker and random run noise types. al was chosen to be between 0 
and 1; ~ n - ~ ,  x,-~,  and %-1 were derived from the end of previous simulations. 

In each of the noise types, the top of figures 2 to 6 show plots of 100 calculations 
of 6,Jr) followed below by plots of 100 calculations of 6,,(r) from the same 100 
simulations. At the bottom of each figure is a plot of the quare root of the mean 

of 6i(r) derived from the 100 simulations in order to see its agreement or disagreement 
with theory, that is, the theoretical square root of a mean of an infinite set. Flicker of phase 
(FLPM) is the only type which does not have a straight-line (log-log scale) theoretical slope 
owing to a logarithmic dependence on bandwidth. 



5. WHITE PM (WHPM) AND F'LICKER PM (FLPM) CASES 

For short .r-values, we usually find noise modulation of the phase (not frequency) originating 
from noisy electronics not involved in the frequency-determining elements. White PM 
(WHPM) noise is broadband phase noise and has little to do with the resonance mechanism. 
Stages of amplification are usually responsible for white PM noise. This noise can be kept 
very low with good amplifier design, hand-selected components, the addition of narrowband 
filtering at the output, or increasing, if feasible, the power of the primary frequency source. 

Flicker PM (FLPM) noise may relate to a physical resonance mechanism in an oscillator, but 
it usually is added by noisy electronics. This type of noise is common, even in the highest 
quality oscillators, because in order to bring the signal amplitude up to a usable level, 
amplifiers are used after the signal source. Flicker PM noise may be introduced in these 
stages. It may also be introduced in a frequency multiplier or frequency synthesizer. 

Figures 2(a) and 3(a) show 100 plots of calculations of the square root of S ~ T )  for 100 
simulations of white PM noise and flicker PM respectively. Equation (2) is used for these 
calculations and N=1024 for each simulation. Each of the simulation averages of two- 
sample variances at 7=1 is equal to one. Figures 2@) and 3@) are traditional square root of 
maximally overlapped 6,(r) for the same 100 simulations. The bottom plot is the 100- 
simulation-total square-root of the mean of the sample Allan variances and shows excellent 
agreement with theory. The spread in the estimates is greater using AVAR instead of the 

White and flicker of PM both exhibit a 7-l slope in 5(7) and hence amul(7). These noise 
types differ from the others in an important regard: their amplitudes are significantly 
affected by measurement (software and/or hardware) 

this, rnod-6~(r) or modified Allan variance (MVAR) was invented (for analyzing phase 
data only, (xk'}) to take full advantage of the 1/nr0 slope in the standard variance of (xk'} for 

Because of 

white PM and slope for flicker PM. As mentioned earlier, we limit our present 
WqJ 

discussion to a comparison between 6:(r) and S ~ J T ) .  This is because the present interest 
is an improved confidence at long walues where more dispersive noise types are 
encountered and ultimately limit accurate characterization of frequency stability. Again a 
significant disadvantage to MVAR is that a single longest reportable  value is limited to 1/3 
the total measurement time; 50% more time is required for equivalent results using MVAR 
vs. AVAR. It suffices to say, however, that for white PM and flicker PM, the improvement 

in confidence in the long term is dramatic using the new statistic 6iJt) as shown in 
figures 2 and 3. 



6. WHITE FM (WHF'M) CASE 

The cases of white FM, flicker FM, and random walk FM are of particular importance since 
they are physically traceable noise types encountered in virtually all precision frequency 
standards, and they often occur at long walues. 

White FM noise ( ~ ~ ( 7 )  a T-%) is the type found in common passive-resonator frequency 
standards. These contain a slave oscillator, often quartz, which is locked to a resonance 
feature of another device which behaves as a high-Q filter. High quality cesium, rubidium, 
and passive hydrogen standards have white FM noise 
previously presented results using white FM simulation that show that the new statistic 
TOTALVAR is an improved estimate of the mean-square frequency deviations between 
oscillators particularly at long 7-~alues[~I. Figure 4 reproduces those results for the 
comparison here. 

Howe has 

7. FLICKER FM (FLFM) CASE 

Flicker FM ( ~ ~ ( 7 )  a 7') is a noise whose physical cause is not fully understood but may 
typically be related to the physical resonance mechanism of an active oscillator, the design or 
choice of parts used for the electronics, or environmental conditions[12]. Flicker FM noise is 
considered the quantum limit of resonance devices['3]. Flicker FM is common in the highest 
quality oscillators but may be masked by white FM or even white PM and flicker PM in 
lower quality oscillators. 

Figure 5(a) shows 100 plots of calculations of 6,Jr) for 100 simulations of flicker FM 
noise and figure 5(b) is the same set of calculations using traditional square-root of 
maximally overlapped AVAR. The square root of the mean of the AVAR's of the 100 
simulations as shown in figure 5(c) show a slight downward offset which can commonly 
occur at T = 5127, = T/2. Even though the power law is not exact, it is sufficient for the 
comparison of the spread in the responses between &,At) and traditional &,(r). Again, 
the new statistic is preferred since it is generally less susceptible to large variations at long 7- 

values. 

8. RANDOM WALK FM (RWFM) CASE 

Of the five models of power-law noise types, random walk FM noise ( ~ ~ ( 7 ) a 7 + ' ~ )  is most 
difficult to measure since its power is concentrated mainly very close to the carrier. This 
translates to near DC when considering phase differences (xk') or average frequency 
differences {yk']. Random walk FM usually relates to an oscillator's physical environment. 
If random walk FM is a predominant noise type then mechanical shock, vibration, humidity, 
temperature, or other environmental effects may be causing "random" shifts in the carrier 
frequency[l4' "1. 

Figure 6(a) and 6(b) are 100 plots of calculations of the square roots 

of and 6:(r) respectively, for 100 simulations of random walk FM noise. Again, 



even though the simulated power-law is assumed to be not exact as interpreted from the 
square root of the mean of AVAR's in figure 6(c), the important point is the comparison of 
the spread between square roots of TOTALVAR and AVAR (figure 6(a) and 6(b)). And 
again, the square root of TOTALVAR is preferred since the spread and skews are reduced at 
long r values. 

9. CONCLUSION 

We compare the response of the traditional sample Allan deviation 6,(r) with a new similar 
sample statistic &,At) referred to as TOTALDEV (square root of TOTALVAR) for the 
five models of integer power-law noise types. These integer noise types are white PM, 
flicker PM, white FM, flicker FM, and random walk FM. Using traditional plots of sigma 
vs. tau and 100 simulations of each noise type, we find the variability in 6 d r )  to be less 
than B,(r) in all cases. As a result, we can expect a reduction in the actual measurement 
time involved to characterize the long-term frequency stability of a standard or oscillator. 
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Fig. 1 

The new statistic (referred to as TOTALVAR and its square root) uses 
the model that a time series of phase difference xt are wrapped with 
period T and overall frequency difference removed. The periodic 
assumption means that the data are circularly represented and the time- 
origin is no longer t,, but is shiftable by js, where T, is the minimum 
measurement interval. TOTALVAR is traditional AVAR averaged over 
N-1 possible shifts. Removal of the overall frequency difference 
eliminates an end-match step by making xl=xN, hence X ~ = X ~ + ~  and we 
eliminate the increment xN to xN+l to avoid bias. We use 

where the argument in the brackets is traditional AVAR shifted by j. 
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Fig. 2 

Top(a): Square root of TOTALVAR calculated for 100 WHPM 
simulations with unit (two-sample) mean at T= 1. 
Middle&): For comparison, traditional square root of maximally- 
overlapped AVAR calculated for the same 100 WHPM simulations as 
used at top for square root of TOTALVAR. 
Bottom(c): Square root of 100-total mean of maximally+verlapped 
AVAR's, an indication of the desired result. Dashed line is the 
theoretical mean of an infinite set. 
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Fig. 3 

Top(a): Square root of TOTALVAR calculated for 100 FLPM 
simulations with unit (two-sample) mean at T= 1. 
Middle@): For comparison, traditional square root of maximally- 
overlapped AVAR calculated for the same 100 FLPM simulations as 
used at top for square root of TOTALVAR. 
Bottom(c): Square root of 100-total mean of maximally-overlapped 
AVAR's, an indication of the desired result. 
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Top(a): Square root of TOTALVAR calculated for 100 WHFM 
simulations with unit (two-sample) mean at T= 1. 
Middle@): For comparison, traditional square root of maximally- 
overlapped AVAR calculated for the same 100 WHFM simulations as 
used at top for square root of TOTALVAR. 
Bottom(c): Square root of 100-total mean of maximally-overlapped 
AVAR's, an indication of the desired result. Dashed line is the 
theoretical mean of an infinite set. 
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Fig. 5 

Top(a): Square root of TOTALVAR calculated for 100 FLFM 
simulations with unit (two-sample) mean at T= 1. 
Middle@): For comparison, traditional square root of maximally- 
overlapped AVAR calculated for the same 100 FLFM simulations as 
used at top for square root of TOTALVAR. 
Bottom(c): Square root of 100-total mean of maximally+verlapped 
AVAR's, an indication of the desired result. Dashed line is the 
theoretical mean of an infinite set. 
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Fig. 6 

Top(a): Square root of TOTALVAR calculated for 100 RWFM 
simulations with unit (two-sample) mean at T= 1. 
Middle@): For comparison, traditional square root of maximally- 
overlapped AVAR calculated for the same 100 RWFM simulations as 
used at top for square root of TOTALVAR. 
Bottom(c): Square root of 100-total mean of maximally-overlapped 
AVAR's, an indication of the desired result. Dashed line is the 
theoretical mean of an infinite set. 


