
1384 J. Opt. Soc. Am. B/Vol. 13, No. 7/July 1996 Marquardt et al.
Line shapes of cascade two-photon
transitions in a cesium magneto-optic trap
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We present a study of a two-photon double-resonance transition in cold cesium atoms in a magneto-optic trap.
A closed five-level density matrix model of the system is developed to characterize the double-resonance
Autler–Townes-split absorption line shape. Comparing this model with experimental spectra, we gain
insight into the dominant process involved in trapping atoms, in particular, the importance of the interference
of the six trapping laser beams. This system is used to probe transient effects in the trap as well as collective
effects of the trapped atom cloud resulting from the intentional misalignment of the trapping beams.
1. INTRODUCTION
We investigate the detailed line shapes of cascade two-
photon transitions in laser-cooled and trapped atoms.
There has been much research on the use of cold, trapped
atoms for microwave frequency standards,1 ultracold
atom collisions,2 and spectroscopic dynamics of cold,
trapped atoms.3 Some of this research has lead to sur-
prising results in terms of narrow optical resonances,
evidence of quantized motion, atomic localization in atom
traps,4 and other effects. Various mechanisms that pro-
duce low temperatures in these traps are now understood.
In addition, some theoretical models are now able to cal-
culate detailed line shapes of the spectroscopic features
observed on the cooling and trapping transitions.5 Other
effects, including some aspects of the collective behavior
of trapped atoms and unusually long relaxation times
remain unexplained. Further detailed spectroscopic in-
vestigations of cold, trapped atoms promise new surprises
as we learn more about their environment.

Our experiment consists of optically probing cold,
trapped cesium atoms, which are excited to the 6P3/2

state by the absorption of the cooling and trapping laser.
A probe laser, tuned to the 6P3/2 ! 9S1/2 transition at
658.8 nm, is sent through the trapped atoms, creating
a doubly resonant two-photon transition (Fig. 1). The
probe field is weak and nonperturbing and completely
independent of the trapping laser fields. In our experi-
mental work we observed relatively narrow Rabi-split
two-photon line shapes that are reminiscent of atomic
beam studies of Gray and Stroud and of Hemmer et al.,6

except that in our case the atoms are cooled and trapped
by the resonant radiation and a weak magnetic field.
The system consists of magnetic-field gradients and
strong laser fields at 852 nm necessary for the trap-
ping of the atoms in the usual s1 –s2 magneto-optic
trap (MOT) configuration. The signal that we observe
is the absorption of the 658.8-nm laser as it is tuned
across the two-photon resonance. Because the splitting
and the shape of the absorption signal depend on the
properties of the trap, understanding the features of the
line shape provides knowledge of the local environment of
the atoms. Independently probing the perturbing effects
of the trapping fields will be important in future realiza-
tions of optical frequency and length standards based on
laser-cooled and trapped atoms.

Initially, we developed a simple theoretical model
describing this double-resonance experiment,7 which
showed the qualitative features of the experimental line
shape but quantitatively was not in good agreement with
the experimental results. We have improved the model
by including important additional effects, such as the
three-dimensional nature of laser field and intensity dis-
tributions and the effects of laser beam phase fluctua-
tion. In this paper we present a detailed description of
this improved model and its comparison with the experi-
mental data.

2. EXPERIMENT
The cesium atoms are cooled and trapped in a standard
vapor-cell MOT. Our MOT is similar to those described
in the literature8 and is shown schematically in our ex-
perimental setup in Fig. 2. We use two extended-cavity
diode lasers for the trap, one relatively powerful laser
(,30 mW) for cooling and trapping and a second laser
(,1 mW) to recirculate atoms that have fallen into the
F ­ 3 hyperfine ground state. The cooling and trap-
ping light is tuned to the low-frequency side of the 6S1/2,
F ­ 4 ! 6P3/2, F ­ 5 cycling transition. To lock the
trapping laser at a specific detuning, the laser beam is
sent through an acousto-optic modulator (AOM), where
a small percentage of the light is frequency shifted and
sent through a separate cesium cell used for saturated ab-
sorption. The laser is locked to the saturated-absorption
signal corresponding to the nearest crossover resonance to
the 6S1/2, F ­ 4 ! 6P3/2, F ­ 5 transition. The frequency
of the trapping laser is controlled by use of a rf synthe-
sizer to drive the AOM. The repumping laser is tuned
to the 6S1/2, F ­ 3 ! 6P3/2, F ­ 3 or F ­ 4 transition and
locked to the side of the cesium Doppler profile in a sec-
ond, separate cesium cell. The 6P3/2 state of the trapped
atoms is then interrogated by direct absorption of a diode
laser tuned to the excited 6P3/2, F ­ 5 ! 9S1/2, F ­ 4
transition at 658.8 nm. Approximately 1.5 mW of 658.8-
nm light was provided by an extended-cavity diode laser.
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Fig. 1. Relevant cesium energy levels and the hyperfine struc-
ture, showing the lasers used for the magneto-optic trap and the
cascade two-photon transition.

This laser was frequency stabilized to a reference cav-
ity, which resulted in a short-term linewidth of ,500 Hz
with low-frequency jitter of ,5 kHz. The laser’s spatial
mode was filtered by an optical fiber, which delivered the
light to the experiment. The probe laser was elliptically
polarized and copropagated with one of the six trapping
beams. The diameter of the probe beam was set approxi-
mately equal to the diameter of the trapped atom cloud.
After spatial filtering, frequency stabilization, and am-
plitude noise subtraction, the probe laser power avail-
able at the MOT was ,40 mW. The absorption on the
658.8-nm transition by the cesium-atom cloud (,108 cold
atoms) was typically ,1%. (Fluorescence detection could
have been chosen as well but would have required good
imaging optics, filtering of the strong 852-nm light, etc.
Absorption detection was chosen because of its rela-
tive simplicity.) The power of the probe beam was low
enough that it did not appear to perturb the trap dynam-
ics or the profile of the absorption line shape.

A typical absorption spectrum of the 658.8-nm probe
laser is shown in Fig. 3. The doubly peaked profile of
this transition is attributed to the optical Autler–Townes
effect (ac-Stark splitting). Because of the strong trap-
ping laser fields, we expect a doublet structure of the cou-
pled ground and the first excited states. These states
exhibit a well-defined generalized Rabi splitting that de-
pends on the detuning and the Rabi frequency of the trap-
ping laser and the decay rates of the atomic states (the
Rabi frequency is given by a21 ­ m21E21y", where m21 is
the dipole matrix element and E21 is the amplitude of the
laser field driving the 6S1/2 ! 6P3/2 transition).

The characteristics of the line shape were investigated
as functions of various trap parameters. For example,
Fig. 4 shows the variation of individual 658.8-nm absorp-
tion line shapes with detuning of the trapping laser fre-
quency. In this figure the centers of the larger peak
were aligned (in frequency space) to show clearly the
dependence of the splitting on the trap detuning. We
can compare these individual line shapes with theory to
evaluate our model of the trapping environment. In par-
ticular, we studied the Autler–Townes splitting, the peak
height ratios, and the widths of the absorption peaks as
a function of the trap parameters. This gave valuable
information about the local fields in the trap. The de-
tuning of the trapping laser was limited by the range
of stable trap operation. The overall height of the sig-
nal in the figure varied with the number of trapped
atoms, obviously a function of the detuning. The maxi-
mum signal corresponded to a magnetic field gradient of
,15 3 1024 Tycm s,15 Gycmd and a detuning of ,2G to
the low-frequency side of the transition sGy2p ­ 5.1 MHz
is the natural linewidth for this transition in cesium).

3. THEORY
We have developed a theoretical model of the two-photon
transition that includes many of the physical processes
that affect the atomic spectra of the trapped atoms. It

Fig. 2. Schematic diagram of the experimental laser setup.
The trapping laser is locked to a saturated-absorption crossover
feature in a separate cesium cell. The AOM is used to
frequency offset the lock point from the saturated-absorption
(Sat. Abs.) feature. The repumping laser is locked to the side of
the Doppler profile in a different cesium cell. The dashed lines
represent servo loops needed to lock the lasers. The vertical
pair of trapping beams and the magnetic-field coils are not
shown. The detectors are used to monitor direct absorption of
the probe beam and trap fluorescence.

Fig. 3. Typical absorption spectrum taken in our MOT with
standard s1ys2 laser polarizations. The trap detuning
sd21y2pd was 10 MHz; ≠Btrapy≠z ­ 16 3 1024 Tycm s16 Gycmd.
Cloud diameter ,3.5 mm, ,2.5 mm in height, ,108 atoms,
effective Rabi frequency a21 of 15.5 MHz. The 658.8-nm laser
is swept through the resonance with the trapping lasers kept
fixed. The x axis shows the relative tuning of the 658.8-nm
laser. The selection of the origin is arbitrary. To improve the
signal-to-noise ratio this spectrum is averaged over 20 scans.
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Fig. 4. Probe absorption as a function of trapping laser detun-
ing, d21y2p. The large peaks were aligned to show clearly the
dependence of the cascade two-photon line shape on the trap laser
detuning. The signal height depends on the number of atoms
in the trap, a function of the detuning. The small features at
,20 and ,70 MHz are sidebands put on the 658.8-nm laser as
a frequency reference. These spectra were averaged over 200
scans to improve the signal-to-noise ratio. The figure is adapted
from Ref. 7.

would be extremely difficult to analyze the complete sys-
tem theoretically, including all relevant atomic levels in
cesium, six strong laser fields, laser polarizations, the
three-dimensional variation of the magnetic field Btrap,
and the distribution and the residual motion of the cold
atoms in the trap. To analyze a more tractable sys-
tem we have made some assumptions and simplifica-
tions. We have assumed (to a good approximation) that
the laser fields are plane waves, the atoms are motion-
less, and the collisional effects are negligible. We in-
clude spatial effects for the three-dimensional trapping
laser fields and the variation of Btrap over the trapping
volume. The Zeeman structure for each radiatively cou-
pled level is approximated by use of only the mF ­ 6F
(stretched state) Zeeman coefficient for each of the three
coupled levels. The validity of our assumptions and sim-
plifications is discussed later in this paper. We have
further simplified the complicated cesium energy-level
spectra to a closed five-level system (Fig. 5). Three of
these levels, j1l, j2l, and j3l, correspond to the three cou-
pled levels of the doubly resonant, cascade configura-
tions 6S1/2, F ­ 4 ! 6P3/2, F ­ 5 ! 9S1/2, F ­ 4. The
remaining two levels, j4l and j5l, are artificial and rep-
resent all other decay channels out of the cascade sys-
tem, which are due to the other atomic states and to the
relevant hyperfine structure of the three coupled levels.
The hyperfine structure permits population decay out of
the 6S1/2, F ­ 4 ! 6P3/2, F ­ 5 cycling transition by off-
resonant absorption and decay to the 6S1/2, F ­ 3 ground
state. This loss mechanism and the presence of the re-
pumping laser are represented in our model by the ad-
dition of level j5l. The rate at which atoms enter the
other hyperfine states can be calculated and is repre-
sented in the model by g25. Similarly, we have added
level j4l to represent other decay channels out of the ex-
cited, 9S1/2, F ­ 4, state to the other noncoupled states.
This rate is represented by g34 and shown in Fig. 5. Fol-
lowing the standard approach, we model our system by us-
ing the density matrix formalism.9 Some additions and
modifications to this approach are necessary for the con-
ditions relevant to this experiment.

The time evolution of the density operator can be rep-
resented by

drnn

dt
­ 2
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fĤ , r̂gnn 1
X

k

hgknrkk 2 gnkrnnj for n ­ m ,

drnm
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­ 2

i
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fĤ , r̂gnm 2 Gnmrnm for n fi m .

(1)

Here the Ĥ is the Hamiltonian operator of the system and
gnm is the decay rate from state n to state m. (In this
representation gnm fi gmn. If state n is a higher-energy
state than state m, then gmn ­ 0.) The damping rate Gnm

of the off-diagonal elements can be written as

Gnm ­
1
2

sgn 1 gmd 1 gnm
col , (2)

where gn and gm represent the total decay rates out of
levels n and m and gnm

col is the dipole dephasing term that
is due to processes such as collisions (which we neglect).

We can write the Hamiltonian operator as

Ĥ ­ Ĥ0 1 V̂ std , (3)

where Ĥ0 is the atomic Hamiltonian and V̂ std represents
the interaction energy of the atom with the electromag-
netic field. V̂ std can be represented by

Vnmstd ­ Enm cos Vnmt

­
2mnm ? Enm

2
fexps2iVnmtd 1 expsiVnmtdg , (4)

where Enm is the incident laser field with frequency Vnm

and mnm is the dipole matrix element corresponding to
the transition from level m to level n. The rotating-
wave approximation allows us to neglect the last term
in Eq. (4). After inserting the full Hamiltonian Ĥ into
Eqs. (1), we can write

Fig. 5. Relevant cesium energy-level diagram showing the cas-
cade two-photon transition, the lasers used in the experiment,
and the corresponding energy levels of the model. The energy
levels of the model consist of three levels that are coupled by
laser radiation, j1l, j2l, and j3l, and two artificial levels, j4l and
j5l, representing all the other decay channels out of the cascade
system. The g are the decay rates between levels, and the a

are the Rabi frequencies of the lasers used in the model.



Marquardt et al. Vol. 13, No. 7 /July 1996/J. Opt. Soc. Am. B 1387
√
≠

≠t
1 ivnm

!
rnm 1

i
"

X
k

sVnkrkm 2 rnkVkmd

­

8>><>>:
X
k

sgknrkk 2 gnkrnnd for n ­ m

2Gnmrnm for n fi m

,

(5)

where vnm ­ En 2 Emy" is the transition frequency be-
tween levels n and m. Introducing the slowly varying
quantity snm, such that

rnmstd ­ snmstdexps2iVnmtd , (6)

we look for steady-state sdsnmydt ­ 0d solutions to Eq. (5);
these yield

X
k

sgknskk 2 gnksnnd 1
i
2

X
k

sankskn 2 snkaknd ­ 0
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fisVnm 2 vnmd 2 Gnmgsnm 1
i
2

X
k

sankskm 2 snkakmd ­ 0

for n fi m , (7)

where Vnm ­ 2Vmn and anm ­ 2Enmy" in this notation.
Equations (7) describe a 25 3 25 matrix for our five-
level system. Fortunately, many of the levels are not
coupled by radiation or decay, so some simplifications
can be made. In the steady state many of the density
matrix states can be written in terms of other states. For
example s44 can be eliminated by use of the relation for
ds44ydt:

ds44

dt
­ g41s44 2 g34s33 ­ 0 ! s44 ­

g34

g41
s33 . (8)

Similarly, the other states that are not coupled by laser
radiation can be represented in terms of coupled states.
This simplifies the 25 3 25 matrix into a 9 3 9 ma-
trix (shown in Table 1), which can be solved for each of
the remaining density matrix components. In the table
dnm ­ Vnm 2 vnm represents the detuning of the lasers
from exact resonance for the given transition sd21 , 0 for
trap operation). The signal is then calculated as a func-
tion of the probe laser detuning d32. Solving this 9 3 9
density matrix gives the specific values of snm. The sig-
nal that we observe experimentally is the absorption from
level j2l to level j3l, which is dependent on the imaginary
part of s32.
Table 1. Density Matrix
s33 s32 s31 s21 s11 s12 s13 s23 s22

s33 2g34 2 g32 2ia23y2 0 0 0 0 0 ia32y2 0
s32 2ia32y2 id32 2 G32 2ia12y2 0 0 0 0 0 ia32y2
s31 0 2ia21y2 isd32 1 d21d 2 G31 ia32y2 0 0 0 0 0
s21 0 0 ia23y2 id21 2 G21 ia21y2 0 0 0 2ia21y2
s11 g34 0 0 ia12y2 0 2ia21y2 0 0 g21 1 g25
s12 0 0 0 0 2ia12y2 2id21 2 G21 2ia32y2 0 ia12y2
s13 0 0 0 0 0 2ia23y2 2isd32 1 d21d 2 G31 ia12y2 0
s23 ia23y2 0 0 0 0 0 ia21y2 2id32 2 G32 2ia23y2
s22 g32 ia32y2 0 2ia21y2 0 ia12y2 0 2ia32y2 2g21 2 g25
4. NUMERICAL IMPLEMENTATION
OF THE THEORY
This solution for the imaginary part of s32 gives only part
of the total line shape because the three-dimensional na-
ture of the trapping laser and the magnetic fields of the
MOT have not yet been included. Because the diame-
ter of the probe beam is set approximately equal to the
size of the cloud of trapped atoms, every atom in the
trap can contribute to the absorption line shape. The
energy levels of the atoms in the trap are position de-
pendent because of both the magnetic-field gradient and
the wavelength scale variations of the electric field and
polarization. The magnetic-field gradient ≠Btrapy≠r ef-
fectively alters the detuning of the trapping laser d21 as a
function of the distance from the center of the trap (where
jBtrapj ­ 0d. Thus, for a fixed trap detuning, the actual
detuning of the trapping laser depends on atomic Zeeman
structure as

d21
0 ­ d21 1

mB

h
Btraps r, zds gF 0­5mF 0 2 gF­4mF d . (9)

Here Btraps r, zd is the local magnetic field at point s r, zd,
gF 0­5 ­ 0.4 and gF­4 ­ 0.25 are the Landé g factors,
mB is the Bohr magneton, and mF 0 and mF are the Zee-
man sublevels of the excited state and the ground state,
respectively. For the anti-Helmholtz configuration the
magnetic-field strength jBtrapj varies approximately lin-
early with distance from the center of the trap. The
atoms at the center of the trap have a detuning that cor-
responds to the trapping laser detuning, d21

0s r ­ 0d ­ d21,
whereas other atoms experience a different detuning, de-
pending on the magnetic-field gradient and the position
of the atom. We call the most probable value of d21

0 the
effective detuning. Larger magnetic fields correspond to
smaller effective detunings (for d21 , 0d, which naturally
affect the cascade two-photon line shape. Of course, it is
possible to switch off the magnetic field to eliminate the
magnetic-field-dependent effects, but we dedicate most of
this discussion to the steady state, which includes the
magnetic field.

Unlike that of the magnetic field of the trap, which
varies over macroscopic dimensions, the electric field’s
magnitude changes on a scale smaller than the optical
wavelength. The interference of the laser fields in the
trap is generated by the intersection of the six circu-
larly polarized laser beams. This interference pattern
depends on the relative amplitudes and phases of the six
beams and varies significantly, both in magnitude and in
polarization, over an optical wavelength. In our model
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we neglect any polarization dependencies that would
contribute to optical pumping of the atoms to other Zee-
man states. A more exact model that includes all the
magnetic sublevels and polarization dependencies of the
transitions was not attempted because of its complexity.
We can write the s1 and s2 beams as

Es1 szd ­ E0fî cosskz 2 vt 1 f1d 2 ĵ sinskz 2 vt 1 f1dg ,

Es2 szd ­ E0fî cosskz 2 vt 1 f2d 1 ĵ sinskz 2 vt 1 f2dg ,

(10)

for waves traveling along the positive z axis. The total
field is given by the vector sum of the six intersecting
beams with the proper polarization and direction. Ini-
tially, choosing all the phases to be 0 sfn ­ 0d allows us
to write the total field for our MOT as

Etot ­ 2E0 cos vtfîscos kz 1 sin kyd 1 ĵ scos kx 2 sin kzd

1 k̂scos ky 1 sin kxdg . (11)

We are interested in the time-averaged magnitude of this
three-dimensional field, which can be written as

jElaserj ­
q

Etot ? Etot
p

­ E0f6 1 4scos kz sin ky 2 cos kx sin kz

1 cos ky sin kxdg1/2. (12)

Figure 6(a) shows Eq. (12) plotted as a function of x and
y with a fixed value for z skz ­ 3py4d. The actual in-
terference pattern depends on the relative phase of each
of the six trapping beams and can easily be included in
Eq. (12). In the experiment the relative phase of each
of the laser beams is unknown and is continually chang-
ing owing to mechanical vibrations. These vibrations
are important because of the finite sweep speed of the
probe laser (generally ,200 Hz) and must be taken into
account.

Using the laser field distribution above, we generated
a Monte Carlo histogram of the probability of finding a
specific laser field jElaser j in the trap. An initial his-
togram was calculated with a specific phase distribution
sfn ­ 0d. To approximate phase-changing mechanical
vibrations, we calculated separate histograms for many
different phase distributions. These were combined and
normalized to form a composite distribution representa-
tive of the electric fields in the trap. This composite dis-
tribution is shown in Fig. 6(b). With this distribution we
can integrate over the fields with the proper weighting of
the Rabi frequencies to give the final line shape.

Because of the spatial dependence of the trap’s mag-
netic and electric fields, we need to include all the fields
in the spatial distribution to calculate the measured two-
photon line shape. We accomplish this by numerically
integrating over the magnetic-field contributions while
simultaneously integrating over the microscopic interfer-
ence pattern of the electric field. The total line shape can
be represented as a sum of many individual line shapes,
each of which corresponds to atoms in different electric
and magnetic fields. These line shapes are additionally
weighted to ensure that each individual line-shape con-
tribution reflects the number of atoms present in similar
fields. We assume that the distribution of atoms is pro-
portional to the intensity of the local electric field.10 By
stepping through the possible values of the electric and
the magnetic fields and calculating a separate line shape
for each value, we combine these line shapes with the
proper weighting to create a final line shape. This ab-
sorption line shape S can be represented by

S ~
Z Z Z

Imfs32gP sEdIrdEdrdz , (13)

where P sEd is the probability of finding a certain elec-
tric field E in the trap [from Fig. 6(b)], I is the inten-
sity of the radiation, and r and z are the radial and the
axial positions, respectively, in the trap.11 We numeri-
cally integrate relation (13) over all electric and magnetic
fields (all positions in the trap). This procedure produces
a line shape that we can compare with experiment. This
position-dependent integration sElaser, f, Btrapd broadens
the Rabi-split line shape but does not wash it out. Al-
though each group of atoms in the trap corresponds to a
different Rabi splitting, the composite line shape has a
single, well-defined value for the splitting. This single
Rabi splitting represents the weighted average of the in-

(a)

(b)
Fig. 6. (a) Local, small-scale structure of the magnitude of
the net trapping laser field jElaser j for the standard three-
dimensional s1 –s2 MOT configuration. The x and the y axes
show the structure over several optical periods for kz fixed at
3py4. (b) Composite Monte Carlo distribution of the probability
of finding a certain jElaser j field averaged over random phases
in units of jElaser jyE0.
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dividual line shapes and can be represented by a single
effective Rabi frequency.

The important parameters in the numerical model are
the decay rates of the cesium levels, the Rabi frequen-
cies for the trapping and the probing laser fields, the de-
tuning of the trapping laser, the magnetic field gradient,
and the physical size and shape of the atom cloud. All
these parameters are known or measured experimentally.
When the atom density is chosen to be proportional to
the local field intensity, the model contains no other free
parameters except for the signal size, which is used for
normalization. For convenient comparisons the height of
the larger peak in the model is set equal to the height of
the corresponding peak in the experimental data. The
Rabi frequency for the probe and the trapping lasers can
be calculated from the intensity of the laser beams. At
low intensity the probe beam can be considered nonper-
turbing, although the model is able to calculate the line
shape for any value of the probe’s Rabi frequency. We
control the detuning of the trapping laser experimentally
by locking the laser to a saturated absorption signal with
a variable-frequency offset. The magnetic-field gradient
is calculated from the knowledge of the current and the
geometry of the coils. The size of the trap is measured
with a CCD camera, which detects the fluorescence of the
trapped atoms (in the near infrared at 852 nm). The de-
cay rates of the coupled states are known experimentally,
and the decay rates of the uncoupled, artificial states
can be estimated by use of simple realistic assumptions.
There are many decay paths out of the 9S1/2 state, and the
decay rate depends on which decay path the atom takes.
An effective decay rate was estimated with the knowl-
edge of the branching ratios of the possible decay paths.
Table 2 shows the range of the values for the important
trap parameters, an estimation of the uncertainties, and
the qualitative effect of these uncertainties on the line
shape.

We turn our attention to the splitting of the levels as
a function of various trap parameters. If we first ap-
ply a perturbation approach for the probe laser sa32 ø 0d
and assume a single Rabi frequency across the trap, we
can calculate the position of the peaks by solving for the
maxima of the imaginary part of s32 hthat is, setting
≠sImfs32gdy≠d32 ­ 0 and solving for d32j. We get an ana-
lytic solution for the special case of d21 ­ 0 (the solution
for d21 fi 0 can be solved numerically). The solution for
this case has three values, d32 ­ 0 and
Table 2. Important Parameters, Range of Experimental Values, Their Estimated
Experimental Uncertainties, and the Qualitative Effect on the Theorya

Estimated Relative Effect on
Parameter Value Uncertainty Line Shape

Trap diameter s2rd 2.5 –4.0 mm 60.3 mm Small
Trap height s2zd 1.3 –3.0 mm 60.3 mm Small
Magnetic field 12–20 3 1024 Tycm 60.5 3 1024 Tycm Small
Detuning sjd21y2pjd 4–16 MHz 60.1 MHz Very small
Rabi frequency

a21 12–19 MHz 61 MHz Moderate
a32 ,0.5 MHz 60.1 MHz Small

gnm Various 61 –10% Moderate

aThe decay rates gnm are well known for the lower-lying levels, but the uncertainties increase for the higher-lying states.
d32 ­ 6

(
2

a21
2
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√
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a21sg2 1 2g3d

8g3
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2 1
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g3sg2 1 g3d

# 1/2)1/2

.

(14)

Equation (14) has two values, which represent the Rabi-
split peaks; the value d32 ­ 0 is a local minimum. The
splitting and the widths of the peaks depend only on the
total lifetimes of the coupled levels, not on the artificial
levels for this perturbation approach. This is true for all
values of d21. However, the amplitude of the absorption
line shape depends on d21. This amplitude dependence
becomes important when one is considering the whole
ensemble of atoms. Therefore the contribution to the to-
tal line shape of each Rabi frequency changes as a func-
tion of the detuning. At larger detunings the atoms in
the larger fields contribute more to the line shape, caus-
ing an increase in the effective Rabi frequency compared
with those of the line shapes at smaller detunings. This
makes it impossible to choose a single value of the electric
field to model the splitting dependence on the detuning.

5. COMPARISONS OF THE
MODEL AND EXPERIMENT
Our theoretical model works fairly well in reproducing
the experimental line shapes. Figure 7 shows a com-
parison of the theoretical model and the experimental
line shape for three different trap detunings d21. Includ-
ing the spatial variations of Elaser and Btrap and averag-
ing over the phase fluctuations broaden the line shapes
as expected and significantly improve the agreement be-
tween theory and experiment. For these spectra the
best agreement between the model and the experiment
occurs with an effective Rabi frequency of ,15.5 MHz.
The model reproduces the experimental line shape very
accurately at smaller detunings [Fig. 7(a)]. At larger de-
tunings the discrepancies between theory and experiment
become more apparent. For most conditions the model
predicts a line shape that exhibits the proper linewidths
and splittings, but the amplitude of the smaller peak
tends to be too small relative to the experimental line
shape. The dashed curve in Fig. 7(b) shows the result of
the model with a single Rabi frequency under the same
conditions as for the solid curve. One can easily see the
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(a)

(b)

(c)
Fig. 7. Experimental and theoretical line shapes with a field
gradient of 16 3 1024 Tycm, an atom cloud diameter of ,3.0 mm,
and aeffective ­ 15.5 MHz for various trap laser detunings
d21. (a) d21y2p ­ 27 MHz, (b) d21y2p ­ 210 MHz, and
(c) d21y2p ­ 213 MHz. The experimental data are represented
by the dots, and the solid curve is the model. The dashed curve
in (b) is the theoretical prediction with the same parameters as
the solid curve but for a single Rabi frequency.

importance of the electric-field interference pattern and
the phase fluctuations by comparing the two predicted
line shapes with the experimental data. The electric-
field effects broaden the line shape and improve the rela-
tive peak height agreement with the experiment. We
have chosen model parameters that are realistic for our
experiment. (It is possible to change the parameters to
unrealistic values to improve the apparent agreement.)

We have investigated the Autler–Townes splitting as a
function of the detuning. Inasmuch as the Zeeman shifts
of the atomic energy levels increase the complexity of the
model, we investigated the splitting both with and with-
out the magnetic-field gradient. The line shapes with
the magnetic-field gradient turned off are similar to those
shown in Fig. 7, except that the splitting is slightly larger,
as expected, because of the larger effective detuning.
Figure 8 shows the line-shape splitting as a function of
detuning with the magnetic field turned off. The solid
curve represents the predicted line-shape splitting. Al-
though the model does a good job of predicting the split-
ting, a systematic structure at large detunings is not ac-
counted for by the model. It does, however, predict the
dependence of the splitting more accurately than if we
included only a single Rabi frequency. A study of the
splitting with the magnetic field present exhibited similar
results, albeit with slightly larger discrepancies between
theory and experiment at large detunings. This seems
to indicate a need for a more comprehensive treatment of
the Zeeman structure.

The two peaks in the Autler–Townes line shape can
be interpreted as representing different types of two-
photon transition.12 In the limit where the pump and
the probe lasers are very weak sa21 ø 0, a32 ø 0d and
the decay to the artificial levels is negligible (a closed
three-level system), the absorption peaks can be inter-
preted in terms of coherent and incoherent transitions.
The smaller peak can be represented by a term that is pro-
portional to s22, which requires buildup of a population
in the 6P3/2 state. This represents an incoherent two-
photon double-resonance peak. The larger, narrow peak
can be represented as a term proportional to s21 and cor-
responds to a two-photon transition with no population in
the 6P3/2 state. To satisfy the conditions for this second
type of transition, coherence must be preserved. If the
coherence degrades, the transition probability decreases
for the coherent peak but increases for the incoherent
transition. Therefore, if there are excess relative phase
fluctuations, the coherent peak suffers relative to the in-
coherent peak (the relative height of the smaller peak in-
creases). Most perturbing effects in the laboratory would
destroy coherence, thus increasing the apparent relative
size of the smaller peak. This effect appears to be small
for the laser linewidths (#500 kHz for the trapping laser
and # 1 kHz for the probe, as opposed to linewidths of
5.1 MHz for the 6P3/2 state and ,1 MHz for the 9S1/2

state) and the collisional effects present in our experi-

Fig. 8. Splitting of the line shape versus the detuning of the
852-nm laser with the magnetic-field gradient turned off. The
solid curve is the numerical result of the model. The error bars
on the data are roughly equal to the size of the circles.
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ment, and it cannot explain the discrepancies between
theory and experiment. Inasmuch as the model and the
experiment agree well at small detunings but less so at
large detunings, the discrepancy between theory and ex-
periment is in some way dependent on trap conditions.
At large detunings we might expect other effects to begin
to play a larger role, which would increase the effective
Rabi frequency, such as atom localization.

We made a number of simplifications that need to be
justified. The first assumption is that the atoms are
stationary. In the case of cold trapped cesium atoms
the residual Doppler width is small compared with the
natural linewidth of the transition (for a sample of ce-
sium atoms cooled to the Doppler limit, the residual
Doppler width is ,250 kHz). For Doppler widths in
standard cesium traps this effect is small and can be
neglected. Similarly, the movement of atoms across
the interference pattern of the electric field can be ne-
glected because of the fast cycling frequency and slow
atomic velocities. If the intensities of the six laser
beams in the trap are not exactly equal or are not uni-
form across the trapping region (because of the spa-
tial mode variation across the laser beam inherent for
diode lasers, for example), the electric field distribu-
tion differs from that shown in Fig. 6(b). The peak in
the distribution changes position slightly, but the effect
on the line shape is surprisingly small. Inasmuch as
the Zeeman contribution to the total detuning is small
compared with the actual detuning, the effect of other
Zeeman levels is expected to be small. Further, as we
assume maximum mF values in the model, inclusion of
lower Zeeman coefficients would increase the effective
detuning, which tends to degrade the agreement between
theory and experiment. To validate further the assump-
tion of large mF values, a study was done to investigate
the polarization of the three-dimensional electric-field
distribution. Although for the standard s1 –s2 config-
uration the electric field is linear everywhere in space
for fn ­ 0 [Eq. (11)], changing the relative phases of
the laser beams changed the interference pattern. For
most choices of the relative phase, the electric field was
not linear across the trap but was elliptically polarized.
This would tend to optically pump the trapped atoms into
the maximum mF states. This is consistent with our
assumption of using only the mF ­ 6F state for each of
the coupled states. Other simplifications in the model
involved the assumption of plane waves. Because the
diameters of the laser beams are large (,1.5 cm) relative
to the size of the trap and are well collimated, the approx-
imation of plane waves seems accurate. The inclusion of
laser beam geometry would be more important for predic-
tions of other phenomena of trap dynamics that are not
confined to the very center of the intersecting beams.

The cascaded two-photon probe also proved useful for
studying some of the effects of MOT dynamics. We have
used this probe to study some transient properties of
the trap following a change in the magnetic field. The
trapped atoms took a surprisingly long time to reach equi-
librium. We could easily see these properties by monitor-
ing the splitting of the lines as a function of delay after
the magnetic field was changed or shut off. The mag-
netic field in our trap can be switched off in less than
1 ms, yet the splitting of the lines took much longer to
reach equilibrium (.. 10 ms). Long time constants in
MOT dynamics have also been observed in other labora-
tories but remain largely unexplained. The slow (order
of a few milliseconds) redistribution of atoms between s1

and s2 potential wells has been reported in a four-beam
optical lattice and a longitudinal magnetic field.13 In our
six-beam, s1 –s2 MOT there are no true s1ys2 poten-
tial wells, but the long time constants may be due to the
redistribution of atoms in the trap as the result of other
localization or collective effects.

We have also used this system to probe a trap configu-
ration consisting of balls and orbiting rings of atoms that
are due to the intentional misalignment of the trapping
beams (as seen in other laboratories).14 This configura-
tion consists of the standard s1 –s2 MOT with two of
the pairs of retroreflected laser beams intentionally mis-
aligned in one plane, creating a racetrack composed of

Fig. 9. 658.8-nm absorption spectra of the ring of atoms and the
ball of atoms. The MOT parameters were d21y2p ­ 28.5 MHz
and ≠Btrapy≠z ­ 15 3 1024 Tycm s15 Gycmd. The difference
between the shapes of the two spectra is due to the large
magnetic field at the location of the ring and the electric field
amplitude drop-off of the laser beams. The shift in frequency is
due primarily to the Doppler shift of the resonant frequency of
the moving atoms. The signal size reflects the smaller number
of atoms in the ring that intersect the probe laser. The addi-
tional features at ,90 and ,25 MHz are sidebands on the probe
laser, which are used as a frequency scale. These signals were
averaged over 20 scans.

Fig. 10. FFT spectrum of the fluorescence of the MOT showing
the narrow frequency component at 170 Hz corresponding to the
rotational frequency of the orbiting atoms. The horizontal scale
is ,19.5 Hzydivision, and the resolution bandwidth is 0.5 Hz.
The figure was averaged over 20 scans.
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Fig. 11. Comparison of the model and the experiment for the
658.8-nm absorption for (a) the z ball and (b) the z ring. The
data and the trap parameters are the same as in Fig. 9. This
model contains no width in the velocity distribution of the orbit-
ing atoms.

four of the laser beams. This configuration shows col-
lective effects of the trapped atoms in which the atoms
orbit in stable rings around the center of the trap (which
may or may not contain a separate ball of atoms). Our
system was aligned to create a ball and ring of atoms
in the vertical plane of the experiment. We studied this
configuration by observing the differences in the absorp-
tion spectra of the 658.8-nm light as it was sent through
the ball of atoms versus the ring of atoms. We can com-
pare these two absorption spectra to investigate the envi-
ronment specific to this particular setup (Fig. 9). Three
main properties of the spectra in this figure merit com-
ment. First, owing to the smaller number of trapped
atoms in the ball and the ring, the signal-to-noise ra-
tio is much lower than that of previous spectra (the fea-
tures at ,90 and ,25 MHz are sidebands on the probe
laser, which are used as a frequency scale). Second, the
Autler–Townes splitting of the line shape of the ball is
different from that of the ring. This is expected because
of large magnetic fields at the radial position of the rings,
as well as the smaller Rabi frequency, which is due to the
Gaussian nature of the laser beams (the diameter of the
rings was usually ,0.6–1 cm, depending on parameters).
Finally, the large frequency shift in the absorption spectra
of the orbiting atoms is due mainly to the Doppler shift
(there is a small frequency shift from the magnetic fields,
as well). With the knowledge of the magnetic-field shift,
the smaller Rabi frequency of the laser beams, and the
diameter of the orbiting rings, the period of the orbit can
be calculated from the Doppler shift. The rotational fre-
quency of atoms in our trap was usually between ,120
and 200 Hz. We used an independent method for deter-
mining the rotational frequency of the rings, as well. The
bandwidth of the optical detection was fast enough that
we could observe the time dependence of the absorption
signal as the atoms orbited. This signal was studied in
both the time and the frequency domains. A fast Fourier
transform (FFT) was used to display the Fourier spectrum
of the absorption signal and the signal from the photode-
tector monitoring trap fluorescence. The FFT spectrum
showed a strong and narrow peak at the frequency of
the orbiting atoms. Figure 10 shows a typical output of
the FFT corresponding to a rotation frequency of 170 Hz.
Under most conditions this orbit had a remarkably high
Q of several hundred. Figure 11 shows the experimen-
tal and modeled line shapes for the two cases of the ring
of atoms and the ball of atoms. Our model was able to
predict accurately the relative splitting and the relative
heights of the line shapes, but the widths of the signal
showed poorer agreement.

6. CONCLUSION
We have observed and modeled an Autler–Townes-split
optical double-resonance transition for cold atoms in a
MOT. The model reproduces the experimental two-
photon line shape fairly well under many conditions,
particularly for small detunings of the trapping laser and
large magnetic-field gradients. It also accurately pre-
dicts the splitting of the line shape as a function of the
detuning of the trapping laser. The discrepancies be-
tween theory and experiment for larger detunings seem
to suggest that, although many of the important aspects
of the trap, such as the three-dimensional properties of
the electric and the magnetic fields, are included in the
model, more complexity is needed. We have also used
this system as a useful diagnostic for the investigation
of collective effects of atoms in a magneto-optic trap. In
addition, using the probe laser, we observed transient ef-
fects with long time constants that indicate unexplained
optical physics in samples of cold trapped atoms.
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