NEW HORIZONS AND OLD PITFALLS IN FREQUENCY AND TIME METROLOGY
' F. L. Walls .

Frequenay & Time Standards Section
National Bureau of Standards
" Boulder, Colorado USA

Since the first Symposium on Fnequency Standards and Metrdiogy in
1971, there have been many significant advances in time and frequency
metrology. I will describe the present state-of-the-art, indicate some
problem areas, and attempt to forecast some future advances in a few

“areas. Specifically, I want to cover the measurement of stability of
precision oscillators and signal handling equipment in frequency and

time domain, new developments in oscillators which show very high spectral
purity, or good short-term stability, techniques for comBining two or
more frequency determining’ elements into a superior frequency standard
system, and make a few comments abdut some new understandings and advancements
in frequency multiplication.

| Figure 1 shows state-of-the-art short-term and medium-term stability
of various classes of frequency standards. Perhaps one of the most
notable things is not the introduction of so.many new standards since
1971, but the outstanding improvements in some of the old ones, e.g.
quartz oscillators. _ |

Systems and techniques for the measurement of stability in frequency
and time domain are the tools- that allow us to characterize oscillators
and signal handling equipment. Equally important, these techniques are
used as diagnostic tools to improve existing devices and to design_r
intelligent uses of frequency standards in systems applications. Frequency .
domain measurements and characterization of stability via Sy(f), spectral
density of frequency fluctuations,or S¢(f). the spectral density of
phase fluctuations,are some of the most powerful tools that we have in
evaluating types and levels of fundamental noise processes in oscillators -
and signal handling equipment, as they allow us to examine individual
Fourier components of residual frequency or phase modulation. Also, the
time domain stability is uniquely defined for any given bandwidth from
the frequency domain measurements. The inverse is not always true, in
that we cannot uniquely transfer back from time domain variance measurements
to frequency domain because the variance measuréments are actually an
average over the different Fourier components that contribute to the
time domain stability.
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Figure 2 shows a typical scheme which is used for measuring spectral
density of phase fluctuations in the range from 1 MHz to perhaps 10 GHz [1].
" Analogs of this scheme are used up to the visible. The source is
shown as a simple oscillator, however, it might a;tual]y be an oscillator
plus an amplifier or a frequency multiplier. In order to obtain precision
measurements of Sy(f) or equivalently, S (f), the residual amplitude and
frequency modulation or phase modulation must be small so that the
carrier is well-defined and further, we must suppress .the residual
amplitude modulation from the measurement. In the past, it.has often
been assumed that amplitude modulation is small compared to phase modulation
in precision sources. This is in fact not true over the major portion
of the spectrum of precision oscillators. If additive noise processes
~are present, they will contribute an equal amount to amplitude and phase
modulation. We can take advantage of this as a diagnostic tool, because
it allows us to distinguish between fundamental nojse processes which -
are additive, and noise processes which are multiplicative or produced
by direct modulation of the frequency. In fact, if the osc¢illators
under test in Figure 2 are free-running, we will measure the spectral
fdensity'of phase fluctuations when the signals are in quadrature at the
mixer, and when they are in phase, we will measure the amplitude spectrum.
This can be very useful as a diagnostic tool, as I mentioned before.

Frequency domain analysis can also be done using time domain sampling
of the phase or frequency difference between two oscillators and computing

S¢(f) or Sy(f) using fast Fourier transforms or the Hadamard variance [2].

Figure 3 shows the block diagram of a new approach to using the Hadamard
variance [3]. Its main advantage is that one can easily measure_sy(f) from
0.001 Hz to 1 KHz without trouble from the spurious lobes of the Hadamard
variance.

Figure 4 shows the kind of typical performance for S¢(f) measurement
floors that I think can be obtained with both systems, although these
measurements were actually taken at 5 MHz with the scheme shown in
Figure 2. One could expect to obtain performance of this order of
magnitude from about 10 kHz out to about 1 GHz. Beyond about 10 GHz,
most of the measurements are a combination of amplitude and phase spectra.
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The noise added by signal processing equipment can be measured by
replacing the test oscillator in Figure Z by a 90° phase shifter, driven_
from the referénce oscillator, eliminating the phase lock circuitry, and
placing the component under study at Point A or B. In this case, the
residual phase modulation in the source oscillator cancels out to a very
high degree, perhaps as much as 60 dB if the bandwidths of both channels .
are very similar. This scheme allows one to measure noise in components
down to the resolution of the measurement system which esseﬁtial]y is
limited by the added noise of the mixer and dc amp]ifiers and is usually
independent of what the source oscillator happens to be. There are
a number of amplifiers and oscillators and signal handling equipment
which have noise in the so-called white phase region which are uncomfortably
close fo.the measurement floor of Figure 2, which is S¢(f) =.2.5x 10']8 radZIHz.

One possible solution to this measurement problem {s the phase
noise measurement system shown in Figure 5. . It consists of 2 conventional
phase noise channels which are nearly identical [1].

At the output of each double balanced mixer there is a signal which 1s pro-
portional to the phase difference, A¢, between the two oscillators and a noise
term, V due to contributions from the mixer and amplifier. The voltages at
the 1nput of each bandpass filter are

Vi = A Ad(t) + c1vn1(t)
v, = ‘Az Ad(t) + CzYﬁz(t)

where Vn](t) and Vnz(t) are sdbstantia11y uncorrelated. Each bandpass'filter
produces a narrow band noise function around its center frequency f:

V(8P filter output) = A[S,(11'/2 8,2 cos[onet + ¥(t)]

+ 08, (112 8,2 coslanet + ny ()]
nl.

V,(BP filter output) = A2[s.¢(f)]‘/2 Bz‘/z cos[2mft + ¥(t)]

+ cz[svnz(f)]1/2 Bz1/2 c9s[2wft + “z(t)]
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where B1 and B2 are the equivalent noise bandwidths of filters 1 and 2
respectively. Both channels are bandpass filtered in order to help
~eliminate aliasing and dynami; range problems. The phases ¥(t), n](t)

and nz(t) take on all values between 0 and 27 with equal 1ikelihood.

The output of the correlator, which is a wideband, four quadrant multiplier,
consists of a dc term proportional to S¢(f) between the two oscillators

plus an ac term which is averaged to near zero

2 1/2

v + ac terms

B,

i V
out = 172 MAgS,(F) By

Preliminary measurements at 5 MHz show that one can reach noise floors

for S¢(f) below 10'20 radZ/Hz at Fourier frequencies above 10 kHz. Although
further improvements on the correlation technique for making phase noise
measurements are surely feasible, the present performance level appears
sufficient to measure the next generation of oscillators and signal

handling equipment as well as present ones.

Time domain measurements expressed in the pair variance (Allan Variance).
as in Figure 1 are the most common way to characterize stability of -
precision oscillators.This method of measurement generally requires
looking at the accumulated phase difference between the two oscillators
under test. The most commonly used system is the so-called hetrodyne
frequency method or beat-frequency method shown in Figure 6 where the
time between zero crossings is counted and recorded with a‘printer. One
of the major limitations of this system is that it is restricted to
measurement times which are longer than 1 beat period. One earIy attempt
to get around this difficulty is shown in Figure 7. The output voltage
of the mixer is‘proportional to the frequency difference between the two
oscillators for times which are much longer than the attack time-of the phase-
Tock 1oop. This voltage is then usually converted to a frequency and its stability
measured. The limitation on the shortest measurement time is determined
by the speed of'the.phase Tock loop or the maximum rate of the voltage
to frequency converter. This system also features the low noise of the
hetrodyne system.

Very recently there has been a major improvement in time domain measure-
ments with the introduction of the dual mixer time domain measurement system
shown in Figure 8. In this method a transfer oscillator which can be offset
from the two oscillators is used to-obtain the desired beat frequency. The beat
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frequency is usually adjusted to be only slightly larger than the smallest
inverse measurement time deéired. By adju&ting the phase shifter, the time
between the zero crossings of the two beat frequencies can be made very
small compared with the beat period. Then the phase noise in the transfer
oscillator cancels out to a very high degree.

Figure 9 shows typical results for the noise floor for Oy(T)
for (a) the hetrodyne method and (b) the dual mixer time difference method.
Noise bandwidth is 1 kHz. MNoise considerations indicate that the dual
mixer system could achieve 6 x 10715 71, Measurement times of 107° sec
could be realized at some sacrifice in noise floor. The hetrodyne method
could achieve 4 x 1071° ! using the noise floor shown in Figure 4.

Now, in all stability measurements between oscillators, one has to be
very careful to avoid injection locking. With the aid of the following equation,
we can get a rough idea of the order of magnitude of the frequency separation
reqhired between the oscillators under test to prevent injection locking, or
equivalently an estimation of the required 1solation between the two oscillators
given a fixed frequency offset,

dp = 2.Q dy

where d¢ represents the phase shift across a single resonant circuit of
quality factor Q, when the applied frequency is fractionally offset from
resonance by an amount equal to dy. If we apply this grossly over

simplified model to an oscillator with quality factor Q, we see that

the effect of introducing an additional phase shift within the oscillating 1oop
is to pull the fractional frequency by an amount

dy = %%- .

. Suppose that you had 2 frequency standards conta1ning frequency determining elements
with quality factors of 1 x 108 which are offset 1 x 107 -13 in frequency. The amount
of induced phase deviation required in order to make the standards lock up is of
order 2Q dy or 2 x 10'5 radians. This means that an injected signal only 2 x 10 -5

as large as the driving signal amplitude or 4 x 10~ =10 4p power will cause the two
oscillators to lock up. Therefore, in order to make reliable measurement of frequency
stability,one is required to provide 100 dB or more isolation between the two fre-
quency standards.Alternately, one could increase the frequency offsset. This
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explains in essence, the reason why frequency stability measurements between
very stable lasers where isolations are notoriously low, are often done via
a second set of offset locked lasers.

Another problem often encountered in time domain measurements is the =
presence of bright lines. They might actually be in the oscillators under
test or in the measurement system. Figure 10 illustrates such a problem.
Gy(f) is shown for the case of an equal amount of 60 Hz-phase mpdulationv _
and white phase modulation. Note the very pronounced oscillation in o_(t) vs. <T.
If you were taking time domain measurements at different averaging times, _
you would obtain ‘a rather strange looking plot, with a slope of almost 1/t
but very bumpy. This is an indication of bright lines. The dual mixer time
domain measurement system makes it easy to see the presence of bright lines;
if you know where to look, as you can trace out the peaks and valleys. The
valleys now correspond to cy(r) without the bright lines. Note that the per-
turbation to ay(r) due to a bright line falls as T-] 1qdependent of the slope of
o (t) without the bright line. O0f course, the most efficient way to detect
the presence of bright lines is via the frequency domain stability either
§¢(f) or S (f)

Next, I would like to just mention some very recent advances in oscillators
which feature exceptionally good short-term stability or spectral purity. *
Curve a, Figure 11 shows the kind of quartz oscillator performance that we have
been used to in .the past, while curve b, Figure 11 shows the measured
- performance of a new 5 MHz quartz oscillator-that has just appeared on the
commercial market. It has a substantial improvement at large.Fourier fre-
quencies. This means that if this oscillator were used as a source for’
multiplication to the mm régﬁon or above, then the resulting signal-to-noise
would be better{assuming a good multiplier chain). At low Fourier frequencies,
the new oscillator is somewhat worse than the old one. The optimum so]ution,’
as we will see later, would be to phase-lock the new oscillator to the old one
with a unity gain bandwidth of about 10 Hz or equivalently an attack time of
(1/207) s. Curve c, Figure 11 shows the equiva1en£ phase noise of the super-
_ conducting cavity stabilized oscillator at 5 MHz [5]. This system actually
runs at 10 GHz. A new superconducting oscillator has been proposed which
promises to yield approximately 60 dB reduction in the noise pedestal shown
in Curve c [6]. Curve d, Figure 11 shows the approximate phase noise of the
rubidium maser [7]. '
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Next, I would like to spend some time discussing phase-lock loops, as
they form an important and sometimes limiting link, in achieving ultimate
performance from a giveﬁ frequency standard system. We have all worked with
systems in which the short-term stability is not determined by the same
phenomenon that determines the long-term stability. Let me remind you that the
proper frame of reference for calculating and comparing performance of the
phase-lock loop, or frequency-lock loop 1is in frequency domain and not time
domain because in fact the servo acts in frequency domain [1] So assume that
we have some kind of reference oscillator(it could even be a reference signal);
a tunable VCOj a detector which could either work via phase or'frequencyi and

a servo system. The spectral density of phase or frequenc? fluctuations, for tﬁe veco
Tocked to the reference is given by

(1/zwt) |2

S(f) = %—"1"—(]72;;7 S(f, ref) + S(f, n) + _S(f, vc0)

servo G
servo(1/2mt)

where Gservo(f;]/Z"T) is the measured servo gain, S(f, ref) is the spectral

den;ity of phase fluctuations S¢(f) for a phase lock loop or the spectral

. density of frequency fluctuations § (f) for a frequency lock loop of the

reference signal, S(f, n) is the corresponding spectral density that would
be required in the VCO to produce the servo system noise, and S(f, VCO) is
the corresponding spectral density of phase or frequency fluctuations of the
unlocked VCO.

Figure 12 illustrates this for various attack times where it has been
assumed that Gservo varies as 6 dB/octave, and has a maximum gain of 104.
_The resulting time domain stability is shown in Figure 13. Note that changing
the attack time from 10~ to 1075 seconds has 1ittle effect on the short-term
stability. This is because the time domain stability, ¢ (1), is essentially

proportional to the integral of the total phase fluctuations [8]

°y(’)f k : s,(f) df
iid

and in this example most of the phase fluctuation occurs at Fourier frequencies
beyond the loop attack time. Only when 1/21rtv (rv = loop attack time). exceeds
the bandwidth of S¢(f) does the time domain stability show significant improve-
ments. The limited gain means that when the low frequency noise starts to in-
crease due to drift, flicker of frequency or whatever, the output just tracks

~ {t at reduced levels.
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This example also illustrates that 6 dB per octave gain slope is not fast
enough to correct for some of the divergent low frequency processes which are
in many, indeed virtually all present oscillators.

Figure 14 shows more of a typical example, namely one -in which the
reference oscillator (curve b) has poor short-term stability (white phase
noise) and flicker of frequency in long-term. The VCO (curve a), on the
other hand, shows good short-term stability but drifts away rather rapidly.
.There are of course many ways to design the servo system gain in order to
optimize the phase spectrum or time domain stability in the region of
importance for a particular application. Assuming that we are interested
in the optimum time domain stability rather than the direct phase spectrum,
the servo gain slope shown in Figure 15 could be used. The gain crosses-unity
‘with a 6 dB/octave slope which results in a stable operating-condition. At 1/4 the
unity gain bandwidth or 4 times longer attack time, another integrator becomes
active. The dotted line (curve c) of Figure 14 shows the resulting S¢(f).
Note that in contrast to the 6 dB/octave gain slope of Figure 12 'that the 12
dB/octave gain slbpe is fast enough to substantially decrease the low frequency
noise. The high frequency noise is degraded only slightly for frequencies above
the unity gain point [1, 9]. . T -

Figure 16 shows the resulting time domain stability. Note that by
‘removing the high frequency noise via the phase lock that the resulting
system time domain stability reaches the flicker level much faster than for the
reference alone. The servo gain.slope of Figure 15 has one disadvantage and
that is the need for gain stability. If the Toop gain is lowered sufficiently
the slope at unity gain approaches 12 dB/octave, then the system will most
.probably break into oscillation,on the.other hand, 2n increase in loop gain
over that shown in Figure 15 makes 1ittle difference in loop stability.
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Figure 17 shows the time domain stability which can be achieved using
a 6-12 dB servo gain slope as in Figure 15 to phase lock the two types of
commercially available quartz oscillators typified by curves a & b of
Figure 11. For comparison, the time domain stability of the Rb maser and
the Stanford superconducting cavity system are also shown in Figure 17 [5].
The noise bandwidth is 1 kHz. One often sees time domain stability plots
without the noise bandwidth being stated. While it is true that many of the
frequency standards have noise proéesses which are supposed to lead to a time
domain stability which is independent of bandwidth, the measurement systems
and many of the ways we use frequency standards yield stabilities which do
depend on the noise bandwidth.
So I think that it is important to note the bandwidth over which one
measured the time domain stability. 1If o (t) is falling as 1/t, or faster
-than 1'1/2, this is essential in order toyobtain meaningful measurements.
I now would 1ike to turn to the subject of frequency multiplication. It's
well known that the effect of frequency multiplication on the phase spectral
density is given by: . .

(V. f) = n? s (v/n, f)

where n is the mu1t1p1ication number. Recent analysis and some experiméﬁtaI
checks have shown that the voltage spectral density such as you would observe

on a power meter or spectrum analyzer is quite accurately given by following
expressions [10]

-¢f ) [3% + n S (v/n, f)]

ENCERA

¢ 2
f° fo S¢(v, f) df rad®.

One notes thit when ¢f .<< 1 that tH{s expression reduces to the standard one,

5,(f) = n? 5, (v/n, f).
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The term e™® fb(“) Gfo contains all the power in the frequency interval
vV - fo tov + fo'

_ By appropriate choice of fo one can apply these two equatijons at particular
points in the spectrum to predict the width of the carrier, the height of the
carrier above the pedestal, the width of the pedestal, the point at which the
signal disappears, within an accuracy of a few dB. This has been checked _
experimentally and in some specific cases, theoretically although to do it for
all noise processes'is a tough numerical job. Let us see how one would predict
the amount of powér left in the carrier after frequency-hultiplication. Let us
pick a definition for the dividing line between the carrier and noise pedestal
fp. the point where the sltope of S¢(f) drops below £1. In this case, the relative
power in the carrier after multiplication by a factor of n is just:
<P

Carrier Power = e » where P . -‘f: S¢(f) df,

, N P

" . while the relative power in the noise pedestal is 1 - e™® . In most cases, changing
the definition of fp by a factor of 10 or 100 makes little difference since

most of the phase modulation occurs at.large Fourier frequencies.

‘ Figure 18 11lustrates the loss of power from the carrier as the phase
‘modulation due to the pedestal, is increased. When ¢P is small compared to 1,
the relative power in the carrier is independent of n, this corresponds to

the standard equation, equating the phase and voltage spectral densities.
However, as-¢p’approaches 1 the carrier exponentially loses relative power.

‘At some point, no matter how narrow a filter one uses, the density of power in
the carrier is so small that one cannot distinguish it from the density of power
in the pedestal shown in the lower curve. What does it mean for a real signal?
Curve a, Figure 19 shows the voltage épec;rum from a spectrum analyzer of the '
5 MHz fundamental. The resolution is 10 kHz. Curve b shows the voltage spectrum
at x-band; the sibnaléto-noise is still very good. - Curve ¢ shows the result at
500 GHz, the carrier is just a small peak and the pedestal width has started to
grow. Curve d shows that at 1.5 THz that the carrier is totally gone. And

that is in fact the result observed in many huItipIication experiments - the
signal-to-noise drops from some high value to zero after only a small increase
in multiplication factor.
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One can .also predict the fast Tine.Width of the carrier as a function of
multiplication factor by making use of the expression of power from y - f, to

av

S f""/zs;_(v, fdf = an(@), ‘

where S¢c is the carrier portion of the phase spectrum. There is a slight
-difference between this definition of carrier width via-the 1/2 power points
and the 3 dB intensity points. At most, the error is 3 dB in width and the
difference is easily calculated if it's important [10]. For an oscillator
éxhibiting flicker of frequency in long-term, the fast carrier linewidth is
closely given by:

Avc = 2vay(flick?r).

If one scans too slowly, the linewidth will appear to be increased over this due
to the flicker process and if one goes too fast, the linewidth will be increased
due to the windowing effect of the analyzer. Therefore, a certain amount of care
must be taken in optimizing scan rate and bandwidth to observe this fast 1inewidth.
I will conclude with some predictions on frequency multiplication. The
dotted line (Figure 20) shows the phase spectrum of the two 5§ MHz quartz oscil-
lators of Figure 11 locked together while the solid 1ine shows the voltage speé-
trum after multiplication to 5 THz. (This frequency was chosen to overlap with
some of the common FIR lasers.) These were calculated assuming noiseless multi-
pliers. -‘Note the linewidth of 3 liz and the nearly 60 dB signal-to-notse in a

~1-3 Hz bandwidth. Therefore one should expect to have at least 20 dB signal-to-

noise in a 3 kHz bandwidth. Using the superconducting cavity as a source [6],
one would predict a linewidth of = 5§ millihertz at 5 THz and signal-to-noise_

" of beyond 60 dB even in a 1 kHz bandwidth. Even at 88 THz the superconducting

cavity should have a linewidth of 0.1 Hz and a signal-to-noise greater than 30 dB
in a 1 Hz bandwidth.
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FIGURE 1: Measured stabilities of several types of standards. The data are
based on publications and specifications.
A: commercial Cs beam G: quartz crystal controlled oscillator

B; commercial Rb gas cell G': new quartz crystal controlled oscil- |
C: high performance commercial Cs beam - lator (fh = 1kHz)
D: Tlaboratory Cs beam
. = . H: Rb maser
E: Hmaser (f, = 10 Hz) J: SCC oscillator (f, = 10 iz)

F: Rb maser, quartz oscillator (fh = 1kHz) K; CH, stabilizer laser

FIGURE 2: Typical system for measuring S¢(f) of a pair of equal frequency
}osciila ors. Noise floor for this system is showrt in Figure 4.

FIGURE 3: Block diagram of 2 new spectrum analyzer using the Hadamard variance.
Tﬁ?s systemlautomatically plots S¢(f) for 16 different Fourier frequencies from
0.01 Hz to 1 kHz.

FIGURE 4: Typical measurement noise floor for S;(f) using the system illustrated
in Figure 2 at 5 MHz. Similar performance is po?sib]e from 0.1 MHz to 1 GHz.

FIGURE 5: Block diagram of a new phase noise measurement system which is broad-
band and features low noise.

FIGURE 6: Block diagram of the hetrodyne or beat-frequency method of measuring

- _ time domain frequency stability. Measurement times limited to ¢ > Tpe Typical

noise floor shown in Figure 9, curve a.

FIGURE 7: Block diagram of tight phase lock method of measuring time domain
frequency stability. Measurement times limited to T > 1/(2ﬂf1) where f] is the

unity gain bandwidth of the phase lock loop. Typical noise floor shown in Figure
9, curve a.

FIGURE 8: Block diagram of the dual mixer time difference method of measuring
time domain frequency stability. Measurement times are typically limited by

processing time to 0.002 seconds, although 10’65 is possible. Typical noise
floor shown in Figure 9, curve b.

FIGURE 9: Typ1ca1 measyrement floor for o (T) vs. T for: a) hetrodyne and tight
phase lock method and b) dual mixer time dxfference methos, Noise bandwidth is
1 kHz. See text for discussion on practical samp]e times.

FIGURE 10. A calculated o (T) vs. T plot of white phase noise with some 60 Hz phase
modulation superimposed. The power in the 60 Hz sidebands has been set equal to the
power of the white phase noise in a 1 kHz bandwidth, fh

FIGURE 11: Spectral density of phase fluctuations, S¢(f), for a number of oscil-
lators. a. Commercial 5§ MHz quartz oscillator; b. newly available 5 MHz quartz
oscillator; c¢. superconducting cavity stabilized osc111ator operating at 10 GHz

but referred to 5 MHz; d. rubidium maser.
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FIGURE 12: Shows S (f) for a VCO locked to a reference, as a function of the
phase lock loop att?ck time, T, "Servo gain is assumed to vary as -6 dB/octave

with a maximum gain of 104.

FIGURE 13: Time domain stability of the VCO and ref signals from Figure 12 for
various phase lock loop attack times. Servo gain is assumed to vary as -6 dB/
octave with a maximum gain of 104. Noise bandwidth f ==

FIGURE 14: The dashed 1ine shows the S (f) which results from locking a free

running oscillator typified by curve a to a reference typified by curve b, using
the servo gain shown in Figure 15.

FIGURE 15: Suggested servo gain for Figure 14. This form of servo gain provides
near optimal time domain performance for the system. See Figure 16.

FIGURE 16: Time domain stability calculated from S¢(f) shown in Figure 14. Note
. that the time domain stability of the system is much better than either component
between approximately 0.5 and 104 seconds. Noise bandwidth fh = o

" FIGURE 17: Curve a) Time domain stability which results from phase locking
two oscillators typified by curves a and b of Figure 11 with a servo gain
shape similar to Figure 15. Curve b) Time domain stability of Rb maser [7].
Curve ¢) Time domain stability of superconduct1ng cavity [5]. Noise bandwidth is 1 kHz.

FIGURE 18: The two solid curves illustrate the rs1ative division of power between
the carrier and noise pedestal as a function of ¢”, the phase modulation due to
the noise pedestalp Also shown is the output frequency and multiplication factor
corresponding to ¢ assuming a 5 MHz oscillator characterized by curve a, Figure

11. The lower dotted 1ine shows the power density in the noise pedestal.

FIGURE 19: Relative power spectral density for a 5 MHz oscillator (curve a) after
muitiplication to (b) x band, (c) 500 GHz and (d) 1.5 THz. The resolution

is 10 kHz. Note the relative Toss of power from the carrier at 500 GHz and 1.5 THz,
also the broadening of the noise pedestal.

FIGURE 20: Calculated spectral density of phase and voltage fluctuations at 5 THz

for the 5 MHz oscillator system characterized by Figures 11 and 17. Note the
predicted fast linewidth of 3 Hz. .
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