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Since the first Symposium on Frequency Standards and MEtfOlogy in 
1971, there have been many significant advances in time and frequency 
metrology. 
problem areas, and attempt to forecast some future advances in a feu 

I will describe the present state-of-the-art, indicate some 

'areas. Specifically, I want to cover the measurement of stabili.ty of 
precision oscillators and signal handl ing equipment in frequency and 
time domain, new developments in oscillators which show very high spectral 
purity, or good short-term stability, techniques for combining two or 
more frequency determining. elements into a superior frequency standard 
system, and make a few comnents abdut some new understandings and advancements 
in frequency mu1 tip1 ication. 

Figure 1 shows state-of-the-art short-term and medium-term stability 
of various classes o f  frequency standards. Perhaps one of the most 
notable things is not the introduction of so many new standards since 
1971, but the outstanding improvements in some of the old ones, e.g. 
quartz oscillators. . 

and time domain are the tools-that allow us to characterize oscillators 
and signal handl ing equipment. Equally important, these techniques are 
used as diagnostic tools to improve existing devices and to design - 
intelligent uses o f  frequency standards in systems applications. 
domain measurements and characterization of stability via S (f), spectral 
density of frequency fluctuations,or S+(f), the spectral density o f  
phase fluctuations,are Some of the most powerful tools that we have in 
evaluating types and levels of fundamental noise processes in oscillators 
and signal handling equipment, as they allow us to examine individual 
Fourier components of residual frequency or phase modulation. Also, the 
time domain stability is uniquely defined for any given bandwidth from 
the frequency domain measurements. The inverse is not always true, in 
that we cannot uniquely transfer back from time domain variance measurements 
to frequency domain because the variance measurements are actually an 
average over the different Fourier components that contribute to the 
time domain stability. . 

Systems and techniques for the measurement of stability in frequency 
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Figure 2 shows a typical scheme which is used for measuring spectral 
density of phase fluctuations in the range from 1 MHr to perhaps 10 GHt 113. 
Analogs o f  this scheme are used up to the visible. The source is  
shown as a simple oscillator, however, it might actually be an oscillator 
plus an amplifjer or a frequency multiplier. In order to obtain precision 
measurements of S (f) or equivalently, S (f), the residual amplitude and 
frequency modulation or phase modulation must be small so that the , 

carrier is well-defined and further, we must suppress -the residual 
amplitude modulation from the measurement. In the past, it-has often 
been assumed that amp1 i tude modulation is small compared to phase modulation 
in precision sources. This is in fact not true over the major portion 
of the spectrum of precision oscillators. If additive noise processes 
are present,. they will contribute an equal amount to amplitude and phase 
modulation. We can take advantage of this as a diagnostic tool, because 

Y fb 

it allows us to distinguish between fundamental noise processes which 
are additive, and noise processes which are multiplicative or produced 
by dfrect modulation o f  the frequency. In fact, i f  the uscillators 
under test in Figure 2 are free-running, we will measure the spectral 
density of phase fluctuatlons when the signals are in quadrature at the 
mixer, and when they are in phase, we will measure the amplitude spectrum. 
This can be very useful as a diagnostic tool, as I mentioned before. 

. .  

Frequency domain analysis can also be done using time domain sampling 
of the phase o r  frequency difference between two oscillators and computing 

S+(f) or’s (f) using fast Fourier transforms or the Hadamard variance [2J. 

variance [3]. Its main advantage i s  that one can easily measure S (f) from 
0.001 Hz to 1 kHz without trouble from the spurious lobes of the Hadamard 
variance. 

Y 
Figure 3 shows the block diagram of a new approach to using the Hadamard 

Y 

Figure 4 shows the kind of typical performance for S+(f) measurement 
floors that I think can be obtained with both systems, although these 
measurements were actually taken at 5 MHz with the scheme shown in 
Figure 2. One could expect to obtain performance o f  this order of 
magnitude from about 10 kHt out to about 1 GHz. Beyond about 10 GHr, 
most of the measurements are a combination of amplitude and phase spectra. 
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The noise added by signal processing equipment can be measured by 
replacing the test oscillator in Figure 2 by a 90' phase shifter, driven 
from the reference oscillator, eliminating the phase lock circuitry, and 
placing the component under study at Point A or 8. 
residual phase modulation in the source oscillator cancels out to a very 
high degree, perhaps as much as 60 d6 if the bandwidths o f  both channels . 
are very similar. This scheme allows one to measure noise in components 
down t o  the resolution of the measurement system which essentially is 
limited by the added noise of the mixer and dc amplifiers and is usually 
independent of what the source oscillator happens to be. There are 
a number of amplifiers 'and oscillators and signal handling equipment 
which have noise in the so-called white phase region which are uncomfortably 
close to the measurement floor of Figure 2, which is S+(f) 1 .2 .5  x IO"* rad2/Hz. 

noise measurement system shown in Figure 5. 

In this case, the 

One possible solution to this measurement problem i s  the phase 
It consists o f  2 conventional 

phase noise channels which are nearly identical [l]. 
. .  

At the output of each double balanced mixer there i s  a 
portional to the phase difference, &#I, between the two osci 

stgnal which is pro- 
lators and a noise 
The voltages at ten, Vn, due to contributions from the mixer and amplifier. 

the input of each bandpass filter are 

where Vnl (t) and Vn2(t) are subsbntially uncorrelated. 
produces a narrow band noise function around its center frequency f: 

Each bandpass fitter 

Vl(BP filter output) = A1[S$(f)]1/2 B1112 cosC2rrft + y(t)] 

+ C [S (f)J"2 61"2 cO~C2nft + n l ( t ) ]  
'n1 
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wheFe B1 and B2 are the equivalent noise bandwidths o f  filters 1 and 2 
respectively. Both channels are bandpass filtered in order to help 
eliminate aliasing and dynamic range problems. The phases Y(t), q1 (t) 
and n2(t) take on .all values between 0 and 2rr with equal likelihood. 
The output of the correlator, which is a wideband, four quadrant multiplier, 
consists o f  a dc term proportional to S4(f) between the two oscillators 
plus an ac term which i s  averaged to near zero 

112 112 + ac terms B2 - 1/2 A A S (f) B1 
Vout 1 2 4  . 

Preliminary measurementi at 5 MHt show that one can reach noise floors 
'for S4(f) below lo'*' rad2/Hz at Fourier frequencies above 10 kHz. Although 
further improvements on the correlation technique for making phase noise 
measurements are surely feasible, the present performance l.eve7 appears 
sufficient to measure the next generation of oscillators and signal 
handling equipment as well as present ones. , 

Time domain measurements expressed in the pair variance (Allan Variance) 
as in Figure 1 are the most comon way to characterize stability of 
precision oscil1ators.This method of measurement generally requires 
looking at the accumulated phase difference between the two oscillators 
under test. The most comonly used system is the so-called hetrodyne 
frequency method or beat-frequency method shown in Figure 6 where the 
time between zero crossings is counted and recorded with a printer. One 
of the major limitations o f  this system-is that it is restricted to 
measurement times which'are longer than 1 beat period. One early attempt 
to get around this difficulty i s  shown fn Figure 7, The output voltage 
o f  the mixer is proportional to the frequency difference between the two 
oscillators for times which are much longer than the attack time*of the phase- 
lock loop. This voltage is then usually converted to a frequenc.y and its stability 
measured. The 1imitatTon on the shortest measurement time is determined 
by the speed of the.phase lock loop or the maximum rate of the voltage 
to frequency converter. This system also features the low noise o f  the- 
hetrodyne system. 

3 

- 

Very recently there has been a major improvement in time domain measure- 
ments with the introduction of the dual mixer time domai-n measurement system 
shown in Figure 8. In this method a transfer oscillator which can be offset 
from the two oscillators i s  used to-obtain the desired beat frequency. The beat 
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frequency is usually adjusted to be only slightly larger than the smallest 
inverse measurement time desired. By adjuiting the phase shifter, the time 
between the zero crossings of the two beat frequencies can be made very 
small compared with the beat period. Then the phase noise in the transfer 
oscillator cancels out to a very high degree. 

Figure 9 shows typical results for the noise floor for 0 (T) Y 
for (a) the hetrodyne method and (b) the dual mixer time difference method. 
Noise bandwidth is 1 kHz. Noise Considerations indicate that the dual 
mixer system could achieve 6 x 10- l5 T-' Measurement times o f  sec 
could be realized at some sacrifice in noise floor. The hetrodyne method 
could achieve 4 x 10 using the noise floor shown in Figure 4. -15 ;1 

Now, in all stabil ity measurements between oscillators, 'one has to be 
very careful to avoid injection locking. With the aid o f  the following equation, 
we can get a rough idea o f  the order of magnitude of  the frequency separation 
required between the oscillators under test to prevent injection locking, or 
equivalently an estimation of the required isolation between the two oscillators . 
given a fixed frequency offset, 

4 = 2 . Q  dy 

resonance by an amount equal to dy. If we apply this 
simplified model to an oscillator with quality factor 

where d 4  represents the phase shift across a single resonant cfrcuit of  
quality factor Q, when the applied frequency is fractionally offset from 

grossly over . , 

Q, we see that 
thin the oscillating loop the effect o f  introducing an additional phase shift w 

is to pull the fractional frequency by an amount 

Suppose that you had 2 frequency standards containing frequency detenining elements 
with quality factors of 1 x lo8 which are oifset 1 x in frequency. The amount 
o f  induced phase deviation required in order to make the standards lock up i s  o f  
order 24 dy or 2 x 
as large as the driving signal amplitude or 4 x 
oscillators to lock up. Therefore, in order to make reliable measurement of frequency 
stability,one is required to provide 100 dB or more isolation between the two fre- 
quency standards.Al ternately, one could increase the frequency offsset. This 

radians. This means that a n  injected signal only 2 x loo5 
in power will cause the two 
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explains in essence, the reason why frequency stability measurements between 
very stable lasers where isolations are notorlously low, are often done via 
a second set of offset locked lasers. 

Another problem often encountered in time domain measurements is the. 
presence o f  bright lines. They might actually be i n  the oscillators under 
test or in the measurement system. Figure 10 illustrates such a problem. 
U (t) is shown for the case of an equal amount of 60 Ht phase modulation 
and white phase modulation. Note the very pronounced oscillation in u (t) vs. T. 
If you were taking time domain measurements at different averaging times, - 
you would obtain a rather strange looking plot, with'a slope of afmost l / t  
but very bumpy. This is an indication of bright lines. The dual mixer time. 
domain measurement system makes it easy to see the presence of bright lines; 
if you know where to look, as you can trace out the peaks and valleys. The 
valleys now correspond to u (T) without the bright lines. 
turbation to 

Y 
u (T) without the bright line. Of course, the most efficient way to detect 
the presence of bright lines is via the frequency domain stability either 

- 

Y 
Y 

Note that the per- Y 
(T) due to a bright line falls as tml independent of the slope of 

Y 

%(f) or Sy(f)* 

Next, I would like t o  just mention some very recent advances In oscillators 
which feature exceptionally good short-term stability or spectral purity. 
Curve a, Figure. 11 shows the kind of quartz oscillator perfonnance that &have 
been used to in .the past, while curve b, Figure 11 shows the measured 
performance of a new 5 MHz quartz oscillator-that has just appeared on the 
commercial market. It has a substantial improvement at large Fourier fre- 
quencies. This means that if this oscillator were used as a source for- 
multiplication to the m region or above, then the resulting signal-to-noise 
would be better(assuming a good multiplier chain). At low Fourier frequenctes, 
the new oscillator is somewhat 'worse than the old one. The optimum solution, 
as we. will see later, would be to phase-lock the new oscillator td the old one 
with a uni€y gain bandwidth of about 10 Hz or equivalently an attack time of 
(1/2h) s. Curve c, Figure 11 shows the equivalent phase noise o f  the super- 
conducting cavity stabilized oscillator at 5 MHz [5]. This system actually 
runs at 10 GHt. A new superconducting oscillator has been proposed which 
promises to yield approximately 60 d6 reduction in the noise pedestal shown 
in Curve c [SI. Curve d, Figure 11 shows the approximate phase noise of the 
rubidium maser [SI. 

- 
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Next, I would l ike to  spend some time discussing phase-lock loops, as  
they form an important and sometimes limiting link, i n  achieving ultimate 
performance from a given frequency standard system. 
systems i n  which the short-term stabi l i ty  is not determined by the same 
phenomenon 
proper frame of reference for calculating and comparing performance of the 
phase-lock loop, o r  frequency-lock loop is f n  frequency domain and not time 
domain because i n  fact  the servo acts i n  frequency domain 513. So assume that 
we have some kind of reference osc i l l a to r ( i t  could even be a reference signal); 
a tunable VCO; a detector which could either work via phase or  frequency; and 
a Servo system- 
locked t o  the reference is given by' 

We have a l l  worked w i t h  

that determines the long-term stability. Let me remind you that the 

The spectra1 density of phase or  freauencv fluctuatioqs, for t h e  yco 

2 
S(f,  ref)  + S(f, n )  + S ( f ,  VCO) 

pservo (l/* ) 

(f=l/Zm) is the measured sew0 gain, S ( f ,  ref) is the spectral where Gservo 
density of phase fluctuations S4(.f) for a phase lock loop or t h e  spectral 
density of frequency fluctuations S ( f )  for  a frequency lock loop o f  the 

Y 
reference signal, S ( f ,  n) is the corresponding spectral density that would 
be required i n  the VCO to  produce the servo system noise, and S ( f ,  VCO) is 
the corresponding spectral density o f  phase or frequency fluctuations of the 
unlocked VCO. 

Figure 12 i l lustrates  this for various attack times where it has been 
assumed that GservO varies as 6 dB/octave, and has a maximum gain of lo4. 
The resulting tine domain stabil i ty is shown i n  Figure 13. Note that changing 
the attack ,time from loo4 t o  IOo6 seconds has l i t t l e  effect on the short-term 
stabil i ty.  This  is because the time domain stabil i ty,  u (T) ,  is essentially . *  

proportional to t h e  integral of the total phase fluctuations [8] 

. 

Y 

Y (f) = k 1 pTy(f) df 

and i n  t h i s  example &st of the phase fluctuation occurs a t  Fourier frequencies 
beyond the loop attack time. Only when 1/2atv (fv = loop attack time) exceeds 
t h e  bandwidth of S+(f) does the time domain stabil i ty show significant improve- 
ments. The limited ga in  means t h a t  when the low frequency noise s tar ts  t o  in -  
crease due t o  d r i f t ,  f l icker of frequency or whatever, the o u t p u t  just tracks 
i t  a t  reduced levels. 
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This example also illustrates that 6 dB per octave gain slope is not fas t  
enough to correct for some o? the divergent low frequency processes which are 
i n  many, indeed virtually a l l  present oscillators. 

Figure 14 shows more of a typical example, namely one i n  whjch the 
reference oscillator (curve b) has poor short-term stabi l i ty  (white phase 
noise) and flicker of frequency i n  long-term. The VCO (curve a) ,  on the 
other hand, shows good short-term stabi l i ty  b u t  drifts away rather rapidly. 
.There are of course many ways t o  design the servo system gain i n  order t o  
optimize the phase spectrum or  time domain s tabi l i ty  i n  the region of 
importance for  a particular application. Assuming that we are interested 
i n  the optimum time domain s tabi l i ty  rather than the direct phase spectrum, 
the servo gain stope shown i n  Figure 15 could be used. The gain crosses unity 
wi th  a 6 dB/octave slope whtch results i n  a stable operating condition. A t  1/4 the 
unity gain bandwidth or 4 times longer attack time, another integrator becomes 
active. The dotted line (curve c) of Figure 14 shows the resulting S,#,(f). 
Note that i n  contrast t o  t h e  6 dB/octave--gain slope of Figure 12'that the 12 
dB/octave gain slope is f a s t  enough to substantially decrease the low frequency 
noise. The h igh  frequency noise is degraded only 'slightly for frequencies above 
the unity gain p o i n t  [l, 91. 1 

r.- 

Figure 16 shows the re su l t i ng  time domain stability. Note that by 
m n o v i n g  the high  frequency noise via the phase lock tha t  the resulting ' 

system time domain Stability reaches the flicker level much faster than for  the 
refere'nce alone. The servo gain-slope of  Figure 15 has one disadvantage and 
that is the need for gain stability. 
the slope a t  un i ty  gain approaches 12 dB/octave, then t h e  system will'most 

.probably break i n t o  oscillation,on the.other hand, an increase i n  loop gain 
over that shown i n  F igure  15 makes l i t t l e  difference in loop stabil t ty.  

If the loop gain i s  lowered rufficfently 
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Figure 17 shows the time domain stability which can be achieved using 
a 6-12 d0 servo gain slope as in Figure 15 to phase lock the two types of 
comrrercially available quartz oscillators typified by curves a & b of 
Figure 11. For comparison, the time domain stability-of the Rb maser and 
the Stanford superconducting cavity system are also shown in Figure 17 [S]. 
The noise bandwidth is 1 kHz. One often sees time domain stabillty plots 
without the noise bandwidth being stated. While it is true that many o f  the 
frequency standards have noise processes which a+e supposed to lead to a time 
domain stability which is independent o f  bandwidth, the measurement systems 
and many of the ways we use frequency standards yield stabilities which do 
depend on the noise bandwidth. 

So I think that it is fmportant to note the bandwidth over which one 
measured the time domain stability. 
than T~'/*, this is essential in order to obtain meaningful measurements. 

well known that the effect of frequency multiplication on the phase spectral 
density is given by: 

. 

If u (T) is falling as l / ~ ,  or faster Y 

I now would like to turn to the subject of frequency multiplication. It's 

- 
where n is the multiplication number. Recent analysis and some experimental 
checks have shown that the voltage spectral density such as you would observe 
on a power meter or spectrum analyzer'is quite accurately given by following 
expressions [ 10 J 

s4(v, f) = n' s,+(U/n, f) * 

.- 

- .  
- J  

+f = fO S4(u, f) df rad'. 
0 . _  

- 
* 

. One notes that when 4 << 1 that thi-s expression reduces to the standard one, 
fO - 

. .  
. 
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The term e-4 ' o ( ~ )  6fo contains all the power in the frequency interval 
v - fo to v + fo. 

By appropriate choice o f  f, one can apply these two equations at particular 
points in the spectrum to predict the width of the carrier, the height o f  the 
carrier above the pedestal, the width of. the pedestal, the point at which the 
signal disappears, within an accuracy of a few dS. This has been checked 
experimentally and in some specific cases, theoretically although to do it for 
all noise processes'is a tough numerical job. Let us see how one would predict 
the amount of power left in the carrier after frequency multiplication. Let us 
pick 
f , the point where the stope o i  Sg(f) drops below f-'. In this case, the relative P 
power in the carrier after multiplication by a factor of n i s  just: 

' 

a definition for the dividing line between the carrier and noise pedestal 

, where +p - = J" S+(f) df, 4 
fP 

Carrier Power = e 

- P .  
while the relative power in the noise pedestal i s  1 - e* . In most cases, changing 
the definition of f by a factor o f  10 or 100 makes little difference since 
most o f  the phase modulation occurs at. large Fourier frequencies. 

P 

Figure 18 illustrates the loss o f  power from the carrier as the phase 
modulation due to the pedestal, is increased. When +p is small compared to I ,  
the relative power in the carrier f s  independent o f  n, this corresponds to 
the standard equation, equating the phase and voltage spectral densities. 
However, as 
At some point, no matter how narrow a filter one uses, the deniity o f  power in 
the carrier is so small that one cannot distjnguish it from the density of power 
in the pedestal shown in the lower curve. What does it mean for a real signal? 
Curve a, Figure 19 shows the voltage spectrum from a spectrum analyzer of the 
5 HHz fundamental. The resolution is 10 kHz. Curve b shows the voltage spectrum 
at x-band; the signal-to-noise is still very good. - Curve c shows the result at 
500 GHz, the carrfer is just a small peak and the pedestal width has started to 
gmw. Curve d shows that at 1.5 THz that the carrier is totally gone. 
that is in fact the result observed in many multiplication experiments - the 
signal-to-noise drops from some high value to zero after only a small increase 
i n  mu1 tip1 ication factor. 

approaches 1 the carrier exponentially loses relative power. 

And 
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One can .also predict the fast line width o f  the carrier as a function of  
multiplication factor by making use of the expression of power f r o m  v - fo to 

* ‘ V  + Po: 

1;;,/2S+c(v, f)df = :ln(2), - 

- 

where S 
difference between this definition of carrier wid.th via the 1/2 power points 
and the 3 dB intensity points. At most, the error is 3 dB in’width and the 
difference is easily calculated if it’s important [lo]. For an oscillator - . 
exhibiting flicker of frequency in long-tenn, the fast carrier linewidth is 

is the carrier portion of the phase spectrum. There is a slight 0 

closely given by: 
_ -  

Avc = 2wy(flicker). 

If one scans too slowly, the linewidth will appear to be increased over thfs due 
to the flicker process and if one goes too fast, the-linewidth will be increased 
due.to the windowing effect of the analyzer. Therefore, a certain amount of care 
must be taken in optimizing scan rate and bandwidth to observe this fast linewidth. 

.. 

- . -  

1.” 

I will conclude with some predictions on -frequency multiplication. The 
dotted line (Figure 20) shows the phase spectrum o f  the two 5 MHt quartz oscil- 
lators of Figure 11 locked together while the solid line shows the voltage spec- 
trum after multiplication to 5 Mz. (This frequency was chosen to overlap with 

pliers. Note the linewidth of 3 Hz and the nearly 60 dB signal-to-notse in a 
1-3 H t  bandwidth. Therefore one should expect to.have at least 20 dB signal-to- 
noise in a 3 kHr bandwidth. Using the superconducting cavity as a source [ 6 ] ,  
one would predict a linewidth o f  = _ 5  millihertk at 5 THz-and-signal-to-noise _ -  - 

o f  beyond 60 dB even in a 1 kHz bandwidth. Even a% 88 THz the superconducting 
cavity should have a linewidth of 0.1 Hz and a signal-to-noise greater than 30 dB 
in a 1 Hr bandwidth. . .  

t 

i 

. 
! 

f 
t some of the common FIR lasers.) .These were calculated assuming noiseless multi- 

I 
I 

I 
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FIGURE 1: Measured s tabi l i t ies  o f  severa! types of standards. The data are 
based on pub1 ications and specifications. 
A: comnercial Cs beam 6: quartz crystal controlled osci l la tor  
B: comnercial Rb gas cell. G ' :  new quartz crystal controlled oscil- 

0: laboratory Cs beam 
E: H maser (fh = 10 Hz) 
F: Rb maser, quartz Oscillator (fh = IkHz) K: cHs stabilizer laser 

FIGURE 2: Typical system for measuring S+(f) of a pair of equal frequency 
m o r s .  Noise floor for  t h i s  system is shown i n  Figure 4. 

FIGURE 3: Block diagram of 8 new spectrum analyzer using t h e  Hadamard variance. 
m t e m  automatically plots S 4 ( f )  for 16 different Fourier frequencfes from 
0.01 Hz to 1 kHz. 

C: high performance comnercial Cs beam * lator ( f h  = 1kHZ) 
H: Rb maser 
3: SCC oscil lator ( f h  = 10 kHz) 

FIGURE 4: Typical measurement noise floor for S (f) using the system illustrated 
i n  Figure 2 a t  5 MHz. 

FIGURE 5: Block diagram of  a new phase noise measurement system which is broad- 
G i T X  features low noise. . .  

FIGURE 6: Block diagram of the het-rodyne o r  beat-frequency method o f  measuring 
time domain frequency stability. Measurement times limited t o  t > 'rb. Typical 
noise f loor  shown i n  Figure 9, curve a. 

Similar performance is PO t sible from 0.1 MHz t o  1 GHz. 

FIGURE 7: Block diagram o f  t i g h t  phase lock method o f  measuring time domain 
frequency stability. Measurement times limited t o  T > l/(mfl) where f l  is the 
unity gain bandwidth of the phase lock loop. Typical noise floor shown i n  .Figure 
9 ,  curve a. 

FIGURE 8: Block diagram o f  t h e  dual mixer time'difference method of measuring 
m a i n  frequency stability. Measurement times are typically limited by . 
processing time to 0.002 seconds, although 10 s is possible. Typical noise 
f l o o r  shown i n  Figure 9, curve b. 

FIGURE 9: Typical measurement floor for  Q (T) vs. T for: a)  hetrodyne and t i g h t  
m c k  method and b) dual mixer time difference methos, Noise bandwidth is 
1 kHz. See text fo r  discussion on practical sample times, 

FIGURE 10: A calculated u (2) vs. f plot of white phase noise w i t h  some 60 Hz phase 
modulation superimposed. The power i n  the 60 Ht sidebands has been se t  equal t o  the 
power of the white phase noise i n  a 1 kHz bandwidth, f,,. 

FIGURE 11: Spectral density of phase fluctuations, Sg(f) ,  fo r  a number of oscil- 
lators. a. Comerci.al 5 MHz quartz oscillator; b. newly-available 5 MHt quartz 
oscillator; c. superconducting cavity stabilized oscillator operating a t  10 GHz 
b u t  referred t o  5 M H t ;  d. rubidium maser. 
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FXGURE 12: Shows S (f) f o r  a VCO locked to a reference, as a function of the 
phase lock loop att$k time, tv. Servo gain is assumed to vary as -6 dB/octave 
with a maximum gain of 10 . 
FIGURE 13: Time domain stability of the VCO and ref signals from Figure 12 for 
various phase lock loop attack times. 
octave with a maximum gain of 10 . Noise bandwidth fh = 0. 

FIGURE 74: The dashed line shows the S4(f) which r6sults from locking a free 
running oscillator typified by curve a to a reference typified by curve b, using 
the servo gain shown in Figure -15. 

FIGURE 15: Suggested servo gain for Figure 14. This form of servo gain provides 
near optimal time domain performance for the system. See Figure 16. 

FIGURE 16: Time domain stability calculated from S (f) shown in Figure 14. Note 4 
that the time domain stability o f  the system is much better than either component 
between approximately 0.5 and 10 seconds. Noise bandwidth fh = QD. 

4 

Servo gain is assumed to vary as -6 dB/ 
4 

4 
. -  

FIGURE 17: Curve a) Time domain stability which.results from phase locking 
two oscillators typffied by curves a and b of Figure 11 with a servo galn 
shape similar to Figure 15. Curve b) Time domain stability of Rb maser [7]. 
Curve c) Time domain stability of superconducting cavity [SI. Noise bandwidth is 1 kHz. 

FIGURE 18: The two solid curves illustrate the Vlative division of power between 
-thecarrier and-noise pedestal as a function of 4 , the phase modulation due to 
the noise pedestal 

11. The lower dotted line shows the power density fn the noise pedestal. 

- 

Also shown is the output frequency and multiplication factor corresponding to 4 P assuming a 5 MHz oscillator characterized by curve a, Figure 

FIGURE 19: Relative power spectral density for a 5 MHz oscillator (curve a) after 
multiplication to (b) x band, (c) 500 GHz and (d) 1;s THz. The resolution 
is 10 kHz. Note the relative loss of power from the carrier at 500 GHt and 1.5 Mz, 
also the broadening o f  the noise pedestal . 
FIGURE 20: Calculated spectral density of phase and voltage fluctuations at S THz 
for the 5 t4Hz oscillator system characterized by Figures 11 and 17. Note the 
predicted fast linewidth of 3 H t . '  
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