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Abstract 

We have extended the new TA2 post-process time scale at NIST beyond our previous reports 
to include all of the period from January of 1984 to the present. Derived from the ensemble 
of clocks at NIST, this time scale includes the benefits of several recent refinements to the 
algorithm. By iteratively running the algorithm on the ensemble clock data and 
characterizing anomalous behavior in the dominant individual clocks of the ensemble between 
iterations, we obtain an optimized scale which benefits from the informed anticipation of that 
anomalous behavior and demonstrates an overall decrease in scale disruption. Herein we 
discuss: changes to the TA2 algorithm that we made while processing the eight-year run, our 
method of characterizing anomalous behavior in individual clocks, the way unanticipated 
anomalous behavior is dealt with by the algorithm, and our resulting nine-year time scale. 
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1. INTRODUCTION 

We report here our development of a nine-year time scale derived from the measurements 
among the best atomic clocks at NIST over the years from 1984 through 1992, using the 
TA2 algorithm [1,2,3]. In this paper we refer to both our algorithm and the time scale 
resulting from the application of that algorithm to the NIST clocks as "TA2"; whenever 
contextual clarity demands it, we differentiate between the TA2 algorithm and the NIST TA2 
time scale. The algorithm takes data from an ensemble of clocks and computes a time scale 
in the form of time and frequency offsets of each clock from ensemble time and frequency. 

Because the primary purpose of a post-processed time scale at NIST is to cany forward the 
evaluation of a primary frequency reference, TA2 was designed to optimize frequency 
stability in both short and long term. Whereas AT1, the real-time scale at NIST [4,5,6], 
shares these goals with the post-processed TA2 scale, it must be administered differently due 
to its greater vulnerability. In real time, the most recent ensemble data must be synthesized 
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into the time scale immediately, leaving little or no opportunity for the anticipation of 
anomalous behavior. Freed from the constraints of maintaining a real-time scale, we are 
able to run the TA2 algorithm over a fixed period of data, characterize most of the existent 
anomalous behavior, and correct for it in subsequent iterations of the algorithm. 

TA2 is the name for the process of running the AT2 algorithm both forwards and backwards 
in time to determine frequency estimates of clocks in each direction, then running a final 
third pass forward in time to generate ensemble time using the frequency estimates from both 
the forward and backward passes. The AT2 algorithm is very similar to the AT1 algorithm, 
but it uses a simple Kalman filter technique to estimate a confidence on the frequency 
estimate of clocks. This confidence facilitates both automatic frequency step detection and 
combining the forward and backward passes to obtain a smoothed ensemble frequency. 

There is no TA1 algorithm at NIST, rather an algorithm called TA. This algorithm is a pure 
Kalman Filter [7,8,9,10], derived from the Kalman filter principle of minimizing error in a 
least squares sense. Since time is not measured, only time difference between clocks, a time- 
scale algorithm cannot estimate time as a measured quantity in the presence of some 
measurement noise, as a Kalman filter is usually used. In an ensemble of n clocks, we have 
n-1 measurements of time difference against a single clock. The algorithm must produce n 
estimates of clock offsets from ensemble time. This system is underdetermined unless some 
principle is used to generate another equation to resolve the unknown. In TA the principle 
used is the Kalman filter principle of minimizing error, in this case time error. TA(NIST) in 
its attempt to minimize time error eventually puts too much weight on the clock in the 
ensemble with the best long term stability. This damages the short-term stability of the scale 
and makes the scale vulnerable to shifts in that clock. Anoher consequence of the design of 
TA is that the covariance matrix grows without bound. Again, this comes from the lack of 
measurement of time, the parameter that is being estimated. Operationally this is not a 
significant problem, since the growth of covariance is slow enough that it can be contained in 
a double precision floating point variable of eight bytes indefinitely in a practical sense. Yet 
it is theoretically disturbing. Not, surprisingly, the performance of TA(N1ST) is 
problematic. [ 1,4] 

In addition to our primary goal of optimum stability, we designed the TA2 time scale at 
NIST to facilitate: the addition and/or removal of clocks from the scale with minimal 
perturbations to the scale; the detection of steps in either the time or frequency offsets of an 
individual clock from the scale; and the general ease of use in running the scale. While 
much of the design of TA2 has been reported before, some corrections and improvements 
have been made to the algorithm in the process of running the scale over nine years of data. 

Using the behavior of the real-time scale AT1 as a guide, we examined all major anomalous 
features occurring in the ensemble data during the nine years of measurements among the 
best clocks at NIST. When we encountered frequency steps or drift [ 11,12,13], we 
characterized this behavior and inserted anticipatory information into the run-time command 
file for the scale, and so prevented these effects from pulling the frequency of the scale. We 



made these characterizations carefully with the conscious intent of maintaining the free- 
running independence of TA2; thus we say that TA2 has not been steered to any clock in the 
ensemble or to an external reference. We discuss our method of inserting clock 
characterizations into the time scale in some detail. 

We analyze the performance of the scale by making comparisons both with the AT1 time 
scale and with time scales and clocks external to NIST. We show that TA2 is comparable in 
performance to other NIST scales and so provides redundancy and additional diagnostic 
abilities for characterizing clocks. 

2. ANOMALOUS BEHAVIOR CORRECTION 

TA2 has the ability to detect frequency steps automatically and correct for them by removing 
the offending clock from the ensemble until the scale can learn the new frequency. When 
running the scale in the forward direction a clock is removed chronologically after the 
frequency step, while in the backward direction, the clock is removed chronologically before 
the step. Thus the automatic frequency step algorithm keeps the clock in the ensemble at full 
weight in only one direction in the neighborhood of a frequency step. Whereas this limits 
the pulling of the ensemble frequency by the clock that has taken a frequency step, it reduces 
the stability of the ensemble, since the clock is no longer contributing. When we ran TA2 
over the nine years, if a high-weight clock took a frequency step we preferred to characterize 
that step to allow the clock to maintain full weight in the ensemble in both forward and 
backward directions. . 

As with other algorithms [7,8,14,15], TA2 incorporates a definition of the ensemble time 
offset from the common clock using a weighted average of the measured offsets of all the 
clocks from the common clock. TA2 computes this weighted average beginning with a 
prediction of the time offset of each clock from ensemble time. Because this prediction 
represents our expectation for each clock’s nominal time offset from the scale, it serves as a 
natural point of entry for our foreknowledge of anomalous behavior. Just as anomalous 
behavior breaks from our expectations for a clock, we direct the algorithm to break from its 
prediction, which is otherwise based solely on a clock’s history. 

We specifically consider two types of anomalous behavior: frequency steps and frequency 
drift. We characterize these effects by studying the differential performance of clocks in the 
ensemble. If a clock has low weight and therefore little correlation with the scale, then we 
can run the algorithm and characterize that clock’s behavior against the ensemble itself. But 
for higher-weight clocks, the value of frequency steps or drift relative to the ensemble are 
biased by that clock’s correlation with the ensemble, and so better characterizations are 
obtained by comparing the clock under question with other clocks in the ensemble. When 
we see a frequency step between two clocks, we need to determine which clock took the 
step. To do this, we can compare each with a third clock and use majority voting. It also 
helps to look at more than three, and to consider the possibility of an environmental effect 



that could perturb several clocks simultaneously at the same site. 

We emphasize the significant difference between adjusting a clock’s prediction to reflect pre- 
characterized behavior, and steering the ensemble frequency to an external reference. If a 
clock in the ensemble takes a frequency step, the ensemble will be pulled off in frequency by 
that clock because previous frequency estimates contribute to current updates. Thus, it is the 
prediction of frequency based on previous history which can pull the ensemble frequency if 
the clock frequency has shifted unpredictably. Since we run the scale after this has occurred, 
we may characterize this clock’s frequency step by comparing the frequency of this clock to 
other clocks in the ensemble. If we see a consistent value for the frequency step which is 
considerably larger than the stochastic fluctuations of frequency for this clock, we use that 
value as the characterization of the clock’s frequency step. We insert this value as a shift in 
the prediction of frequency for this clock against the ensemble at the reference time when the 
clock stepped. The ensemble frequency is not steered by this effort to any clock. We must 
assume only that one or more clocks in the ensemble are stable enough in frequency that our 
characterization of a frequency step is accurate. 

The process is similar for frequency drift, but in practice the characterization requires more 
care. We must see a consistent drift in one clock as compared to several clocks. If we 
accept this value as the frequency drift of the one clock, we are assuming that the other 
clocks are neither drifting deterministically nor walking off randomly together. As we shall 
see, it is possible for clocks to move together. Once we have characterized a frequency 
drift, we adjust the prediction of a clock to account for it much as with a frequency step, but 
now the frequency prediction is adjusted continuously over many measurement cycles. 
Others have studied using maximum likelihood estimation of drift [lo]. This requires the 
assumption that all clocks have a constant drift during the period used for the maximum 
likelihood estimation. 

3. RESULTS 

Figure 1 shows the fractional frequency offset of AT1-TA2. Overall the two scales 
nominally remain within 1. 
frequency drift between the two scales reaching a magnitude of perhaps 10-l6/d for extended 
periods. Most of this drift appeared when we introduced a robust technique for time steps 
[16]. This new method tapers clock weights quadratically as prediction error increases from 
three to four standard deviations, instead of completely removing a clock whose prediction 
error exceeds three standard deviations. Since AT1 completely removes a clock whose 
prediction error exceeds three standard deviations, it is not surprising that changing this 
technique increased differences between the two scales. The magnitude of the change 
reflects the nonlinear way in which the algorithms respond to small differences. 

of each other. There seem to be significant periods of 

We emphasize that we cannot know which method produces less drift in an absolute sense. 
This drift of 1016/d is much smaller than effects we see in comparing the two scales against 
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'igure 1: The frequency dispersion between two NIST time scales, the real-time AT 
scale minus the post-processed TA2 scale. 

the best available external references. We add the technique to TA2 since it should 
theoretically improve the scale. 

There are occasionally more rapid excursions which existed even without the robust time 
step technique. These are probably due to using somewhat different clock ensembles and the 
differences in the algorithms. In TA2 when a clock takes a frequency step it has a smaller 
effect than in AT1, since TA2 is run in post-processing and AT1 is a real-time scale. Still, 
the two scales use very similar algorithms on the same major clocks. Again, these 
differences between the two reveal nonlinearity of the time scales. Small differences and 
changes can produce large effects. Other significant features include a time step between 
TA2 and AT1 at MJD 46760, when the NIST (then NBS) measurement system failed 
temporarily, and a steering in AT1 of 3.44- 
MJD 48780, 0O:OO hours UT. 

applied over a four-day interval centered at 

Figure 2 shows the fractional frequency offset of TA2 from International Atomic Time, TAI 
[15]. We see annual deviations over the first five years which seem to attenuate after MJD 
47527, the beginning of 1989. The period approximately corresponding to mid 1990 to mid 
1992, from MJD 48140 to 48730, however, shows a steady drift of about -3.10l6/d. 
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Figure 3 shows TA2 frequency versus the primary frequency standards of the Physikalisch- 
Technische Bundesanstalt (FTB), Braunschweig, Germany, PTB CS1 and PTB CS2 2171, and 
the unsteered master clock of the U.S. Naval Observatory (USNO) [18]. Although each of 
these clocks is correlated with TAI, there is no reason to expect correlation among them. 
We might suspect some correlation between the two PTB clocks, because they are in the 
same laboratory. But both PTB CS1 and the unsteered USNO Master Clock show a similar 
frequency drift against TA2 over the interval from MJD 48140 to 48730. 

We show the five dominant clocks contributing to TA2 during this period in Figures 4 and 5 
along with TAI-TA2. For these figures initial frequencies have been set to 0, and frequency 
steps which have been characterized and inserted into the scale have been removed from the 
plots. Thus, these are the frequency changes which the algorithm sees, except for modelled 
frequency drift. Figure 4 shows NIST clocks 1, 7, and 11, which seem to have some 
similarity in overall frequency drift. Clock 1 seems to have no consistent drift against TA2 
over the interval MJD 48140 to 48730, though its significant random walk FM is visible 
even though it is off line for 176 d. Clock 7 does not seem to drift against TA2 over most 
of the interval, though it does seem to drop in frequency from about 48550 to the end of the 
TAI-TA2 drift interval at about 48730. Clock 11 seems to drop slowly, though it is off line 
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CS1, PTB CS2, and unsteered USNO Master Clock. 

for 148d. Figure 5 shows clocks 12 and 24 which seem to be drifting against TA2 opposite 
to TAI. In these cases we attempted to model drift based on internal comparisons between 
clocks. We concluded by modelling clock 12 (Figure 5) with a drift of 5 .  1016/d from MJD 
48340 to 48622, and by modelling clock 7 with a drift of 2.3.1016/d from MJD 48080 to 
48400. It is possible we might have benefited from the maximum likelihood estimation of 
Jones and Tryon [lo], though we would have had to assume a constant drift on all clocks 
over some interval. We conclude that the drift between TAI and TA2 from MJD 48140 to 
48730 is a mean frequency drift among the clocks that dominate TA2 over this period. 

4. CHANGES IN TA2 

There have been a number of changes in the TA2 algorithm since previous publications 
[1,2,3]. TA2 is the name given to the three-pass smoothing process of running the AT2 
algorithm forwards and then backwards in time, and then combining the clock frequencies 
generated in those passes into a final third pass forward to generate clock time offsets from 



TAI & NIST Clocks v e r s u s  TA2 

4.OE-13 

-Rl- UP 
----ELw( a o a c 7 - r @ 2  1 - w --- - -- - __... - .... w n - w  

MJD, days 

'iwre 4: TAI and three clocks at NIST with a similar frequency drift during the peria 
of-significant drift for TAI-TA2. 

the ensemble time. In the next section of this paper, we present the complete equations of 
AT2. Here we discuss the motivations for some of the changes. 

Several equation changes follow from our recognition of a need to differentiate between two 
different values of r ,  which we call rx and ry, for each clock in the ensemble. Because data 
for an individual clock may be missing for various reasons, rx is necessary to track the 
reference time since the last time update. Similarly, we need ry to track the reference time 
since the last frequency update, because we cannot estimate frequency on a cycle in which 
there is a time step. Hence we may have a time update without a frequency update. 

The method we use to estimate the bias of a clock's prediction error due to the clock's 
correlation with the ensemble has changed to incorporate the recent work of Tavella, 
Azoubib, and Thomas [19]. Through simulation we have verified that the current formula 
indeed gives a better value for the bias than the previous one. 

We have moved the drift term from the time prediction into the frequency prediction. This 
better allows us to separate the computations of clocks' time offset, such as time step 
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detection and correction, from those with frequency. 

We have added the wct (weight control) parameter to enable limiting of a clock’s 
contribution to the ensemble, while the algorithm continues to estimate the clock’s prediction 
error. This is useful in two important situations. First, upon the detection of a time step, 
whereas previously we abruptly removed the clock from the scale for that measurement 
cycle, now we gradually deweight a clock as the step size increases from three to four 
standard deviations from its predicted value. This move from a single-cycle discontinuous 
gap in a clock’s presence in the ensemble, to a ramped-deweighting procedure increases the 
robust character of the algorithm, in that a small change in a measurement will not produce 
as large a change in the scale [16]. Second, this parameter allows us to enter a clock in the 
scale with zero weight while the scale still computes that clock’s prediction error variance. 

Besides these changes we have corrected some errors in the formulas as published 
previously, notably in the prediction error update c2 and in the statistic used for defining 
frequency steps a,. We have also introduced the parameters R and Q to simplify the 
equations for the Kalman estimate of frequency y, and to clarify the formulas used for 



converting stochastic parameters among various representations. 

5. THE EQUATIONS DEFINING AT2 

The AT2 algorithm estimates the deterministic parameters of the clock model, time and 
frequency offsets of each clock from ensemble time (and frequency). An estimate of 
frequency drift for each clock can be entered and used for frequency prediction, but it is not 
updated in the calculations. A time offset is a weighted average, the weight of each clock 
being determined adaptively by its prediction confidence, which is the normalized reciprocal 
of the prediction error. There is an upper limit to weight, normally 0.3 of the entire scale. 
The algorithm allows for times when there are less than four clocks by limiting weight to 
0.433 with three clocks and 0.633 with two. Such times should occur only briefly when 
clocks are temporarily removed due to anomalous behavior. An ensemble with less than 
three clocks fails mathematically to produce a good scale. AT2 is based on the AT1 time 
scale algorithm with the addition of a Kalman filtering technique for estimating frequency. 

In addition to the deterministic parameters, there are two stochastic parameters in the clock 
model, white frequency modulation (FM) a, and random walk FM as [9,10]. These two 
parameters are consistent with atomic clock data, though there is evidence that flicker FM 
commonly exists in cesium clocks also [20-281. AT2 reduces to AT1 in steady-state if the 
weights of clocks are chosen properly; hence AT2 inherits the ability in AT1 to model flicker 
FM also. 

Like AT1, AT2 estimates time offsets using predictions from the previous measurement cycle 
and the current measurements. These predictions allow us to detect time steps in a clock by 
comparing the difference between its predicted and updated time, the time innovation, with 
that clock’s prediction error. The Kalman technique provides a variance of frequency 
prediction, which also allows us to detect frequency steps. 

In our formalism, we assume there is a constant reference time interval T~ between 
measurements. At each measurement cycle, all clocks are measured against a common clock 
with negligible measurement noise. Thus, we obtain a measurement between any pair of 
clocks by differencing the measurements of these two clocks against the common clock. If 
there are no data for a particular clock, the time interval between measurements can grow to 
some multiple of T ~ .  We denote this interval as T ~ , ~ ,  because we use x for a clock’s time 
offset, and this interval is the duration of reference time between time updates for clock i. 
When the algorithm detects a time step, it does not update the frequency for the stepped 
clock, even though time is still updated. Hence the reference time interval between 
frequency updates can be different from T, ,~ .  We denote this second reference time interval 
as T ~ , ~ ,  because y denotes the frequency offset of a clock from the ensemble. 

5.1 Time prediction 



The prediction of the time offset f;; of clock i from ensemble time for the current reference 
time, t, is calculated from the previously updated time offset xi at reference time t-T,,; and the 
filtered frequency yi, 

q t )  = x,(t-t,) + yi(t-txJ).t,. 

5.2 Time u-date 
Given measurements of time differences xji(t) for clock j minus clock i, the time offset of 
clock i is updated in a weighted average, using the prediction, weight, and time-difference 
measurement of every clock j ,  that is, 

The weights wj, determined from the prediction confidence, are normalized to sum to 1. We 
assume in this equation that the measurement noise is negligible, so 

xu - x4 - - xik (3) 

for all combinations of i, j ,  and k. If the validity of this assumption fails, then a pre-filter 
must be used to obtain estimates of xij that satisfy (3). We may view equation (2) as the 
definition of ensemble time, offset from one clock. The ensemble time offset from other 
clocks is simply 

xj = xi+x.-. (4) 
J' 

5.3 Adaptive Clock Weights 
The clock weights used to update the time offsets are calculated from the variances of the 
time residuals E: by 

2 

2 

EX 

Ei 

wi =- wcti, 

where E: is the ensemble prediction error variance, E: is the prediction variance since the last 
time update of clock i, and wct is the weight control parameter for this clock. The weights 
adaptively match the relative stabilities of the clocks in the ensemble because E: and E: are 
estimated from the data. As mentioned above, the weight control parameter affords the 
algorithm a way of dealing with time steps robustly, by deweighting a clock smoothly as a 



function of the size of the step [16]. This is discussed further in Section 6. Setting wct to 0 
allows a clock to be estimated against the scale without it actually contributing to the scale, 
which thus keeps that clock uncorrelated. 

5.4 Ensemble Prediction Error 
The ensemble prediction error is a numerical estimate of the stability of the ensemble over an 
integration time T ~ .  It is calculated as 

-1 

e:=($!?) (6) 

The dependence on t is suppressed in this equation. We see here that a poorly performing 
clock will not destabilize the ensemble; clocks can only improve ensemble stability. 

5.5 Prediction Error Estimate 
The prediction error of clock i over the interval T ~ , ~  is estimated from the difference between 
the time prediction and subsequent update, often called the innovation. This difference is 
adjusted for the average bias of this value due to the clock‘s correlation with the ensemble. 
The equation is 

where y is the expected proportion of the bias of clock i. Thus is(t) is a sample estimate of 
the prediction error variance of the clock, based on the current measurement cycle. 

5.6 Bias of the Error Estimate 
Because ensemble time is a weighted average of each of the individual clock times, the 
prediction error of a clock measured against the scale will be biased low, on the average. To 
correct for this biasing, we include the estimate of the multiplicative bias for each clock E191 

Thus the factor K ,  is the proportion of the unbiased-to-biased average prediction error, 
relative to the scale. 

5.7 Filtered Prediction Error 



We assume a model for the prediction error of white PM and random walk PM. That is, the 
prediction error estimates vary around some true mean prediction error at the two-hour 
measurements due to the white FM level of the clocks, but this white FM level varies slowly 
at about 20 d. Therefore, we exponentially filter the squared prediction error of each clock 
from the current measurement cycle to obtain a more statistically reliable estimate of an 
individual clock’s variance. The filter is 

Because we assume the noise characteristics of a clock are not stationary, past updates are 
deweighted in the filtering process. The time constant for the filter is typically chosen to be 
N, = 20 d for cesium clocks, representing the time we expect the white FM level to remain 
constant. The initial value of E: is estimated as T$<(T~) .  

We identify the estimate of prediction error E(t) with the white FM level a, (in units of 
time)--the expected amount of time dispersion after an interval T ~ .  This is valid if the 
measurement interval T is well within the range of integration times for which the white FM 
is dominant, as is the case with the system at NIST, which makes measurements every 2 h. 

5.8 Freuuency Estimate 
Derived from a simple Kalman filter formalism [29,30], the method we use to calculate the 
frequency offset of each clock from the ensemble frequency involves an estimate of the 
nonstationary frequency changes y in the presence of white-noise frequency modulation. We 
estimate the flicker-plus-random-walk FM components of frequency based on the first 
difference of time. In this formalism the first difference of time offset is a measurement of 
y, the white FM is the measurement noise R, and the expected variance in frequency is the 
process noise Q. The Kalman formalism results in an exponential filter of the first difference 
of time, much as in the AT1 algorithm. In addition, the Kalman formalism provides a 
variance P of our estimate of the frequency, which we use to define a confidence on the 
current frequency. This method allows us to estimate frequency steps in AT2, as well as to 
combine forward and backward passes of AT2 to obtain the smoothed scale TA2. 

The first difference of time, which is the average frequency of each clock at time t over the 
interval T,, based on the latest two time updates (when there are no time steps), is used as 
an estimate of that clock’s current frequency ydx. The calculation is 

We predict y from previous time taking the last updated value of y and adding any 
deterministic frequency drift to obtain 



When a time step is detected, we cannot use the estimate ydx, because the step in time inserts 
a bias. Hence there can be no frequency update until the next measurement cycle. At that 
time, the time since the last frequency estimate T ~ , ~  is larger than 7,. We estimate y, over 
T,,~,  but we predict over T ~ , ~ .  

Because we are estimating the non-stationary part of frequency that may be derived from 
averaging the white FM, the Kalman filter equations prescribe the formulas for combining 
our measurement y,, with our prediction i, based on previous estimates. These terms are 
weighted with the white FM level R as measurement noise and the predicted variance P as 
our confidence on y from the past: 

Here, the Kalman formalism provides us with an exponential filter on y, as in AT1. In 
steady state, AT2 reduces to AT1 if the weights are chosen properly; AT2 thus inherits from 
AT1 the ability to model flicker FM. 

The white FM level R is adjusted from ~ 2 ,  so that we may interpret it as the expected 
variation in frequency over T, ,~  due to the white FM process. This interpretation equates R to 
the average frequency variation over T , , ~  from the mean frequency offset of this clock from 
ensemble frequency. This mean frequency is defined approximately because white FM is the 
dominant noise process. We assume that the random walk in frequency is slow compared to 
the white fluctuations in frequency. Thus, averaging the white FM defines an underlying 
mean frequency consistent with a pure random walk FM model. This definition of R equates 
it with the two-point, or Allan, variance and gives it units of frequency according to [9] 

1 
2 

= -(@(t+t) -y(t))2) 

= 0,2(t) 

The brackets < > in these equations mean "expected value." Because we estimate CT; as the 
"measurement noise," our system constitutes an adaptive Kalman filter, which allows P, the 
variance of the residuals of y, to evolve with changes in 
integration time of the exponential filter on y, as expressed in equation (12), can change with 
time. This occurs when initializing a new clock and when a clock's white FM level changes. 

from an initial value. Thus the 



5.9 Freuuencv Variance Prediction 
We predict the frequency variance according to 

P(t) = P(t-t> + aty), (14) 

where P is the prediction of the variance of the residuals of y. The process noise in 
frequency Q is the variance in y due to random walk FM over the interval ry [9], 

where n is the number of ro intervals in ry, 

TO 

Q grows with ry as a function of 4, the expected variance in y over the interval ry due to 
flicker or random-walk FM. 

5.10 Freauency Variance Update 
As we obtain a measurement of frequency, so the confidence improves. Hence the variance 
P decreases as a function of the measurement noise. The Kalman formalism provides for our 
update of the frequency variance as 

RFi P(t) = - 
[R + PI; 

6. TIME-STEP DETECTION 

A time step is defined as an innovation greater than three times the prediction error, that is, 
when 

pi@) - n i q  > 3+). (18) 

The algorithm responds to a time step by deweighting that clock using the weight-control 
parameter, W C ~ ,  for the current measurement cycle [16]. If we define the ratio of the 
innovation to the prediction error as the proportion 



then we set W C ~  to 

1, ifprop, 2 3, 
wct, = 1 - (3 -propJ2, for 3 < prop, < 4, 1 0, ifprop, 2 4 . 

This allows a clock to lose weight smoothly as its time innovation increases from 3 to 4 
times the prediction error. A quadratic dependence was chosen as the simplest way to 
decrease the weight with a zero initial rate of change. 

7. FREQUENCY-STEP DETECTION 

Frequency steps can be detected only some time after they occur [ 1,4]. Because our 
measurements are of phase differences between clocks with inherent white FM, frequency 
steps appear only after the accumulation of measurements. Flicker or random-walk FM can 
be understood as a series of stochastic changes in frequency, hence there is no mean 
frequency. Small frequency steps are indistinguishable from the stochastic noise. We define 
a frequency step as a shift in frequency greater than four times the standard deviation of the 
stochastic impulses. Empirically we have found that this detects frequency steps which are 
clearly significant, while leaving undetected smaller steps which can be interpreted as large 
stochastic impulses driving the random walk or flicker FM. This implies that the distribution 
of such impulses is not Gaussian. By contrast, a time step is a shift in phase of a clock that 
exceeds three times the current white FM characterization. 

The detection of frequency steps may be obscured by the presence of time steps and the 
stochastic noise from white and random-walk FM. If a clock generates a time step, an 
average frequency spanning the time step will be biased by the size of the time step, divided 
by the interval between measurements. This bias can be large. Only after two 
measurements can we conclude that the new frequency after the time step is approximately 
equal to that before it and so distinguish between time and frequency steps. 

It may also be useful to look backward beyond two measurements for the determination of 
small frequency steps. This procedure allows the white noise to be averaged down to the 
point where only random-walk or flicker FM remains. Thus the maximum useful extent of a 
search backwards for frequency steps is where the flicker or random-walk FM begins to 
dominate over the white FM. We use as a measure of this time interval the time constant 
weighting the previous frequency estimates in the exponential filter for y (12). If we call this 
time interval L-, the number of T~ intervals is then, from (12), 
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For I? in (21), we use the steady-state value P,, of P, then add Q to it as indicated in (14). 
To obtain P,, we set P(t+T) = P(t) and solve, using (13) -(17). Also, substituting in the 
expressions for P and Q, equations (13) and (15), using T = T ~  we find 

Adding Q to P,, to obtain P,,, (14), substituting this into (21) and simplifying, we find 

We assume, for evaluating R and Q in (23), that T = T ~ ,  because (23) has been derived from 
the steady state P. 

Because we must measure clock differences, our best estimate of an individual clock 
frequency will be for a clock against the ensemble. But the ensemble itself must have 
stochastic processes, and these also need to be considered when testing for frequency steps. 

The algorithm tests for frequency steps by iterating backward for each clock a range of 
measurements from two before the current measurement time up to L- back. On each 
measurement cycle, for each clock, we maintain a buffer of the previous LX values of all 
the necessary parameters for frequency-step detection. At each measurement, we search for 
frequency steps for each clock. We define the average frequency of a clock from the first 
difference over the time interval from the measurement L intervals back (L < I-,-), x-= at 
time t-L, to the most recent measurement before the current time x - ~  at time t-l; that is, 

We compare this frequency with the updated estimate of frequency y(t-J saved from time 
LL. That is, we compare a filtered estimate of frequency computed at the beginning of a 



fixed-time interval based on the clock’s history with an estimate of the average frequency 
over that interval. If the frequency difference exceeds a test value, we conclude that the 
clock generated a frequency step. 

The variance for the test is the sum of the expected variance for yavg plus the variance for 
y(t-3. The variance of yavg is the sum of the expected variance of y against the ensemble 
over the interval from t-, to t-,, plus the variance of the ensemble itself. The expected 
variation of the ensemble is a function of both $,,, and where 

For the variance of y against the ensemble over the interval, we use the maximum P-(t,L) 
of P either at the beginning or the end of the interval multiplied by L / L ,  because the 
variance decreases by the averaging time L. 

The variance of the ensemble frequency due to white FM decreases as L, while the variation 
in ensemble frequency due to random walk FM increases with L. Finally, the variation in 
y(t-J is P(t-3. We use P instead of P, since we are testing for a frequency step. Hence we 
cannot use the measurement of frequency at time t-, to decrease the uncertainty of 
frequency. For L large, typically the dominant term in a, is P. 

The test variance is 

We use four standard deviations of a,, simply because we empirically have found it 
appropriate. Smaller frequency steps have the same effect on the ensemble as random walk 
FM, which is already modelled. 

Hence we define that a frequency step has occurred when 

If a clock generates a frequency step, usually that same step will appear over a contiguous 
range of test times. We look for frequency steps over all times in the allowable range and 
treat that having the largest inequality in (27) as containing the actual frequency step. If we 
find only one Occurrence of a frequency step over a range of L values, we ignore it, 
assuming the detection to be in error. Any large frequency step must produce steps detected 



over a range of test times. 

When a frequency step is detected, we re-run the scale from the time t-L of that step with that 
clock deweighted. First we set the frequency and variance estimate of frequency at to 

z 
(J, 2 

L 
P( t -3  = - + ag*L. 

We do not search for new frequency steps during this secondary run; thus there is no 
iterative search for frequency steps. The stepped clock remains deweighted until a time of 
Li, measurement cycles after the occurrence of the detected step. In other words, when we 
find a frequency step, that clock's frequency is re-initialized with an average frequency and 
the clock is removed from the scale until the algorithm adaptively learns the clock's new 
frequency. 

8. TA2 FROM AT2 
The smoothing algorithm TA2 essentially averages the filtered frequencies of clocks, 
generated by running AT2 forward and then backwards in time over the same data to obtain 
a "best" estimate of frequency for each clock. We run AT2 first forwards and then 
backwards in time over a fixed interval of data, saving the frequency values yi(t) of clocks, 
and their variances Pi(t). In the third and final, forward pass through the data we average 
frequencies from the previous two passes for the predictions of xi,  for each clock as in (1). 
The frequency y, from the previous forward pass is averaged with the frequency yb from the 
backward pass using the reciprocals of their variances Pf and Pb respectively, for weights. 

- + -  

We use the prediction in the backward pass to avoid using the data at time t twice in 
estimating the smoothed frequency ys. Then in the third pass, we generate ensemble time 
using these smoothed frequencies for prediction. 

9. INITIALIZATION 

When starting the algorithm with no ensemble history or else entering a new clock into an 
existing ensemble, we need an estimate of the deterministic parameters, offsets of time, 
frequency, and frequency drift from the ensemble, and also the stochastic parameters a, and 
as of white and random walk FM. 

When starting a new ensemble, the deterministic estimates must be consistent. If xi and xj 



are the initial estimates of time offset from ensemble time for clocks i and j respectively, 
then their difference must equal the measured difference; that is, 

xi - x .  = x .  (30) 

Whereas this is the only requirement, any constant value may be added to all xi, to 
predetermine the initial time value of the ensemble. Similarly, any constant may be added to 
all the clocks’ frequency or drift estimates to pre-determine the initial frequency or drift of 
the ensemble. Indeed, at any time, constants may be added (to all clocks) to steer the 
ensemble to any desired time, frequency or drift. The internal equations of the algorithm are 
not affected by such steering, which follows from our observation that we never measure the 
time of any clock, but only time differences between clocks. The algorithm optimizes 
stability among clocks, but provides no measure of accuracy. 

J r/ ‘ 

The stochastic parameters can be estimated from an Allan or two-point variance of the clock, 
which is a variance that estimates fractional frequency stability [20-281. In our formalism, 
CJJT) and U ~ ( T )  are the expected dispersions of a clock after an interval T ,  where the 
dispersion 
walk FM, 
two hours 

is one of time in ns due to white FM, and of frequency in ns/d due to random 
respectively. We enter the values for ~ = l d ,  and internally convert them to T = T ~ ,  

in our case. The conversion formula is 

t 
a2(t? = &)-, c 

C 

for both CJJT) and CT~(T) .  This can be derived using the formula relating them to the Allan 
variance from [9], 

2 aor 2 a i  (2n + 1) 
UJt) = 2 + 

6n 
n=0 

If we then use the T dependence of the Allan variance [20-261 for each of the two noise 
types separately in (32), we obtain (31). 

11. CONCLUSIONS 

We have shown the performance of the NIST post-processed time scale TA2 over a period of 
nine years and given the equations defining the algorithm generating these data. The 
algorithm itself shows properties similar to the real-time scale AT1, which has been running 
at NIST since the late 1960’s. TA2 is a smoother algorithm based on the real-time algorithm 
A n .  TA2 is generated by running AT2 forward and backward in time to estimate clock 
frequencies, then running a forward pass of AT2 to combine these frequencies and estimate 
time. AT2 incorporates some changes from AT1 that should provide some advantages over 
AT1 for post-processing or for automatic error detection. A third time scale at NIST is 
TA(NIST), a pure Kalman filter not directly related to TA2. We have also seen here the 
performance of the NIST ensemble of atomic clocks over this nine-year period. 
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