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Laser Spectroscopy of Carbon Monoxide:
A Frequency Reference for the Far Infrared

Thomas D. Varberg and Kenneth M. Evenson

Abstraci—The rotational spectrum of carbon monoxide
(12C'%Q) in the far infrared has been accurately measured. Cal-
culated CO rotational frequencies derived from a least-squares
fit to these data are given for the range J” = 0 to 45 and are
accurate to <10 kHz (2 o) for J” < 28. These frequencies form
the most accurate far infrared frequency reference reported to
date.

1. INTRODUCTION

E have measured the far infrared (FIR), rotational

spectrum of 2C'®0 in its X'E* (v = 0) ground state
with an accuracy approximately 10 times greater than that
reported previously [1]. The 2 ¢ error limits (95% confi-
dence interval) of the calculated transition frequencies de-
rived from a least-squares fit to the observed spectrum
(combined with low frequency measurements of the first
five rotational transitions by other workers [1]-[4]) are
less than or equal to 10 kHz over the frequency range 0.1
< p < 3.5 THz. These error limits correspond to an ac-
curacy of about 5 parts in 10°. CO is a stable and rela-
tively inert molecule ideally suited for use as a frequency
reference for the far infrared region. The calculated val-
ues provided here will be useful for accurate frequency
calibration of high resolution, far infrared spectrometers
in the laboratory as well as for radioastronomical inves-
tigations of CO.

II. EXPERIMENTAL METHOD

The rotational spectrum of CO was measured in ab-
sorption by tunable far infrared (TuFIR) spectroscopy.
The experimental configuration and method have been de-
scribed in greater detail elsewhere [5]. Briefly, far in-
frared radiation is generated in a metal-insulator-metal
(MIM) diode by the nonlinear mixing of mid infrared ra-
diation from two CO, lasers with frequencies v; and vy.
Adding sidebands of frequency v, from a microwave syn-
thesizer generates two tunable FIR frequencies: |og — vyl
+ v,. With a choice of about 5000 pairs of 12¢18Q, laser
frequencies [6], all FIR frequencies as high as 5 THz can
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be generated. One of the two CO, lasers is frequency sta-
bilized by locking it directly to a saturation dip in the
4.3-um CO, fluorescence signal from a reference cell
placed in the beam path [7]. The other CO, laser is offset
locked to a third CO, laser that is frequency stabilized in
the same manner as the first laser.

The spectrum of CO was recorded as a first derivative
by frequency-modulating one of the two CO, lasers at 1
kHz, passing the synthesized FIR radiation through a cell
containing high purity CO, and detecting the absorption
signal with a lock-in amplifier. The spectral linewidth is
limited by Doppler broadening (at 2 THz, the full width
at half maximum is 6 MHz). Each spectral line shape was
fitted by least squares using five adjustable parameters:
the transition frequency and intensity, the Gaussian and
Lorentzian linewidths, and the spectrometer baseline.

III. FAR INFRARED REFERENCE FREQUENCIES

A typical example of a CO transition is illustrated in
Fig. 1. In addition to our 26 measured rotational transi-
tions, we included in the data set low frequency measure-
ments of rotational transitions from J” = 0-4 which have
been made by other workers [1]-[4].

The rotational energy level expression for a diatomic
molecule in a 'L™ state is written [8]

EJ) = BJJ + 1) = DI’U + 1)?
+ HI’J + 1)) + LI*J + DY 1)

The rotational transitions were fitted to (1) using a
weighted least-squares fitting program, and values for the
four molecular constants were obtained. The derived ro-
tational constants are: B = 57 635.968 26(12) MHz, D
= 0.183 505 52(46) MHz, H = 1.724 9(59) X 1077
MHz, and L = —3.1(23) x 107" MHz, where the
1 o uncertainties of the last digits are indicated in
parentheses.

In Table I we list the calculated rotational frequencies
for CO in the range J* = O to 45, along with the 1 o
standard errors of these frequencies. The 95% confidence
limits correspond to 2.05 ¢. It should be noted that the
standard errors of the calculated frequencies which lie to
higher frequency of the last observed transition (J = 38
« 37 at 4.34 THz) are likely to be underestimates of the
true uncertainties. The uncertainties of these extrapolated
values (in contrast to interpolated values) are underesti-
mated by the least-squares fit because the molecular en-
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Fig. 1. The upper trace displays the observed J = 31 < 30 rotational tran-
sition in the ground state of CO. The lower trace displays the residuals
obtained from a least-squares fit to the observed line shape.

ergy level expression given in (1) is inadequate for levels
of higher J. Essentially, the additional term MJ 5 W+ 1)°
term is required to properly model such high-J levels, but
the presently measured transitions are not sensitive to this
term. We also list in Table I the observed-minus-calcu-
lated frequencies of the data, along with the estimated
measurement uncertainties. The data were weighted in the
fit by the square of the inverse of these estimated uncer-
tainties. Fig. 2 displays a graph of the fitted residuals
plotted as a function of the transition frequencies.

Our measurement uncertainties arise primarily from two
sources. First, although the relative 1 ¢ uncertainties of
the '2C'%0, laser frequencies are about 3 kHz [6], we be-
lieve that the uncertainty in the resettability and stability
of our CO, lasers is significantly larger. We estimate this
combined uncertainty as 7 kHz, giving rise to a 10 kHz
uncertainty in the FIR frequency (10 ~ V2 x 7). Our
least-squares fit to the CO data assuming this uncertainty
in the FIR frequency produced a variance relative to the
experimental uncertainty of 0.98. Since a relative vari-
ance of 1 implies an appropriate estimate of the experi-
mental uncertainties [9], it appears that our estimation of
the uncertainty in the FIR frequency is correct.

A second source of uncertainty is the determination of
the line center of each CO transition from the computer
fit of its line shape. For all but the weakest lines, these
1 o uncertainties were less than 10 kHz. The estimated
uncertainty of each transition (see Table I) was calculated
as the quadrature sum of the uncertainties in the FIR fre-
quency and the fitted line center.

TABLE I
CALCULATED AND OBSERVED ROTATIONAL FREQUENCIES FOR '2C'®0 N ITs
X'C*(r = 0) GROUND STATE

Calculated Observed- Exper.
Frequency Calculated Uncert.

J-Jr (MHz)* (MHz) (MHz)”
1-0 115271.202 (< 1) 0.002° 0.005
2-1 230 538.001 (< 1) -0.001¢ 0.001
3-2 345 795.991 (1) 0.000¢ 0.001
4-3 461 040.770 (1) —0.001¢ 0.002
5-4 576.257.933 (1) -0.011° 0.032
6-5 691 473.078 (1) 0.012 0.012
7-6 806 651.804 (1) 0.002 0.010
8-7 921 799.707 (1) 0.004 0.010
9-8 1 036 912.388 (2) 0.015 0.010
10-9 1 151 985.447 (2) 0.007 0.011
11-10 1 267 014.485 (2) 0.019 0.010
12-11 1 381 995.106 (2) 0.004 0.013
13-12 1 496 922.913 (2) 0.002 0.012
14-13 1611 793.512 (2) 0.005 0.011
15-14 1 726 602.510 (3) cee s
16-15 1 841 345.516 (3) —-0.004 0.011
17-16 1 956 018.140 (3) 0.002 0.011
18-17 2 070 615.996 (3) 0.002 0.014
19-18 2 185 134.699 (4) -0.014 0.013
20-19 2299 569.865 (4) -0.018 0.010
21-20 2413917.114 (4) 0.004 0.011
22-21 2 528 172.067 (4) —-0.007 0.011
23-22 2 642 330.350 (4) <. cee
24-23 2 756 387.589 (4) 0.001 0.017
25-24 2 870 339.415 (4) —-0.001 0.013
26-25 2984 181.460 (4) 0.001 0.014
27-26 3 097 909.360 (4) 0.006 0.017
28-27 3211 518.755 (5) . ce
29-28 3 325 005.288 (5) ce cee
30-29 3 438 364.603 (5) 0.015 0.010
31-30 3 551 592.352 (6) 0.013 0.010
32-31 3 664 684.186 (6) cee e
33-32 3 777 635.763 (6) —0.032 0.016
34-33 3 890 442.744 (7) -0.020 0.013
35-34 4 003 100.794 (9) cee ce
36-35 4 115 605.582 (13) 0.010 0.022
37-36 4227 952.781 (19) cee cee
38-37 4 340 138.069 (28) 0.055 0.043
39-38 4 452 157.127 (39) B cee
40-39 4 564 005.644 (54)
41-40 4 675 679.310 (73)
42-41 4 787 173.822 (96)
43-42 4 898 484.880 (125)

44-43 5 009 608.192 (160)

45-44 5 120 539.469 (203)

46-45 5231 274.428 (254)

“Values in parentheses are the 1 o standard errors of the calculated tran-
sitions in units of the last quoted digits. The 95% confidence limits corre-
spond to 2.05 a.

*This column lists the estimated 1 o uncertainty of each observed fre-
quency.

“Observed value from [2].

40bserved value from [3].

“Average of observed values from [1] and [4].

IV. CoNcLUSION

The estimated experimental uncertainties of the present
TuFIR data set are about 10 times smaller than those of
Nolt et al. [1], resulting in calculated frequencies of the
transitions which are an order of magnitude more accu-
rate. This new, comprehensive set of '>C'%0 frequencies
will be useful as a frequency reference for the far infrared.
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Residuals of the Least-Squares Fit
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Fig. 2. Plot of the fitted residuals (observed-calculated) versus the tran-
sition frequencies. The error bars on each point denote the estimated ex-
perimental uncertainty of the transition frequency.
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