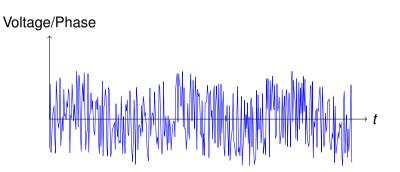


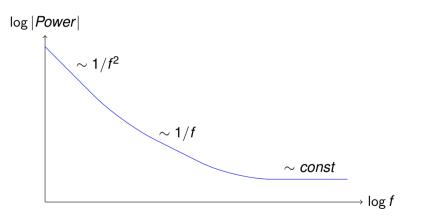
Designing Low-Noise Analog Electronics for Time and Frequency Metrology

Attila Kinali


2020-07-19

Overview

- Types of noise
- "Normal" electronics vs metrology electronics
- Design example DMTD
 - Designing multi-stage amplifiers
 - Going digital
- References / Recap


Introduction	Types of Noise	Analog vs Digital	DMTD
	00000	000	000000000000000000000000000000000000000

What is Noise?

Epiloge

Noise in Frequency Domain

White noise

Flicker noise (1/f, 1/f²,..)

- Environmental effects
 - Temperature
 - Humidity
 - Barometric pressure
 - EMI / Ground loops
- Aging
 - Relaxation effects
 - Diffusion effects

White noise

Flicker noise (1/f, 1/f²,..)

- Environmental effects
 - Temperature
 - Humidity
 - Barometric pressure
 - EMI / Ground loops
- Aging
 - Relaxation effects
 - Diffusion effects

- White noise
- Flicker noise (1/f, 1/f²,..)
- Environmental effects
 - Temperature
 - Humidity
 - Barometric pressure
 - EMI / Ground loops
- Aging
 - Relaxation effects
 - Diffusion effects

- White noise
- Flicker noise (1/f, 1/f²,..)
- Environmental effects
 - Temperature
 - Humidity
 - Barometric pressure
 - EMI / Ground loops
- Aging
 - Relaxation effects
 - Diffusion effects

Types of "Noise"

- White noise
- Flicker noise (1/f, 1/f²,..)
- Environmental effects
 - Temperature
 - Humidity
 - Barometric pressure
 - EMI / Ground loops
- Aging
 - Relaxation effects
 - Diffusion effects

- Most systems only limted by white noise
- Other types of noise treated as "drift"
- Timescales matter

Component Noise - Passives

- Resistor
 - Thermal/white noise ($\sqrt{4kTR}$)
 - Flicker noise insignificant (mostly carbon resistors)
- Capacitor
 - "Noiseless"
 - Mechanical noise
 - ESR
 - Leakage current
- Inductor
 - "Noiseless"
 - Mechanical noise
 - ESR
 - Magnetic coupling

Component Noise - Passives

- Resistor
 - Thermal/white noise ($\sqrt{4kTR}$)
 - Flicker noise insignificant (mostly carbon resistors)
- Capacitor
 - "Noiseless"
 - Mechanical noise
 - ESR
 - Leakage current
- Inductor
 - "Noiseless"
 - Mechanical noise
 - ESR
 - Magnetic coupling

Component Noise - Passives

- Resistor
 - Thermal/white noise ($\sqrt{4kTR}$)
 - Flicker noise insignificant (mostly carbon resistors)
- Capacitor
 - "Noiseless"
 - Mechanical noise
 - ESR
 - Leakage current
- Inductor
 - "Noiseless"
 - Mechanical noise
 - ESR
 - Magnetic coupling

Component Noise - Actives

Transistor (BJT, JFET, MOSFET)

- White noise
- Flicker noise
- Temperature dependent gain modulation
- Opamp / Amplifier / Comparator
 - Input voltage noise (white and flicker)
 - Input bias current noise (white and flicker)
 - Power supply noise
 - Temperature dependent gain modulation

Component Noise - Actives

Transistor (BJT, JFET, MOSFET)

- White noise
- Flicker noise
- Temperature dependent gain modulation
- Opamp / Amplifier / Comparator
 - Input voltage noise (white and flicker)
 - Input bias current noise (white and flicker)
 - Power supply noise
 - Temperature dependent gain modulation

Limits of Noise

- Thermal noise power:
 - @ 20 $^{\circ}\text{C}:$ $-174\,d\text{Bm}/\sqrt{\text{Hz}}$
 - @ $-200\,^\circ\text{C}$: $-180\,\text{dBm}/\sqrt{\text{Hz}}$
 - Power independent of resistance
- Thermal noise voltage:
 - 50 Ω @ 20 °C: 0.9 nV/√Hz
 - − 50 Ω @ −200 °C: 0.45 nV/√Hz
 - 12.5 Ω @ 20 °C: 0.45 nV/√Hz
- P-N junction reverse bias current:
 - increases with imes 2 / 9 °C

Limits of Noise

- Thermal noise power:
 - @ 20 °C: $-174 \, dBm/\sqrt{Hz}$
 - @ $-200\,^\circ\text{C}$: $-180\,\text{dBm}/\sqrt{\text{Hz}}$
 - Power independent of resistance
- Thermal noise voltage:
 - 50 Ω @ 20 $^{\circ}\text{C}:$ 0.9 nV/\sqrt{Hz}
 - 50 Ω @ $-200\,^{\circ}\text{C}$: 0.45 nV/ $\sqrt{\text{Hz}}$
 - 12.5 Ω @ 20 °C: 0.45 nV/ \sqrt{Hz}
- P-N junction reverse bias current:
 - increases with imes 2 / 9 °C

Limits of Noise

- Thermal noise power:
 - @ 20 $^{\circ}\text{C}:$ $-174\,d\text{Bm}/\sqrt{\text{Hz}}$
 - @ $-200\,^\circ\text{C}$: $-180\,\text{dBm}/\sqrt{\text{Hz}}$
 - Power independent of resistance
- Thermal noise voltage:
 - 50 Ω @ 20 $^{\circ}\text{C}:$ 0.9 nV/\sqrt{Hz}
 - 50 Ω @ $-200\,^{\circ}\text{C}$: 0.45 nV/ $\sqrt{\text{Hz}}$
 - 12.5 Ω @ 20 °C: 0.45 nV/ \sqrt{Hz}
- P-N junction reverse bias current:
 - $-\,$ increases with \times 2 / 9 $^{\circ}\text{C}$

Measurement

What doeas measuring mean?

The process of taking an *analog* signal, *processing* it and recording *numerical* (digital) data is called *measuring*.

Measurements in the Past vs Today

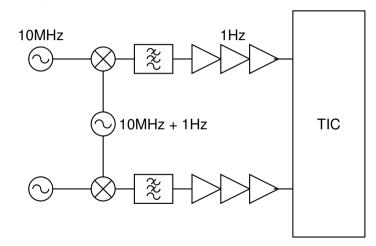
The past:

- Digital electronics slow and expensive
- ADCs were slow, noisy and low resolution
- \rightarrow
- Lots of analog processing
- Late digitalization

Today:

- Digital electronics cheaper than analog
- ADCs fast, low noise and high resolution

 \rightarrow


- Little analog processing
- Early digitalization

Digitalize early!

- Bits are cheap
- 32 bits give 182 dB dynamic range
- 64 bits give 385 dB dynamic range

 \rightarrow Digital processing can be made "noiseless", given enough processing power. DSP and FPGA are cheap.

Mise en Pratique: Le DMTD

[Allan & Daams 1975]

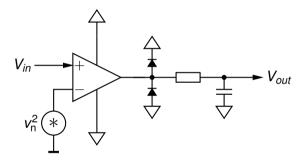
Performance Limits of the DMTD

- TIC: 100 ps
- Time "amplificiation": 10⁷
- ightarrow 10 as resolution

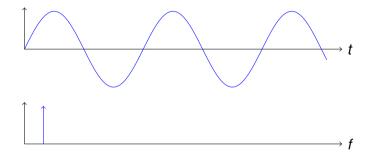
System will be limited by the input noise and contributions by the mixer and amplifiers.

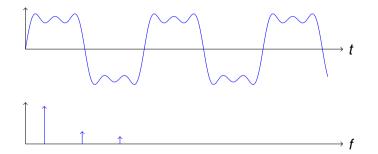
Performance Limits of the DMTD

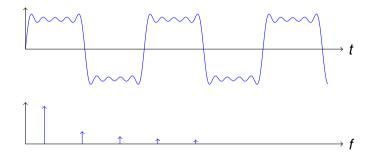
The TIC needs high input slopes: $10\,V/\mu s$ to $1000\,V/\mu s$

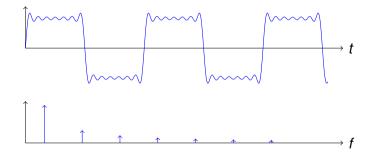

- $4\,dBm=1\,V_{pp}$ @ $1\,Hz\rightarrow 3\,\mu V/\mu s$
- $\rightarrow 70\,dB$ to $110\,dB$ gain needed

 $74 \, dBm = 25 \, kW$

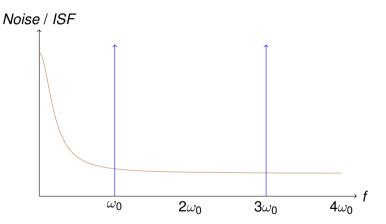

Analog vs Digital

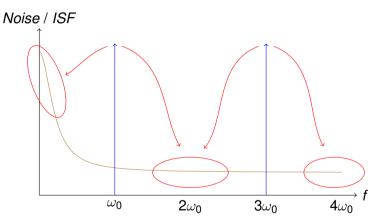

 Epiloge


Limiting Amplifier



[Allan & Daams 1975] [Dick, Kunle, Sydnor 1990] [Collins 1996]

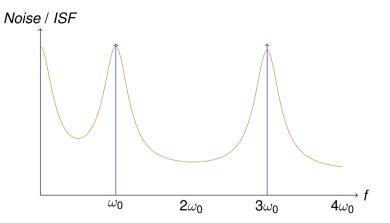



Introduction	Types of Noise	Analog vs Digital	DMTD	Epiloge
	000000	000	000000000000000000000000000000000000000	0000

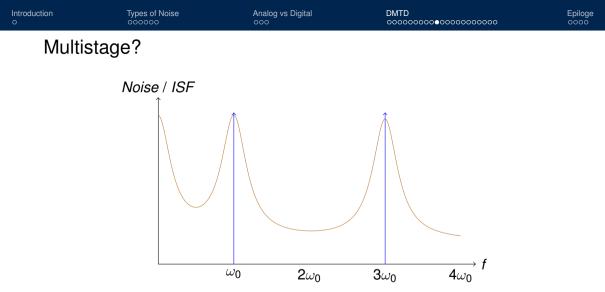
Noise Folding Due to Harmonics

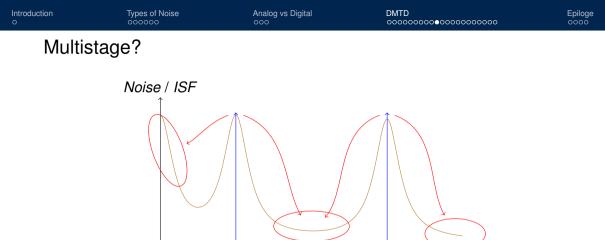
[Hajimir & Lee 1998] [Kinali 2018 & 2019]

Noise Folding Due to Harmonics



[Hajimir & Lee 1998] [Kinali 2018 & 2019] Epiloge

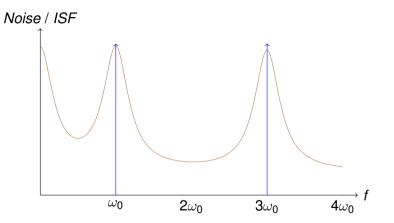

0000


Introduction	Types of Noise	Analog vs Digital	DMTD	Epiloge
	000000	000	000000000000000000000000000000000000000	0000

Noise Folding Due to Harmonics

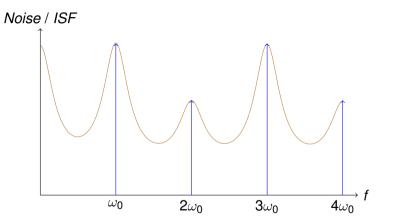
[Hajimir & Lee 1998] [Kinali 2018 & 2019]

 $2\omega_0$

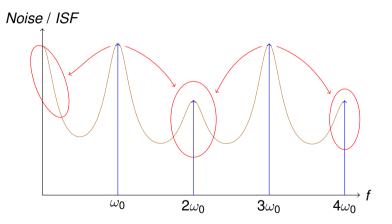

 $3\omega_0$

 ω_0

 $4\omega_0$


Introduction Types of Noise Analog vs Digital	DMTD 00000000000000000000000000000000000	Epiloge 0000
---	---	-----------------

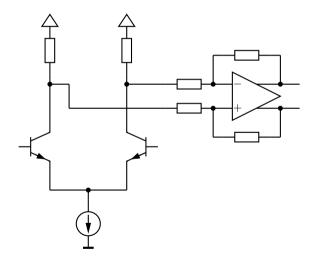
Multistage with duty cycle \neq 50%


Introduction o	Types of Noise	Analog vs Digital	DMTD ०००००००००•००००००००	Epiloge 0000

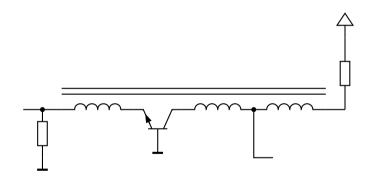
Multistage with duty cycle \neq 50%

Introduction Types of Noise Analog vs Digital

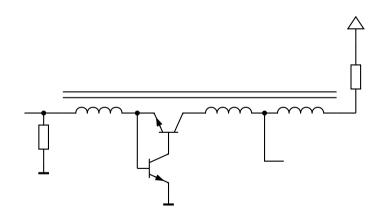
Multistage with duty cycle \neq 50%



How to Design an Amplifier


Signal frequency and bandwidth:

- Low frequency:
 - Opamps offer low noise and ease of use
 - Use discrete transistor pre-amp for lower noise
 - Use differential signaling for high power supply rejection
 - Add differential-drift cancelation circuit for second harmonic supression
- High frequency:
 - Opamps are noisy, but might be good enough
 - MMIC amplifiers available with low noise figure
 - Use discrete transistor amplifiers if possible
 - Use push-pull architecture for second harmonic supression

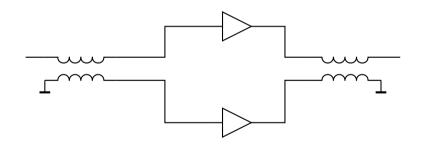

Differential Low Frequency Amplifier

High Frequency Amplifier

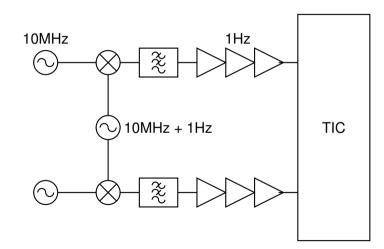
High Frequency Amplifier

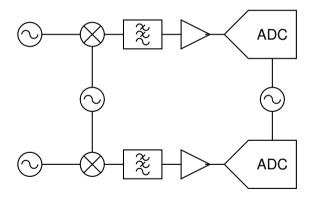
 Epiloge

Push-Pull High Frequency Amplifier

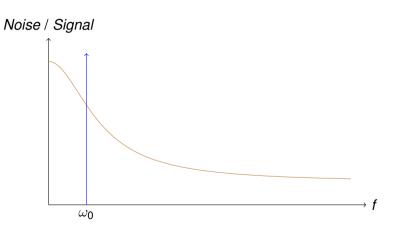

 Epiloge

Push-Pull High Frequency Amplifier

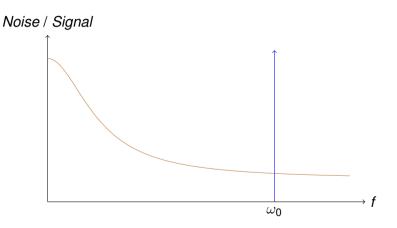



Push-Pull High Frequency Amplifier

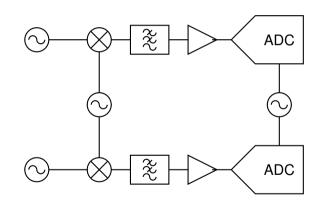
Can We Avoid the Amplifiers?



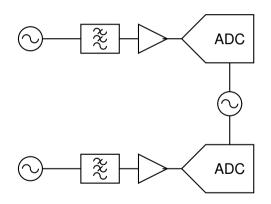
Can We Avoid the Amplifiers?

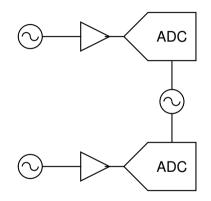

[Uchino & Mochizuki 2004]

Moving Away From Flicker Noise



Introduction Types of Noise Analog vs Digital DMT


Moving Away From Flicker Noise

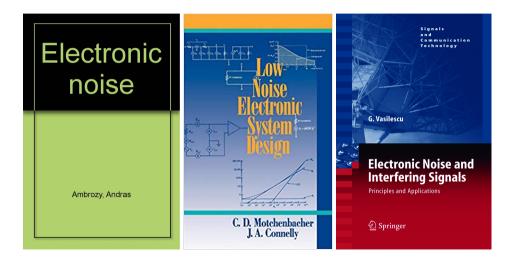

Further Improvements

Further Improvements

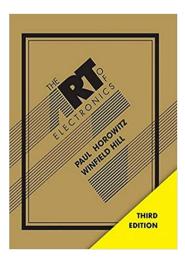
Further Improvements

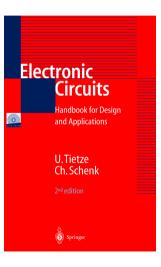
[Mochizuki, Uchino & Morikawa 2007] [Sherman & Jördens 2016] What We Have Seen

- Digitalization is a powerful tool
- One can incrementally improve a design, given enough leverage to work with
- The right architecture saves you headaches while having better performance


Things We Have Not Talked About

- Power supplies (linear vs switched)
- Digital signal processing and its noise and non-linearities
- How to find the right architecture
- Component selection
- How to estimate the noise performance of the circuit


Types of Noise


Analog vs Digital

Further Reading

Further Reading

