TWEPP 2013

A multichannel Time-To-Digital Converter ASIC with better than 3ps RMS Time Resolution

Lukas Perktold (GRAZ/CERN), Jorgen Christiansen (CERN) Lukas.Perktold@cern.ch, Jorgen.Christiansen@cern.ch

24 September 2013

Outline

- . Time measurements in HEP
- . Time-to-Digital Converter Concepts
- . Challenges in Fine-Time Resolution TDC Design
- . Demonstrator architecture and implementation
- . Measurement Results
- **.** Conclusion

TDC applications

HEP:

- Large systems
 - -~100k channels
 - Time resolution and stability across whole system
 Common time reference for all the channels
- . Single shot measurements
- Hit rates: KHz MHz
- Detector time resolution sets requirements for TDC

Drift time in gas based tracking detectors

- . Low resolution: ~1ns
- . Examples: CMS and ATLAS muon detectors

Time of flight detectors

- High resolution: 10ps 100ps
- Example: ALICE TOF
- New detectors: CMS HPS, ATLAS FP420, LHCb Torch, Totem, Fast forward detectors, etc.

Non HEP:

Laser ranging, Radar, On chip instrumentation, Imaging systems (PET, 3D imaging), etc. TWEPP 2013 L. Perktold / J. Christiansen

TDC Trend in HEP

Time Measurement Chain

Time Measurements

Time Tagging

- Measure "absolute" time of an event (Relative to a time reference: clock)
- For large scale systems with many channels all synchronized to the same reference

TDC Architectures

Difficulties in ps range resolution

Counter Extension

Relate measurement to reference signal

- Delay needs to fit one reference clock cycle
- Delay Locked Loop: DLL

Counter capture/metastability

- Hit is an asynchronous event
- Double counter / gray & additional bit

TDC Architecture

• Central interpolator with counter to extend dynamic range

• Measurements are referenced to common reference to allow to synchronize multiple TDCs

• DLL for PVT auto calibration and power consumption trade-off

• Short propagation delays and fast signal slopes of timing critical signals to reduce jitter

• Calibration applied on a group of channels to reduce circuit overhead and calibration time

• Relatively constant power consumption make it less sensitive to change in hit rate

Fine-Time Interpolator

• DLL to control LSB size

- -> 32 fast delay elements in first stage 20 ps
- -> Total delay of DLL 640 ps at 1.56 GHz

• Resistive Interpolation to achieve sub - gate delay resolutions

-> LSB size of 2nd stage controlled by DLL (Auto adjusts to DLL delay elements)

L. Perktold / J. Christiansen

Voltage Controlled Delay Cell

Resistive Interpolation

L. Perktold / J. Christiansen

Device Mismatch

- Calibration can correct for Fine-Time Interpolator and Distribution Buffer mismatch
- Don't want to calibrate each single register
 - -> Time capture registers require good matching
 - Several implementations designed and implemented
- Circuits carefully optimized for best matching/power compromise with Monte-Carlo simulations

Time Capture Register

Demonstrator

Code Density Test

- Uniformly distributed events across clock cycle
 Asynchronous clock domains
- Number of collected hits => bin size

. Before Global Calibration

Reconstructed Transfer Function

Standard Cell FF - Weak Matching

Differential-Non-Linearity Integral- Non-Linearity channel 7 channel 7 INL [LSB] DNL [LSB] 2.5 RMS 0.87 LSB 0.68 LSB Sigma 1.5 2 0.61 LSB σ_{wINL} 0.71 LSB σ_{aDNL} 1.5 0.5 0.5 -0.5 -0.5 -1.5 -2 -2.5 -1.5 <u>⊩</u>0 -3₀ 10 20 30 40 50 60 70 80 90 100 110 120 10 20 30 40 50 60 70 80 90 100 110 120 bin number bin number channel 8 channel 8 INL [LSB] 3 DNL [LSB] 2.5 RMS RMS 0.69 LSB 0.60 LSB 1.5 2 0.98 LSB 0.64 LSB σ_{wINL} σ_{aDNL} 1.5 0.5 Λ -0 5 -0. -1.5 -2 -2.5 -1.5 L -3Ď 10 20 30 50 60 80 90 120 40 70 100 110 10 20 30 40 50 60 70 80 90 100 110 120 bin number bin number DNL = +2 LSB / -1 LSB $INL = \pm 2.5 LSB$

RMS = < 0.87 **LSB** (4.35 ps-rms)

Expected time resolution: < 5.9 ps-RMS (w/ standard cell FF)

Factor ~2 worse (but lower power consumption)

L. Perktold / J. Christiansen

Double Shot Measurement

- Uniformly distributed events across 1 clock cycle - asynchronous clock domains
- Send same hit to two distinct channels
- Delay fixed by wire length differences
- Jitter contribution of hit not canceled out

Measured Single Shot Precision

- Three measurement series
 - Both hits arrive within one reference clock cycle
 - Second hit arrives one clock cycle later
 - Second hit arrives multiple clock cycles later (~5ns)

Inter Channel Crosstalk

PVT variations

Power consumption

8 channels

Full TDC ASIC to be made

TDC Architecture:

Demonstrator ASIC

- < 3 ps-RMS resolution
- $\bullet < 50 \text{ mW/channel}$
- Missing: PLL, Counter, Digital logic

Full TDC

- Based on HPTDC
- . 64 128 channels per ASIC
- 40 MHz input clock
- < 5 ps-RMS timing precision (Power consumption optimization)
- Radiation tolerant
- Flexible readout architecture

Conclusion

- Demonstrator TDC has been designed, prototyped and successfully tested.
- 3ps RMS time resolution has been demonstrated
- Device mismatch considerably affects performance
 -> Trade off: Power, Resolution, Calibration
- Macro suitable for high resolution general purpose TDC

BACKUP

Interpolator Linearity

After Global Calibration

I/O Buffer Influence

Reference Clock Frequency

5 ps = 1562.5 MHz

• How fast the delay line can go depends on process variations and operating conditions

Delay Buffer Biasing

Simulated Bin-Widths

Distribution Buffer w/ Calibration

• binary weighted calibration (5 bits)

- delay can be varied from -16 ps to +15 ps in 1 ps steps (2fF per step)
- can correct INL errors up to 6.4 LSB

Calibration

Efficiency

No calibration

Device mismatches coming from

- Fine-time interpolator
- •Time Capture registers

Global calibration

Device mismatches coming from •Time Capture registers only

Single channel calibration

Ideally cancels all device mismatches

(c) Single channel calibration

Figure 6.19: Measured LSB size of channel 5 for different calibration settings.

Variable LSB Size (CH5)

TWEPP 2013

L. Perktold / J. Christiansen

Clock vs. Event Capture

Clock Capture Register

Event Capture Register

Event Sampling

- no delay on event signal (global interpolation approach)
- need to identify an event within one clock cycle
- additional registers clocked with the reference signal

Detailed Power Consumption I

Table 5.14: Power consumption estimates of the respective blocks of the demonstrator.

Block	acquisition on	acquisition off	
Interpolator	71 1	mW	
Delay Line	$40\mathrm{mW}$		
Resistive Interpolation	$28\mathrm{mW}$		
Loop Components	$3\mathrm{mW}$		
Channel Matrix	$163\mathrm{mW}$	$109\mathrm{mW}$	
Distribution Buffers	$109\mathrm{mW}$		
CH 1-2		-	
CH 3-6	$11.1\mathrm{mW}$	$0\mathrm{mW}$	
CH 7-8	$4.8\mathrm{mW}$	$0\mathrm{mW}$	

Detailed Power Consumption II

Table 6.4: Measured power consumption of respective blocks of the demonstrator supplied with 1.3 V.

Frequency	Clobal Interpolator	Channel Matrix		L/O
[MHz]	Giobai Interpolator	acquisition on	acquisition off	1/0
1562.5	$85\mathrm{mW}$	$185\mathrm{mW}$	$117\mathrm{mW}$	$72\mathrm{mW}$
1280	$70\mathrm{mW}$	$152\mathrm{mW}$	$97\mathrm{mW}$	$72\mathrm{mW}$
781.25	$43\mathrm{mW}$	$95\mathrm{mW}$	$60\mathrm{mW}$	$72\mathrm{mW}$
640	$36\mathrm{mW}$	$80\mathrm{mW}$	$50\mathrm{mW}$	$72\mathrm{mW}$
390.625	$24\mathrm{mW}$	$50\mathrm{mW}$	$33\mathrm{mW}$	$72\mathrm{mW}$
320	$20\mathrm{mW}$	$42\mathrm{mW}$	$28\mathrm{mW}$	$72\mathrm{mW}$

Channel Performance Comparison

Table 6.3: Measured rms-time resolution of different channels and LSB size settings.

Channel	LSB	Δ Bin	Double-Shot	Single-Shot	Expected
1 & 2	$5\mathrm{ps}$	-20 LSB	$5.25\mathrm{ps}\mathrm{-rms}$	$3.71\mathrm{ps} ext{-rms}$	$3.03\mathrm{ps}\mathrm{-rms}$
3 & 4	$5\mathrm{ps}$	21.7 LSB	$3.05\mathrm{ps}\mathrm{-rms}$	$2.16\mathrm{ps}\mathrm{-rms}$	$2.10\mathrm{ps}\text{-rms}$
5 & 6	$5\mathrm{ps}$	3.2 LSB	$3.37\mathrm{ps}\mathrm{-rms}$	$2.39\mathrm{ps}\mathrm{-rms}$	$2.10\mathrm{ps}\mathrm{-rms}$
7 & 8	$10\mathrm{ps}$	-3.7 LSB	$7.02\mathrm{ps}\mathrm{-rms}$	$4.96\mathrm{ps}\mathrm{-rms}$	$4.03\mathrm{ps}\text{-rms}$
$5 \ \& \ 6^a$	$6.1\mathrm{ps}$	8.8 LSB	$4.09\mathrm{ps}\mathrm{-rms}$	$2.89\mathrm{ps} ext{-rms}$	$2.11\mathrm{ps} ext{-rms}$
$5 \ \& \ 6^a$	$10\mathrm{ps}$	5.4 LSB	$5.50\mathrm{ps}\mathrm{-rms}$	$3.89\mathrm{ps}\mathrm{-rms}$	$3.70\mathrm{ps}\mathrm{-rms}$
$5 \ \& \ 6^a$	$12.2\mathrm{ps}$	4.5 LSB	$6.34\mathrm{ps}\mathrm{-rms}$	$4.49\mathrm{ps}\mathrm{-rms}$	$3.89\mathrm{ps}\mathrm{-rms}$
$5 \ \& \ 6^a$	$20\mathrm{ps}$	2.7 LSB	$9.79\mathrm{ps}\mathrm{-rms}$	$6.92\mathrm{ps}\mathrm{-rms}$	$8.20\mathrm{ps}\mathrm{-rms}$
$5 \ \& \ 6^a$	$24.4\mathrm{ps}$	2.2 LSB	$11.26\mathrm{ps}\mathrm{-rms}$	$7.96\mathrm{ps}\mathrm{-rms}$	$9.50\mathrm{ps}\mathrm{-rms}$

 a Erroneously applied single channel calibration for channel 5.